Results on Nucleon Decay Searches with Super-K and Prospects with Hyper-K

Hide-Kazu TANAKA (University of Tokyo, ICRR)

Prospects of Neutrino Physics, April 9, 2019

Outline

- Results of nucleon decay searches with Super-K
 - Mostly focuses on:
 - Two 'flagship' decay modes: $p \rightarrow e^+\pi^0$ and $p \rightarrow \bar{v}K^+$
 - The recent results for other decay modes
- Prospects on nucleon decay (NDK) searches with Hyper-K

Nucleon Decay

- Nucleon decay can occur via a direct transition from quark into lepton
 - Forbidden in the Standard Model
 - → Clear evidence of beyond the standard model if it's observed
- Grand Unified Theory (GUT)
 - Attempt to unify elementary particles (at 10¹⁵⁻¹⁶ GeV)
 - → Imply nucleon decay
 - Many GUT models and variety of predictions on nucleon lifetime, decay modes and branching ratio
- Nucleon decay search an unique prove for GUT and physics in very high energy

Super-Kamiokande

- 42m (toll) x 39m (diameter) large water Č detector filled with 50kton ultra-pure water
 - Fiducial mass: 22.5kton (conventional)
- Excellent particle identification (µ and e)
 - Separate EM-shower type (e-like) and muon type (µ-like) with Č ring pattern
 - Mis-PID rate below 1% at ~1GeV
- Good energy resolution: ~3% at ~1GeV

Search for $p \rightarrow e^+\pi^0$

- Positron and π⁰ run back-to-back
 - Momentum 459 MeV/c
- All particles in the final stable are visible with Super-K
 - Able to reconstruct p mass and momentum

• Event selection:

- All particles are fully contained in FV
- 2 or 3 rings (two of them from $\pi 0$)
- All particles are e-like, w/o Michel-e
- $85 < M_{\pi 0} < 185 \text{ MeV/c}^2$
- 800 < M_p < 1050 MeV/c²
- $100 < P_{tot} < 250 \text{ or } P_{tot} < 100 \text{MeV/c}$
- Neutron-tagging (SK-IV)
 - Further reduce bkg by ~50%

Excellent particle μ (e or μ) capability > 99% ns are available CKOM

- High mass Ferposeitole, (Sclear effect 2kton,
- Signal Potter ficensy & S/N separation
 - One of major causes opsigned briegerice doss with high sensitivities interaction (FSI) in the
 - Good ring-imaging capability at ~I GeV
 - An advantage lof 10 ates Gudetes bit is to 9% ave
 - $free prototion utering et r e and <math>\mu \sim 3\%$
 - Free protons are available Cf p e fit signal selection efficiency:
 No Fermi motion nuclear effect
 Mo Xygen: ~40%

 - High efficiency & good S/N separation in hydrogen: 80+% (SK-IV)
- **Background** for proton decay search
 - Atmospheric neutrino; CC-π production
 - **Background rate prediction confirmed** with data from K2K-1KT Č detector
 - **Background under control**

ex. π^0 from PDK interacts with nucleons in the target nucleus and oose original kinematics (ex. momentum) and/or modified charge

Background rejection (1)

- - $p+n \rightarrow d+\gamma$ (2 2 4 $\rightarrow 0$) y 40%
- New electronics (dead-time free) installed SK-IVTed regions of Berttify enhance discovery reach the 2.2MeV γ-ray reach the 2.2MeV γ-ray reach tagging'
 - $P_{tot} < 250 \text{ MeV/c for } {}^{16}\text{O}$ • **Atm-v bkg further reduced** by ~50% with neutron-Sig Sig Sig. Sig. Sig. Bkg (/Mtyr) $\epsilon(\%)$ Bkg (/Mtyr)
 - 18.7 **0.18** 19.4 **1.1**

Background rejection (2)

- **Bkg MC (SK-IV)** Events 80.0 Divide the signal*box into two with P_{tot} to enhance the discovery potentia 0.06 Upper P_{tot} (100~250 MeV/c) 0.04 Atm-v background tail 0.02 Proton decayo is 100 450 200 250 300 350 400 450 500 Ptot (MeV/c) dominant **Signal MC** Lower Ptot (<100 MeV/c) 140 Events 2 120 ~1/10 smaller bkg Black: All 100 compered to the upper P_{tot} 80
 - Free proton decay dominant

