Neutrinoless Double Beta Decay and particle physics: an overview

Prospects of Neutrino Physics

Outline

- * Lepton Number Violation: Why look for it?
- * Neutrinoless Double Beta Decay $(A,Z) \rightarrow (A,Z+2) + 2e^-$:
 - Standard Interpretation
 - Non-Standard Interpretations

Neutrinoless Double-Beta Decay: Status and Prospects

N--1:

Michelle J. Dolinski,¹ Alan W. P. Poon,² and Werner Rodejohann³

¹Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA; email: dolinski@drexel.edu

²Institute for Nuclear and Particle Astrophysics, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; email: awpoon@lbl.gov

³Max-Planck-Institut für Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany; email: werner.rodejohann@mpi-hd.mpg.de

arXiv:1902.04097v1 [nucl-ex] 11 Feb 2019

et

TAV

SNA

(A) (Č

Why look for Lepton Number Violation?

- * L and B accidentally conserved in SM
- * $\mathcal{L} = \mathcal{L}_{SM} + 1/\Lambda \mathcal{L}_5 + 1/\Lambda^2 \mathcal{L}_6 + ..., \text{ with } \mathcal{L}_5 = L^c \varphi \varphi L \rightarrow m_v v_L^c v_L$
- Baryogenesis: B is violated
- * *B*, *L* often connected in BSM, GUTs
- * GUTs have seesaw and Majorana neutrinos
- * (*B* and *L* non-perturbatively violated by 3 units in SM...)

Why look for Lepton Number Violation?

- * L and B accidentally conserved in SM
- * $\mathcal{L} = \mathcal{L}_{SM} + 1/\Lambda \mathcal{L}_5 + 1/\Lambda^2 \mathcal{L}_6 + ..., \text{ with } \mathcal{L}_5 = L^c \mathbf{\varphi} \mathbf{\varphi} L \rightarrow m_v v_L^c v_L$
- ^{*} Ba</sup>Lepton Number as important as Baryon Number
- * *B*, *L* often connected in BSM, GUTs
- GUTs have seesaw and Majorana neutrinos
- * (*B* and *L* non-perturbatively violated by 3 units in SM...)

Why look for Lepton Number Violation?

- * L and B accidentally conserved in SM
- * $\mathcal{L} = \mathcal{L}_{SM} + 1/\Lambda \mathcal{L}_5 + 1/\Lambda^2 \mathcal{L}_6 + ..., \text{ with } \mathcal{L}_5 = L^c \mathbf{\varphi} \mathbf{\varphi} L \rightarrow m_v v_L^c v_L$
- Bary 0vββ is not just a neutrino mass experiment!
- * *B*, *L* often connected in BSM, GUTs
- GUTs have seesaw and Majorana neutrinos
- * (*B* and *L* non-perturbatively violated by 3 units in SM...)

Lepton Number Conservation?

- * accidental lepton number conservation difficult in BSM...
- * need a symmetry to forbid $M_R N_R N_R$:
 - can apply flavor symmetries with $(N_{R1}, N_{R2}, N_{R3}) \sim \underline{3}$, in groups that have no singlet in $\underline{3x3}$ (e.g. $\Delta(27)$)
 - still need to explain smallness, e.g. wave-function overlap in ED, 2HDM with one vev of order eV,...
 - (can break $U(1)_{B-L}$ by scalars carrying charge B-L=3,4,...)
- * global $U(1)_L$ or $U(1)_{B-L} \rightarrow$ expected to be broken by quantum gravity effects
- * gauge $U(1)_L$ or $U(1)_{B-L}$ without breaking? \rightarrow long range force, needs ultra-tiny charge

best limit from 2002, improved since 2012 by one order of magnitude!

Name	lsotope	Source = Detector; calorimetric with			Source \neq Detector
		high ΔE	low ΔE	topology	topology
AMoRE	¹⁰⁰ Mo	~	_	_	-
CANDLES	48 Ca	-	\checkmark	-	-
COBRA	116 Cd (and 130 Te)	-	-	\checkmark	-
CUORE	130 Te	\checkmark	-	-	-
CUPID	82 Se / 100 Mo / 116 Cd / 130 Te	\checkmark	-	-	-
DCBA/MTD	82 Se / 150 Nd	-	-	-	\checkmark
EXO	136 Xe	-	-	\checkmark	-
GERDA	76 Ge	\checkmark	-	-	-
KamLAND-Zen	136 Xe	-	\checkmark	-	-
LEGEND	76 Ge	\checkmark	-	-	-
LUCIFER	82 Se / 100 Mo / 130 Te	\checkmark	-	-	-
LUMINEU	100 Mo	\checkmark	_	-	-
MAJORANA	76 Ge	\checkmark	-	-	-
MOON	82 Se / 100 Mo / 150 Nd	-	-	-	\checkmark
NEXT	136 Xe	-	-	\checkmark	-
SNO+	130 Te	-	\checkmark	-	-
SuperNEMO	82 Se / 150 Nd	-	_	-	\checkmark
XMASS	136 Xe	-	\checkmark	_	-

Talk by Inoue

best limit from 2002, improved since 2012 by one order of magnitude!

