SK results on Atmospheric Neutrinos and Prospects with HK

Roger Wendell Kyoto University Prospects of Neutrino Physics Kashiwa, Kavli-IPMU 2019.04.09

Introduction :

Super-K has been studying atmospheric neutrino oscillations for more than 20 years
 Statistical uncertainties are still dominant for the majority of those analyses

■ Hyper-K is expected to have even greater sensitivity, especially when its accelerator and atmospheric neutrinos are used together

■ This talk presents recent analysis results from Super-K as well as expected sensitivities at Hyper-K and comments on the impact of systematic errors

Topics

Present

- Atmospheric Oscillation analysis
- Search for Tau Neutrinos
- Improved Oscillation analysis in SK-IV

Future

- Hyper-Kamiokande Sensitivities
- Prospects with Improved Systematic Uncertainties

Super-Kamiokande Introduction

Neutrino, Antineutrino?

Super-Kamiokande: Introduction

Four Run Periods: SK-I (1996-2001) SK-II (2003-2005) SK-III (2005-2008) SK-IV (2008-2018)

Upgrade Complete Now operating as SK-V !!

- 22.5 kton fiducial volume
- Optically separated into
 - Inner Detector 11,146 20" PMTs
 - Outer Detector 1885 8" PMTs
- No net electric or magnetic fields
- Excellent PID between showering (e-like) and non-showering (μ-like)
 - ■< 1% MIS ID at 1 GeV
- Multipurpose detector

About the Atmospheric Neutrino Flux

Cosmic rays strike air nuclei and the decays of the outgoing hadrons produce neutrinos

 $P + A \rightarrow N + \pi^{+} + x$ $\downarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}}$

Isotropic about the Earth
 Path length to the detector spans 10 – 10,000 km

■ Spans many decades in energy ~100 MeV – PeV⁺

Atmospheric Neutrino Flux:

PHYSICAL REVIEW D 94, 052001 (2016)

IceCube/DeepCore

Atmospheric Neutrino Flux:

PHYSICAL REVIEW D 94, 052001 (2016)

Super-K Atmospheric v Analysis Samples

- Dominated by $v_{\mu} \rightarrow v_{\tau}$ oscillations
- Interested in subdominant contributions to this picture
 - ■Ie three-flavor effects, Sterile Neutrinos, LIV, etc.

Atmospheric Neutrino Oscillations :

Atmospheric Neutrino Oscillations :

Atmospheric Neutrino Oscillations :

Results from Super-Kamiokande

Atmospheric Mixing + δ_{cp} : Super-K (only)

 Atmospheric mixing angles consistent with other experiments, weak preference for second octant (< 1σ)

- $\sin^2\theta_{23} = 0.588^{+0.031}_{-0.064}$
- Normal hierarchy preference : $\Delta \chi^2$ (NH IH) = -4.33
- δ_{cp} ~1.33π

Atmospheric Mixing + δ_{cp} : Super-K (only)

Normal hierarchy favored by slight data excesses at energies consistent with resonantly-enhanced oscillations

Test for Evidence of Matter Effects

$$H_{\text{matter}} = \begin{pmatrix} \frac{m_1^2}{2E} & 0 & 0\\ 0 & \frac{m_2^2}{2E} & 0\\ 0 & 0 & \frac{m_3^2}{2E} \end{pmatrix} + U^{\dagger} \begin{pmatrix} a & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} U$$

$$a = \pm \sqrt{2} G_F N_e$$

$$\downarrow$$

$$a = \pm \alpha \sqrt{2} G_F N_e$$

Best fit consistent with standard matter density and normal hierarchy $(\alpha = 1)$

Vacuum oscillations ($\alpha = 0$) rejected at 1.6 σ

Atmospheric Mixing + δ_{cp} : SK+T2K Model

Fit atmospheric data with a *model* of T2K (6.57x10²⁰ POT, nu mode)

- T2K has collected 3.16x10²¹ POT
- Atmospheric mixing dominated by T2K Model
- Normal hierarchy hint strengthens:
 - $\Delta \chi^2$ (NH IH) = -5.27 (SK only: -4.33)
- As does preference for δ_{cp} ~1.33 π