Background rejection (2)

$p \rightarrow e^+\pi^0$: Signal & Bkg

- Signal selection efficiency: ~40%
 - cf. ~80% for free proton decay

- **Expected bkg** contamination in signal region for entire SK period (SK-I~IV):
 - Lower P_{tot}: 0.05 events
 - **Upper P**tot: 0.58 events

$p \rightarrow e^+\pi^0$: Results

- τ/Br > 2.0 × 10³⁴ years [preliminary]
- Most stringent constrain

Search for $p \rightarrow \mu^+ \pi^0$

 Lifetime limit at 90% C.L. with 365 kt·years (SK-I~IV) exposure
 τ/Br>1.2×10³⁴ years [preliminary]

- Spirit of the event selection is similar to p→e+π⁰ mode but requires 1 µ-like ring
- Signal selection eff: ~40%
- Expected bkg contamination for entire SK observation period (SK-I~IV):
 - Lower Ptot: 0.07 events
 - Upper P_{tot}: 0.65 events
 - Found 1 evt in upper signal box
 - It's not obvious data excess compared to expected bkg
 - See PRD95, 012004 (2017)

Search for $p \rightarrow \overline{v}K^+$

- K⁺ has momentum of 340 MeV/c
 - Below Cherenkov threshold (749 MeV/c)
- Identify K⁺ by finding its decay products

Search Methods

- Nuclear de-exitation γ , μ , and decay e+
- Monochromatic μ from K+ decay

(b) De-excitation γ (6.3MeV) + μ decay

Search for p→VK+ [K+ hadronic decay]

K+→ $\pi^+\pi^0$: π⁺ and π^0 run back-to-back with 205 MeV/c

Super-Kamiokande IV Run 999999 Sub 0 Event 236 D wall: 1076.4 cm Evis: 260.4 MeV 2 e-like rings: mass = 155.2 MeV/c^2 Signal MC Resid(ns) > 251 220- 251 188- 220 -62- -31 -94- -62 -125- -94 -157--125 -188--157 <-188 (backward)

• Found no evidence of $p \rightarrow \bar{v}K+$

- Lifetime limit combining all three search methods:
 τ/Br > 8.2 × 10³³ years [preliminary]
 - at 90% C.L. with 365 kt·years (SK-I~IV)

-1000

-500

0

Residual PMT Hit Times (ns)

500

1000

N→charged lepton + meson

[PRD96, 012003 (2017)]

Theoretical prediction on branching ratio

channels	Buccella et al. (1989)	
p→e⁺π ⁰	30.0%	
p→e⁺η	12.9%	
p → e⁺p⁰	1.8%	
p→e⁺ω	14.4%	

- Several decay modes consist of charged lepton and meson:
 - $[e^+ / \mu^+] + [\eta, \rho, \omega, ...]$
- These decay mode can have a similar branching ratio to p→e⁺/µ⁺π⁰
- Search for nucleon decay for 10 decay modes:

N→charged lepton + meson

[PRD96, 012003 (2017)]

Modes	Background (events)	Candidate (events)	Probability (%)	Lifetime Limit (×10 ³³ years) at 90% CL
$p \rightarrow e^+ \eta$	0.78 ± 0.30	0	• • •	10.
$p \rightarrow \mu^+ \eta$	0.85 ± 0.23	2	20.9	4.7
$p \rightarrow e^+ \rho^0$	0.64 ± 0.17	2	13.5	0.72
$p \rightarrow \mu^+ \rho^0$	1.30 ± 0.33	1	72.7	0.57
$p \rightarrow e^+ \omega$	1.35 ± 0.43	1	74.1	1.6
$p \rightarrow \mu^+ \omega$	1.09 ± 0.52	0		2.8
$n \rightarrow e^+ \pi^-$	0.41 ± 0.13	0		5.3
$n \rightarrow \mu^+ \pi^-$	0.77 ± 0.20	1	53.7	3.5
$n \rightarrow e^+ \rho^-$	0.87 ± 0.26	4	1.2	0.03
$n \rightarrow \mu^+ \rho^-$	0.96 ± 0.28	1	61.7	0.06
total	8.6	12	15.7	