Isotope	$T_{1/2}^{0\nu} (\times 10^{25} \text{ y})$	$\langle m_{\beta\beta} \rangle ~(\mathrm{eV})$	Experiment
48 Ca	$> 5.8 \times 10^{-3}$	< 3.5 - 22	ELEGANT-IV
76 Ge	> 8.0	< 0.12 - 0.26	GERDA
	> 1.9	< 0.24 - 0.52	MAJORANA DEMONSTRATOR
82 Se	$> 3.6 \times 10^{-2}$	< 0.89 - 2.43	NEMO-3
$^{96}\mathrm{Zr}$	$> 9.2 \times 10^{-4}$	< 7.2 - 19.5	NEMO-3
$^{100}\mathrm{Mo}$	$> 1.1 \times 10^{-1}$	< 0.33 - 0.62	NEMO-3
$^{116}\mathrm{Cd}$	$> 1.0 \times 10^{-2}$	< 1.4 - 2.5	NEMO-3
$^{128}\mathrm{Te}$	$> 1.1 \times 10^{-2}$		
$^{130}\mathrm{Te}$	> 1.5	< 0.11 - 0.52	CUORE
136 Xe	> 10.7	< 0.061 - 0.165	KamLAND-Zen
	> 1.8	< 0.15 - 0.40	EXO-200
$^{150}\mathrm{Nd}$	$> 2.0 \times 10^{-3}$	< 1.6 - 5.3	NEMO-3

$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$$

- * Master Formula: $\Gamma^{0\nu} = G_x(Q,Z) |\mathcal{M}_x(A,Z) \eta_x|^2$
 - $G_x(Q,Z)$: phase space factor, $\propto Q^5$
 - $M_x(A,Z)$: Nuclear Matrix Element (NME)
 - η_x : particle physics parameter

$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$$

- * Master Formula: $\Gamma^{0\nu} = G_x(Q,Z) |\mathcal{M}_x(A,Z)\eta_x|^2$
 - $G_x(Q,Z)$: phase space factor, $\propto Q^5$ calculable
 - $M_x(A,Z)$: Nuclear Matrix Element (NME) problematic*
 - η_x : particle physics parameter interesting

*NME talk by Suhonen

Interpretations

- Standard Interpretation
 - Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to 0vββ give negligible or no contribution
- Non-Standard Interpretations
 - There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

 Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to 0vββ give negligible or no contribution

Werner Rodejohann (MPIK)

The usual plot

The usual plot

Werner Rodejohann (MPIK)

Method	Observable	current	near	far	pro	con
Kurie	$\Sigma U_{ei} ^2 m_i^2$	2.3 eV	0.3 eV	0.1 eV?	model-indep.; clean	final; weakest
cosmo	Σm_i	0.5 eV	0.1 eV	0.05 eV?	best; NH/IH	model-dep.; systematics
0νββ	$\Sigma U_{ei^2} m_i$	0.2 eV	0.05 eV	0.01 eV?	fundamental; NH/IH	model-dep.; NMEs

Expectations of lifetimes

Bayesian discovery probability: discovery sensitivity (value of m_{ee} for which expt. has 50% chance to see it at 3 σ) folded with probability distribution of m_{ee}

Agostini et al, 1705.02996; also Caldwell et al., 1705.01945; also Zhang, Zhou, 1508.05472

IPMU April 19

Werner Rodejohann (MPIK)

Expectations of lifetimes

Expectations of lifetimes

Predicting the effective mass

Flavor Symmetry models (*talk by Everett*) can not predict masses, but relations between them:

Penedo, Petcov, Titov, 1705.00309

Barry, WR, 1007.5217

IPMU April 19

Werner Rodejohann (MPIK)

Sterile Neutrinos

Talk by Martinez-Soler

- * are there sterile states (LSND/reactor/etc.) with mass $\Delta m^2 \simeq eV^2$ and mixing $U_{e4} \simeq 0.1$?
- * would make m_{ee} sum of 4 terms with sterile contribution $|U_{e4}|^2 \sqrt{\Delta m^2}$ that can cancel almost completely contribution of IH!
- * usual pheno completely turned around!

