### **Physics with T2HKK**



#### Hyper-K Two Detectors





#### E. Witten

#### "Why don't you bring one of the 2 tanks to Korea ?" @EPP2010

#### T2HKK Inauguration July 10<sup>th</sup> 2016, London



#### Energy vs. Baseline



#### Neutrino Oscillations in Kamioka & Korea



### Unique benefits of a Korean Detector

Biprobablitiy plots often used to compare experiments. (e.g. T2K vs NO $\nu$ A). Extend these to multiple energies, to gain understanding of 2<sup>nd</sup> maxima measurement.

Larger ellipses mean less sensitivity to systematic errors. Shape differences unpick degeneracies with other parameters. (e.g.  $\theta_{23}$ )

Solid lines: Normal Hierarchy Ne Dotted lines: Inverted Hierarchy

New detector at Kamioka ny improves statistics Blue: Energy of peak QE rate Red: median of high-energy tail Green: " " low-energy "



### Benefits of the 2<sup>nd</sup> Detector in Korea

T2HKK = Tokai to(2) HK to Korea

The following physics sensitivities are improved by locating the 2<sup>nd</sup> detector to Korea



See a talk given by S.K. Agarwalla on this Friday.

### **Important Questions**

#### expected to be answered by Hyper-K/T2HKK.

- Leptonic CPV ?
- $\succ$  v mass ordering determination ?
- > NSI ?
- Supernova relic neutrinos ?
- Proton decay ?
- Dark matter ?
- etc.



### Why Leptonic CPV ?

#### 1. Which <u>flavor symmetry</u> model ?

# Understanding pattern of $\nu$ mixing

10



S.H. Seo@Prospects of nu Physics, 190409 IPMU

# Why CPV in Lepton Sector? CP structure in quark sector is well known. Small CPV in quark sector ( < 10<sup>-7</sup> %) can not explain baryon asymmetry of the universe. However, leptogenesis may explain baryon asymmetry, provided with large CPV in lepton sector.

 There is <u>hint</u> of maximal CPV in lepton sector. (~ 2sigma @T2K, NOvA)



### $\delta_{\mathsf{CP}}$ & MO Sensitivity Studies

#### **\*\*** Simulation parameters **\*\***

- 2.7x10<sup>22</sup> POT with  $v:\overline{v} = 1:3$  operation ratio
  - ightarrow 10 years of operation with 1.3 MW beam
- 187 kton fiducial volume (compared to 22.5 kton for SK)
- Baseline to Korea is 1100 km
- Off-axis beam: 1.5°, 2.0°, 2.5°
- Oscillation parameters:

$$|\Delta m_{32}^2| = 2.5 \times 10^{-3} \text{ eV}$$
  

$$\sin^2 \theta_{23} = 0.5$$
  

$$\sin^2 2 \theta_{13} = 0.085$$
  

$$\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}$$
  

$$\sin^2 \theta_{12} = 0.304$$
  

$$\delta_{cp} = 0, \pi/2, \pi, 3\pi/2$$

Note: Relatively simple systematic uncertainty model is used.
 More realistic systematic uncertainty implementation is needed.

#### $\delta_{\text{CP}}$ Sensitivities



### Fraction of $\delta_{CP}$



arXiv:1611.06118 PTEP 2018, 6, 1-56

Note: LBL sensitivity study was also independently done using GLoBES in PRD 96,033003 (2017).

### $\delta_{\text{CP}}$ Precision Sensitivities

# → Very important for flavor symmetry model of neutrino mixing S. Petcov in ICHEP 2018



JD x 1 :  $\sigma(\delta_{CP}) \sim 22$  degree

15



### Why v Mass Ordering (MO) ?



Fractional Flavor Content varying  $\cos \delta$ 

#### 1. Important input to CPV measurement

2. Important input to flavor models

#### Current Status of v MO





\*\* Cosmological measurement (indirect / independent) favors normal ordering 3 times more from sum of v mass

 $\succ$  Current best fit: normal ordering at **3.4**  $\sigma$  from <u>global fit</u>

Front. Astron. Space Sci., 09 October 2018

(T2K, NOvA) + (SK) + (DB, RENO, DC)

### Mass Ordering Sensitivities (Beam v)

Normal



#### Inverted



S.H. Seo@Prospects of nu Physics, 190409 IPMU

#### Beam + Atm. v Data



#### Octant Sensitivity: Beam + Atm.



#### **Atmospheric Parameter Sensitivity**

Neutrino oscillation parameters



High precision oscillation parameter measurement:

1.3% 
$$\delta(\sin^2\theta_{23}) \sim 0.006 \text{ (for } \sin^2\theta_{23} = 0.45)$$

 $\delta(\sin^2\theta_{23}) \sim 0.015$  (for sin<sup>2</sup>θ<sub>23</sub>=0.50)

 $\delta(\Delta m_{32}^2) \sim 1.4 \times 10^{-5} eV^2$ ~0.6%

#### Non-standard v Interaction Sensitivity



#### Supernova Relic Neutrinos (SRN)

#### Neutrinos emitted from past supernovae



### **SRN: Physics Motivation**

S.Horiuchi et. al (2011) S.Horiuchi et. al (2009) Prediction from cosmic SFR Reactor  $\overline{v}$ 8 MeV 10 Excluded 6 MeV [  $(22.5 \text{ kton yr})^{-1} \text{ MeV}^{-1}$ 0.5 4 MeV by SK SN1987A (2003) Cosmic SNR measurements SNR [10<sup>-4</sup> yr<sup>-1</sup> Mpc<sup>-3</sup>] 0.4 Expected 0.3 in SK-Gd 0.2 dN / dE<sub>e</sub> | Li et al. (2011a) Cappellaro et al. (1999) 0.1 Botticella et al. (2008) Cappellaro et al. (2005) mean local SFR (see Figure 2) θ Bazin et al. (2009) Dahlen et al. (2004) 20 10 30 40 0 0.1 E<sub>e</sub> [MeV] 0.2 0.8 1.0 0.40.6 Redshift z SRN spectrum may solve SuperNova Rate problem: ~1.8 (+1.6 \_-0.6) the supernova rate problem.