Atmospheric Mixing + δ_{cp} : SK+T2K Model

Hierarchy Significance				
NH Preference	Lower Oct.	Best Fit	Upper Oct.	
SK Only	82.9%	93.0%	96.7%	
SK+T2K Model	91.9%	92.5%	94.4%	

۷P

Search for Tau Neutrinos at SK

3 Flavor P($\nu_{\mu} \rightarrow \nu_{\tau}$)

- Tau neutrinos are not in atmospheric flux below 10⁵ GeV but can be induced by oscillations
 - Important for v_{τ} cross section studies, tests of unitarity, background to mass hierarchy search, etc.
- Complicated event topologies due to hadronic tau decay, search using neural network-based method

Search for Tau Neutrinos at SK :

Fit 2-dimensional PDFs ($\cos \theta$, Neural Network), while simultaneously varying systematic error templates

```
Uses 328 kton-yr exposure (SK-I ~ SK-IV)
```

Systematic Errors in Search for Tau Neutrinos

PHYS. REV. D 98, 052006 (2018)

Flux-averaged cross section:

$$\sigma_{measured} = (1.47 \pm 0.32) \times \langle \sigma_{theory} \rangle$$
$$= (0.94 \pm 0.20) \times 10^{-38} \text{ cm}^2$$
Stat+Syst.

Present and Near Future Prospects

New Reconstruction Algorithm : Performance

https://arxiv.org/abs/1901.03230

- A new likelihood-based event reconstruction has been developed at Super-K, which incorporates more PMT information than the previous algorithm
- Now been applied to atmospheric neutrinos (single- and multi-ring events), but for SK-IV data period only
 - Used at T2K since 2017 (single-ring events only)
- New algorithm outperforms previous one in essentially all metrics

New Reconstruction Algorithm : Fiducial Volume Expansion

	https://arxiv.org/abs/1901.03230			
Reconstruction	New	New	Previous	
Dwall range	$50~{\rm cm}{\sim}200~{\rm cm}$	$> 200 {\rm ~cm}$	$> 200 {\rm ~cm}$	
Particle ID of the brigh	icle ID of the brightest ring in multi-ring events			
<i>e</i> -like	-3.19%	-0.72%	4.19%	
μ -like	1.31%	0.31%	-1.56%	
Multi-GeV				
e-like	1.94%	1.10%	3.33%	
μ -like	-1.06%	-0.66%	-1.56%	

- Improved performance of the new algorithm has allowed the fiducial volume to be expanded from 22.5 kton to 29.7 kton (~30% increase)
- Analysis of calibration and neutrino data indicate that systematic errors are the same or smaller than those of the previous algorithm, even in the newly-added target region

Oscillation Analysis in Expanded Fiducial Volume : SK-IV

https://arxiv.org/abs/1901.03230

	θ_{13} Constrained	
Hierarchy	NH	IH
χ^2	576.5	579.0
$\sin^2\theta_{13}$	_	_
$\sin^2\theta_{23} \ (1^{st} \text{ oct.})$	$0.425^{+0.046}_{-0.037}$	$0.425_{-0.036}^{+0.055}$
$\sin^2\theta_{23} \ (2^{nd} \text{ oct.})$	$0.600^{+0.013}_{-0.030}$	$0.588^{+0.022}_{-0.037}$
$ \Delta m^2_{32,31} \ [\times 10^{-3} \ {\rm eV^2}]$	$2.53^{+0.22}_{-0.12}$	$2.53_{-0.31}^{+0.14}$
δ_{CP}	$3.14_{-1.35}^{+2.67}$	$4.89^{+1.51}_{-3.46}$

- Weak preference for the normal hierarchy
 Reject inverted hierarchy at 74% CL (assuming analysis best fit point)
- Similar preference for $\delta_{CP} \sim 3\pi/2$
- Best fit in the first octant (full SK analysis is in second octant)