Sterile Neutrino

- are there sterile states (LSND/reactor/etc.) and mixing $U_{e4} \approx 0.1$?
- would make *m_{ee}* sum of 4 terms with $|U_{e4}|^2 \sqrt{\Delta m^2}$ that can cancel aly

usual pheno completely tu

mpletely contribution of IH!

le contribution

lass $\Delta m^2 \simeq eV^2$

Werner Rodejohann (MPIK)

 There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

 There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

 $\Rightarrow 0\nu\beta\beta$ is not a neutrino mass experiment!

Werner Rodejohann (MPIK)

IPMU April 19

 There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

 \Rightarrow need to solve the "inverse problem"

Werner Rodejohann (MPIK)

IPMU April 19

mechanism	physics parameter	current limit	test
light neutrino exchange	$\left U_{ei}^2 m_i \right $	$0.2 \ \mathrm{eV}$	oscillations, cosmology, neutrino mass
heavy neutrino exchange	$\left rac{S_{ei}^2}{M_i} ight $	$2\times 10^{-8}~{\rm GeV^{-1}}$	LFV, collider
heavy neutrino and RHC	$\left \frac{V_{ei}^2}{M_iM_{W_R}^4}\right $	$4\times 10^{-16}~{\rm GeV^{-5}}$	flavor, collider
Higgs triplet and RHC	$\left \frac{(M_R)_{ee}}{m_{\Delta_R}^2} \frac{M_{W_R}^4}{M_{W_R}^4}\right $	$10^{-15} \text{ GeV}^{-1}$	flavor, collider e^- distribution
$\lambda\text{-mechanism}$ with RHC	$\left \frac{U_{ei} \tilde{S}_{ei}}{M_{W_R}^2} \right $	$1.4 \times 10^{-10} \text{ GeV}^{-2}$	flavor, collider, e^- distribution
$\eta\text{-mechanism}$ with RHC	$\tan\zeta \left U_{ei} \tilde{S}_{ei} \right $	6×10^{-9}	flavor, collider, e^- distribution
short-range R	$\frac{\left \lambda_{111}^{\prime 2}\right }{\Lambda_{\text{SUSY}}^{5}}$ $\Lambda_{\text{SUSY}} = f(m_{\tilde{g}}, m_{\tilde{u}_{L}}, m_{\tilde{d}_{R}}, m_{\chi_{i}})$	$7 \times 10^{-18} \text{ GeV}^{-5}$	collider, flavor
long-range 🧗	$\left \sin 2\theta^b \lambda_{131}' \lambda_{113}' \left(\frac{1}{m_{\tilde{b}_1}^2} - \frac{1}{m_{\tilde{b}_2}^2} \right) \right \\ \sim \frac{G_F}{q} m_b \frac{\left \lambda_{131}' \lambda_{113}' \right }{\Lambda_{\text{SUSY}}^3} \right $	$2 \times 10^{-13} \text{ GeV}^{-2}$ $1 \times 10^{-14} \text{ GeV}^{-3}$	flavor, collider
Majorons	$ \langle g_{\chi} \rangle $ or $ \langle g_{\chi} \rangle ^2$	$10^{-4} \dots 1$	spectrum, cosmology

Werner Rodejohann (MPIK)

decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$
Therefore:

Werner Rodejohann (MPIK)

IPMU April 19

decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

Therefore:

= T(TeV)

T(eV

Werner Rodejohann (MPIK)

IPMU April 19

 \Rightarrow Tests with LHC, LFV, etc.

Scales

- * $0\nu\beta\beta$ standard mechanism: $T_{\frac{1}{2}} \propto 1/(m_{\nu}^2)$
- * $0\nu\beta\beta$ standard and Weinberg: $m_{\nu} \propto 1/\Lambda \Rightarrow T_{\frac{1}{2}} \propto \Lambda^2$
- * $0\nu\beta\beta$ and heavy Physics: $T_{\frac{1}{2}} \propto \Lambda^{10}$
- * cf. to proton decay with $T_{\frac{1}{2}} \propto \Lambda^4$
- * cf. to neutron-antineutron oscillation $P \propto \Lambda^{10}$

Scales

- * $0\nu\beta\beta$ standard mechanism: $T_{\frac{1}{2}} \propto 1/(m_{\nu}^2)$
- * $0\nu\beta\beta$ standard and Weinberg: $m_{\nu} \propto 1/\Lambda \Rightarrow 10^{4-14}$ GeV
- * $0\nu\beta\beta$ and heavy Physics: $T_{\frac{1}{2}} \propto \Lambda^{10}$ 10³ GeV
- * cf. to proton decay with $T_{\frac{1}{2}} \propto \Lambda^4$ 10¹⁶ GeV
- * cf. to neutron-antineutron oscillation *P* ° 10⁶ GeV

Double Beta Decay and LR-Symmetry

simultaneous presence/interference/...