#### Muon shielding(Mt. Bisul)



| Detector site (overburden)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Phi (10^{-7} \mathrm{cm}^{-2} \mathrm{s}^{-1})$ | $\overline{E}_{\mu}$ (GeV) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|
| Mt. Bisul (820 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.81                                              | 233                        |
| Mt. Bohyun (820 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.57                                              | 234                        |
| Mt. Bisul (1,000 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.59                                              | 256                        |
| Mt. Bohyun (1,000 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.50                                              | 257                        |
| Hyper-K (Tochibora, 650 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.55                                              | 203                        |
| Super-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.54                                              | 258                        |
| Tube Contraction of the second | Tochibora                                         | HK                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISUI                                             |                            |
| 0 0.1 0.2 0.3 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5 0.6 0.7 0.8                                   | 0.9 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | cose                       |



## SRN Sensitivity 1000 m overburden

#### Expected SRN events & significance plot



> 6  $\sigma$  discovery with JD+KD using 10 years data

27

### Why Proton Decay Search ?



See a theory talk by Natsumi Nagata on this Friday.

#### Discovery Potential for $p \rightarrow e^+\pi^0$



This mode's efficiency does not depend much on cathode coverage above 20%
 Background reduction though is improved by Gd loading

#### Discovery Potential for $p \rightarrow vK^+$



- Efficiency depends considerably on coverage
- Background reduction is improved by Gd loading

#### Proton Decay Limits & Sensitivities

#### Only way to directly probe GUT



#### T2HKK White Paper November 21<sup>st</sup> 2016



~ 4 months later from the inauguration arXiv:1611.06118

(60 pages)

Updated version is published. PTEP 2018,6, 1-56

Physics Potentials with the Second Hyper-Kamiokande Detector

#### in Korea

#### (Hyper-Kamiokande Proto-Collaboration)

K. Abe,<sup>57,59</sup> Ke. Abe,<sup>24</sup> H. Aihara,<sup>59,60</sup> A. Aimi,<sup>18</sup> R. Akutsu,<sup>58</sup> C. Andreopoulos,<sup>28,43</sup>
I. Anghel,<sup>21</sup> L.H.V. Anthony,<sup>28</sup> M. Antonova,<sup>20</sup> Y. Ashida,<sup>25</sup> M. Barbi,<sup>44</sup> G.J. Barker,<sup>66</sup>
G. Barr,<sup>40</sup> P. Beltrame,<sup>11</sup> V. Berardi,<sup>16</sup> M. Bergevin,<sup>3</sup> S. Berkman,<sup>2</sup> T. Berry,<sup>45</sup>
S. Bhadra,<sup>73</sup> F.d.M. Blaszczyk,<sup>1</sup> A. Blondel,<sup>12</sup> S. Bolognesi,<sup>6</sup> S.B. Boyd,<sup>66</sup> A. Bravar,<sup>12</sup>

### Mt. Bisul Site









### Mt. Bisul Site



### Experimental Hall (Cavern) Construction

10.3.3 지하실험실구간 시공순서



35

### **T2HKK Detector Options**

- □ Twice bigger detector w/ less photo coverage?
- Gd loading ? (proton decay, SRN)
- Water-based Liquid Scintillator?
- PMT options:
   20 inch PMT
   mPMT
   SiPM etc..

→ We need sensitivity studies/R&D/detector design.
 → You have lots of opportunities in T2HKK/KNO !

Huge opportunities for new international collaborators ! Join us !

#### **WbLS Detector at Yemilab**

#### Good demonstrator for T2HKK

#### Neutrino Telescope at Yemilab, Korea

Seon-Hee Seo\*

arXiv:1903.05368

Center for Underground Physics, Institute for Basic Science,

55 Expo-ro Yuseong-gu, Daejeon 34126, Korea

(Dated: March 13, 2019)

A new underground lab, Yemilab, is being constructed in Handuk iron mine, Korea. The default design of Yemilab includes a space for a future neutrino experiment. We propose to build a water-based liquid scintillator (WbLS) detector of  $4\sim5$  kiloton size at the Yemilab. The WbLS technology combines the benefits from both water and liquid scintillator (LS) in a single detector so that low energy physics and rare event searches can have higher sensitivities due to the larger size detector with increased light yield. No experiment has ever used a WbLS technology since it still needs some R&D studies, as currently being performed by THEIA group. If this technology works successfully with kiloton scale detector at Yemilab then it can be applied to future T2HKK (Hyper-K  $2^{nd}$  detector in Korea) to improve its physics potentials especially in the low energy region.

### Yemilab @Handuk iron mine



38

### Summary

**J** Hyper-K: next generation multi-purpose v experiment.

2 x 260 kton water detectors MeV – TeV

Physics sensitivities are improved w/ the 2<sup>nd</sup> detector in Korea.

- Neutrino mass ordering determination
- CPV, CP precision, CP coverage
- Non-standard v interaction
- Solar/SN/SRN etc...

World class discoveries are expected to be made in Hyper-K.

CPV, SRN, proton decay etc...

□ Thanks to the construction of the 1<sup>st</sup> detector in Japan starts in April 2020, Korean community starts to prepare our proposal to Korean government. → Big opportunities for potential international collaborators.