Prospects : Mass Hierarchy Sensitivity

■ Median sensitivity is expected to reach $\sim 3\sigma$ (sin² θ_{23} = 0.5) by the time Hyper-K starts (assuming sin² θ_{23} = 0.5)

Next-Generation PROSPECTS

Hyper-Kamiokande:

- SK: Atm v: ~8/day neutron eff. ~20%
 HK: Atm v: ~80/day neutron eff. >40%
- Nonetheless, statistics are the dominant error for most analyses
- Additionally Hyper-K analyses use <u>neutrinos from J-PARC beam</u> with effective statistics about 20 times that of T2K

Current Hyper-K analysis uses the <u>same methodology</u> as Super-K above:
HK Studies below assume 1.86 Mton-yr exposure
→ A factor of ~6 times the current SK data set
→ No improvements in systematic errors assumed

Mass Hierarchy Sensitivity After 10 Years (186 kton)

Atmospheric ν Only

Current Allowed Range

- Mass hierarchy sensitivity >2 σ
 - $>3\sigma$ depending upon hierarchy and true value of sin² θ_{23}
- Octant discrimination $>3\sigma$ if $|\theta_{23} 45| > 4$ degrees
- Error bands denote uncertainty from δ_{CP}
- Precison on δ_{CP} limited by uncertainties

Mass Hierarchy Sensitivity After 10 Years (186 kton)

Atmospheric v Only

Current Allowed Range

- Mass hierarchy sensitivity >2 σ
 - $>3\sigma$ depending upon hierarchy and true value of sin² θ_{23}
- Octant discrimination $>3\sigma$ if $|\theta_{23} 45| > 4$ degrees
- Error bands denote uncertainty from δ_{CP}
- Precison on δ_{CP} limited by uncertainties

Hyper-Kamiokande : Mass Hierarchy Prospects

Tau neutrinos are expected to appear in the same kinematic region as the mass hierarchy signal

■ Uncertainty in the tau cross section (currently ~25%) has a large impact

Hyper-Kamiokande : δ_{CP} Measurement

Plots are for Hyper-K statistics assuming NH

Legend Explanation:

Full error – Current SK errors

No Atm. + Dom. X sec – Assume atmospheric flux and dominant xsec errors are zero

Updated - Assume 50% reduction in uncertainty

Impact of flux uncertainties is equal to that from all other sources

→ Improved flux calculations as well as reduced detector and cross section systematics will have a large impact on Hyper-K's measurements

Neutron Tagging: Beneficial for both SK and HK

SK-Gd will enable high-efficiency neutron tagging

- Allows for separation of atmospheric neutrinos and antineutrinos and all energies
- Low energy separation improves CP measurement by provided enriched an enriched antineutrino-like sample (with correspondingly better neutrino direction resolution)
 High energy separation will improve hierarchy discrimination
- Studies to test these ideas are underway in SK <u>now</u>

Hyper-K : Beam and Atmospheric Neutrino

- Sensitivity to matter effects (mass hierarchy) increased with improved constraint on atmospheric mixing parameters
- Measurement of CP phase is dominated by accelerator measurement, but parameter degeneracies are broken by atmospheric component, resulting in better sensitivity faster

Summary

- Atmospheric neutrino studies at Super-K presently indicate a weak preference for the normal hierarchy
- >90% C.L. including constraints from external experiments (328 kton-yr exposure)
 A similarly weak preference for δ_{CP} ~ 3π/2 is found
 Tau neutrinos observed at 4.6σ
- An improved reconstruction algorithm in SK-IV has enabled use of more of the detector target volume
 - 253 kton-year exposure yields similar hierarchy and CP preferences, though weaker
 - Expect to achieve 3σ hierarchy sensitivity in 10 years by applying to full and future data sets
- At Hyper-K mass hierarchy sensitivity with atmospheric neutrinos alone exceeds 2σ for pessimistic parameter assumptions, but reaches 4σ in combination with the beam
 - CP sensitivity with atmospheric neutrinos is limited, but complementary
 - Improvements in the understanding of the flux, detector, and cross sections important for making the most of this future data set

Backups