- No obvious data excess with Super-K 365 kt·year exposure (SK-I~IV)
- Lifetime limits reach to ≥10³³ yrs for many of decay modes

Search for di-nucleon decay [arXiv:1811.12430]

- Search for di-nucleon decay with only leptons or γ's in final state
 - $pp \rightarrow e^+e^+$, $nn \rightarrow e^+e^-$, $nn \rightarrow \gamma\gamma$, $pp \rightarrow e^+\mu^+$, $nn \rightarrow e^\pm\mu^\mp$, $pp \rightarrow \mu^+\mu^+$, $nn \rightarrow \mu^+\mu^-$, and $p \rightarrow e^+\gamma$, $\mu^+\gamma$
- 5 out of 8 di-nucleon decay modes are Δ (B-L)=-2
- Experimentally very clean (low bkg) and high signal efficiency: ~80%
- No evidence of nucleon decay
- Lifetime limits improved by <u>order of magnitudes</u> from previous limits

SK: near future

- SK tank refurbishment completed and ready for Gd loading: SK → SK-Gd
 - Neutron capture: ~50% w/ 0.01% of Gd
 → ~90% w/ 0.1% of Gd
- Nucleon decay search with SK-Gd:
 - Further reduction bkg rate by ~50% for $p \rightarrow e^+\pi^0$
- In parallel, several studies to improve NDK searches on-going:
 - Enlarge fiducial mass (+20%), improve event reconstruction algorithm, improve hydrogen n-tag, use of machine learning, ...
- New results from Super-K in near future

Hyper-Kamiokande

260kt

74m

60m

Hyper-Kamiokande

Next generation water Cherenkov detector

- Construct two detectors in stage
- Construction of the first detector begins in April 2020
 - Aim to start operation in ~2027
 - An option of the second detector in Korea (See Sunny's talk)
- The first detector (I tank)
 - Filled with 260kton of ultra-pure water
 - 60m tall x 74 diameter water tank
 - Fiducial mass: 190kton
 - ~I0 x Super-K
 - Photo-coverage: 40% (Inner Detector)
 - 40,000 of **new 50cm PMTs**
 - x2 higher photon sensitivity than SK PMT
 - Hyper-K sensitivity shown in this talk assumes 1 tank

60m

~9σ discovery potential if nucleon lifetime at the current SK limit (τ_P/Br=1.7x10³⁴yrs) Hyper-K reaches to 10³⁵ yrs with 3σ discovery sensitivity

Hyper-K sensitivities

- Implify power in simplify and the bias by the other of the power of
- Hyper-K has a large patential for discovery

Reports on Physics Sensitivity

arXiv:1109.3262 Letter of Intent

Letter of Intent:

The Hyper-Kamiokande Experiment

— Detector Design and Physics Potential —

(Hyper-Kamiokande working group)

Prog. Theor. Exp. Phys. 053C02 (2015)

Prog. Theor. Exp. Phys. **2015**, 053C02 (35 pages) DOI: 10.1093/ptep/ptv061

Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande

Prog. Theor. Exp. Phys. 063C01 (2018)

optional 2nd tank in Korea under investigation

Physics Potentials with the Second Hyper-Kamiokande Detector

in Korea

(Hyper-Kamiokande Proto-Collaboration)

Having two detectors at different baselines improves sensitivity to CP violation, neutrino mass ordering

arXiv:1805.04163

Design Report (Dated: May 9, 2018)

(Hyper-Kamiokande proto-collaboration)

Maximizing physics sensitivities with optimized tank design

Summary

• Super-K

- So far, no evidence of nucleon decay...
- Most stringent lifetime limits for almost all decay modes
- Studies to improve NDK search with Super-K on-going:
 - Enlarge fiducial mass (+20%), improve event reconstruction algorithm, improved n-tag, ...
- SK-Gd
 - Further reduce atm-v bkg by Gd neutron-tagging
- Hyper-K
 - Realize 'background free' NDK search
 - 3σ discovery potential reaches to 10³⁵ years for p→e⁺π⁰ (10³⁴ yrs for p→v̄K⁺)
 - Improvements for many decay modes by a factor ~10
 - Detector construction begins in April 2020