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REACTOR NEUTRINOS

• Reactor is a free and rich electron antineutrino source
• β-decays in a commercial fission reactor core produce~ 1020 "/sec
• β-spectra measured at ILL is converted into "̅$ yields
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REACTOR NEUTRINOS

• Reactor "̅# are detected via inverse β-decay (IBD) reaction

• Delayed coincidence method has been employed to distinguish signals 
from background since discovery of neutrinos in 1956

• Gd loaded in recent experiments for n-tag:  total 8MeV $’s with τ~30)s
• Neutrino energy can be determined from the prompt signal

• +, ≅ +./01.2 + 0.78 MeV
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PRECISION MEASUREMENT OF !"#
WITH REACTOR NEUTRINOS

• Simple two flavor oscillation formula is valid at ~1km distance

• ( *̅+ → *̅+ ≈ 1 − sin2 2!"# sin2
4567
89:

• Direct measurement of θ13 from energy dependent deficit 
(no parameter degeneracy and matter effects)

sin2 2!"# = 0.1

∆?#"
2 = 2.5×10B#eV2
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CHOOZ EXPERIMENT

• CHOOZ experiment measured reactor neutrino spectrum at !~1km
• No significant deficit observed: & = 1.01 ± 2.8%(stat) ± 2.7%(syst)

• Measured positron spectrum with reactor-ON 
after subtraction of reactor-OFF (= background)

• Rate compared with an integrated flux measured 
at 15m (Bugey4: Phys. Lett. B338, 383 (1994)

Phys. Lett. B466, 415 (1999)

Current reactor combined
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IMPROVEMENTS FROM CHOOZ

• 4 layers detector structure with buffer region to suppress background from 
PMT and surrounding rock → Improve background reduction

• Stable Gd loaded liquid scintillator → Improve statistics with stable operation

• Experimental setup with multi-detectors → Improve systematics (next page)
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EXPERIMENTAL SETUP WITH MULTI-DETECTORS

• Place two or more almost-identical detectors at different baselines

• Systematic uncertainties on reactor flux prediction and detector 
response are largely cancelled in comparison

2MeV 3MeV
4MeV

Near Detector Far Detector
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SIGNAL & BACKGROUND
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SIGNAL & BACKGROUND
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THREE REACTOR EXPERIMENTS IN THE WORLD

Double Chooz Daya Bay RENO

• !"# is measured by reactor experiments with <1% systematic uncertainties

• Reactor !"# is used as input to current and future neutrino experiments aiming 
for precise measurement of neutrino mixing including $%& and mass hierarchy

• Validation by multi-experiments with different systematics are important

Reactor	B1
B2

Near	Detector

Far	Detector
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THREE REACTOR EXPERIMENTS IN THE WORLD
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• *#+ is measured by reactor experiments with <1% systematic uncertainties

• Reactor *#+ is used as input to current and future neutrino experiments aiming 
for precise measurement of neutrino mixing including ,-. and mass hierarchy

• Validation by multi-experiments with different systematics are important
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THREE REACTOR EXPERIMENTS IN THE WORLD
sin$ 2&'( = 0.1 ∆.('$ = 2.5×101(eV$

2MeV 3MeV 4MeV

Double Chooz Daya Bay RENO
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Double Chooz
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Chooz Reactors
4.27GWth x	2	cores
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Double Chooz
• Indication of non-zero θ13  in 2011 (94%CL) – first result since CHOOZ

• New method: total neutron capture detection (n-H + n-Gd + n-C)

• Improve statistics by factor 2.5 with extended target mass

• Realized by strong BG reduction with ANN and various vetoes

arXiv:1901.09445
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Double Chooz
• Simple experimental setup with two reactors
• Flux uncertainty largely suppressed
• Reactor rate modulation analysis
• Direct measurement of background with reactor-OFF data

Phys.Lett. B735 (2014) 51-56 C. Buck, Neutrino‘18
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• Side-by-side calibration with multiple detectors at each site
• Detector response validated by automated calibration system

Daya Bay

Phys. Rev. D 95, 072006 (2017)
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• Reported 5" observation of non-zero θ13 in 2012 and has been 
leading the precision measurement

• Three sites cover wide range of #/% → sensitive to Δ())*

• ∆())* ≡ cos* 01* Δ(21* + sin* 01* Δ(2**

Daya Bay

Phys. Rev. D 95, 072006 (2017)

S. Parke, Phys. Rev. D 93, 053008 (2016)
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• Reported 5" observation of non-zero θ13 in 2012 and has been 
leading the precision measurement
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• Confirmed non-zero θ13 soon after Daya Bay in 2012
• Measured Δ"##$ consistent with Daya Bay
• Recently reported fuel-composition studies (later slides)

RENO
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• Confirmed non-zero θ13 soon after Daya Bay in 2012
• Measured Δ"##$ consistent with Daya Bay
• Recently reported fuel-composition studies (later slides)

RENO

Prediction based on ND measurement
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REACTOR MODEL: RATE

• Several past experiments reported rate observation lower than 
prediction (Huber-Mueller model) by ~6%→ reactor anomaly

Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 

With a new neutrino mass state
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REACTOR MODEL: RATE

• Several past experiments reported rate observation lower than 
prediction (Huber-Mueller model) by ~6%→ reactor anomaly

• Data taken with different fuel-compositions indicate the deficit 
is in neutrinos from 235U

Daya Bay
PRL118, 251801 (2017)

RENO
arXiv:1806.00574 (2018)
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REACTOR MODEL: SPECTRUM
• Significant distortion was observed in reactor neutrino spectrum
• Three experiments with different background compositions reported 

similar distortion → unlikely due to background
• The cause is not yet understood
• Distortion consistent in ND and FD → cancelled in θ13 measurements

DC, arXiv:1901.09445

RENO reported indication of 
correlation with 235U fraction

RENO, arXiv:1806.00574
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• From latest results
• Double Chooz sin$ 2&'( = 0.105 ± 0.014
• Daya Bay sin$ 2&'( = 0.0856 ± 0.0029
• RENO sin$ 2&'( = 0.0896 ± 0.0067

θ13 measurements from reactor experiments

PRL121, 241805 (2018)

PRL121, 201801(2018)

arXiv:1901.09445 
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SUMMARY AND PROSPECTS
• Three reactor experiments measured θ13 with various improvements with 

respect to CHOOZ (detector, scintillator and multi-detectors method)

• The value of θ13 was found close to the edge of CHOOZ limit

• Double Chooz reported indication of non-zero θ13 in 2011.

• Daya Bay observed θ13 with 5" significance in 2012 → θ13 established.

• RENO soon confirmed θ13 in 2012.

• Reactor experiments achieved precise measurement with the 
systematic uncertainties controlled at per-mil level.

• Three experiments reported similar distortion in reactor spectrum 
incompatible with the reactor flux model (source is as-yet-unknown)

• Now reactor θ13 measurements are approaching the final stage

• Reactor θ13 will be used for decades as input to future experiments 
aiming for revealing whole picture of neutrino mixing.

• Stay tuned for the θ13 outputs from reactor experiments.
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