Werner Rodejohann (MPIK)

IPMU April 19

Type II dominance: $m_{
u} = m_L - M_D^2/M_R
ightarrow m_L$ with $m_L \propto M_R$

⇒ right-handed neutrinos diagonalized by PMNS matrix!

again, NH/IH turned around...

Senjanovic et al., 1011.3522

Werner Rodejohann (MPIK)

IPMU April 19

- add Standard and LR-diagram
- * $T_{\rm St} \propto 1/m_{\rm v}^2$ and $T_{\rm LR} \propto m_{\rm v}^2$
- * gives *lower limit* on m_{ν}

Expectations for half-lifes

Standard Sterile Left-right Predicted Half-Lifetime for ⁷⁶Ge Predicted Half-Lifetime for ⁷⁶Ge Predicted Half-Lifetime for ⁷⁶Ge [LRSM-typell] 0.5 1.2 1.2 NH NH NH IH · IH 0.4 1 IH. 1 PDF dP/dlogT PDF dP/dlogT 0.8 LEGEND (200kg) 0.8 LEGEND (200kg) LEGEND (200kg) 0.3 LEGEND (1000kg) LEGEND (1000kg) LEGEND (1000kg) 0.6 0.6 0.2 0.4 0.4 0.1 0.2 0.2 0 10²⁸ 10²⁹ 0 10²⁵ 0 10³⁰ 10²⁷ 10³¹ 10³² 10²⁶ 10²⁷ 10²⁸ 10²⁹ 10²⁶ 10²⁷ 10²⁸ 10²⁹ 10²⁵ 10²⁶ 10²⁴ 10²⁵ 10³ 10³⁰ $T_{1/2}^{0\nu}$ [years] $T_{1/2}^{0v}$ [years] $T_{1/2}^{0v}$ [years]

Ge, WR, Zuber, 1707.07904

However, most alternative mechanisms unrelated to neutrino parameters... ...thus decoupled from cosmology (and direct experiments)!

Werner Rodejohann (MPIK)

IPMU April 19

Unexpected Correlations with other Experiments

Werner Rodejohann (MPIK)

IPMU April 19

Barry, Heeck, WR, 1404.5955

LHC and Double Beta Decay

LHC and Double Beta Decay

LHC and Double Beta Decay

Nemevsek, Nesti, Popara, 1801.05813

displaced vertices for low masses

Chianese et al., 1812.01994

IPMU April 19

low mass neutrinos better constrained by other expts.

Werner Rodejohann (MPIK)

LFV and Double Beta Decay

Complementarity of LHC and 0vßß

- * LHC prefers $M_S > M_{\psi}$
- * LHC has low sensitivity for small M_{ψ}
- include jet-fake rate, charge mis-ID,
 QCD corrections in 0vββ, etc.
- \Rightarrow complementary

QCD Corrections

* naive size $(\alpha_s/4\pi) \ln (M_W/100 \text{ MeV})^2 \approx 10\%$, true for standard diagram

- creates in non (V-A) ⊗ (V-A) short-range mechanisms color non-singlets, Fierzing to singlets gives different operators with vastly different NMEs
- * \Rightarrow can give effect exceeding NME uncertainty...

Mahajan, PRL 112; Gonzalez, Kovalenko, Hirsch, PRD 93; Peng, Ramsey-Musolf, Winslow, PRD 93

Werner Rodejohann (MPIK)

Leptogenesis

Many connections to $0\nu\beta\beta$ possible, just some examples...

Merlo, Rosauro-Alcaraz, 1801.03937

Moffat, Pascoli, Petcov, Turner, 1809.08251

IPMU April 19

Werner Rodejohann (MPIK)

IPMU April 19

TeV-scale LNV and Baryogenesis

- * Example TeV-scale W_R : leads to washout in early Universe via $e_R e_R \Leftrightarrow W_R W_R$ and $e_R W_R \Leftrightarrow W_R e_R$; processes stay long in equilibrium (*Frere*, *Hambye*, *Vertongen*; *Dev*, *Mohapatra*; *Sarkar et al.*)
- * more model-independent (*Deppisch, Harz, Hirsch*):

would need electroweak, resonant, ARS, post-sphaleron baryogenesis

TeV-scale LNV and Barxogenesis

- When $v_R W_R$ and esite $W_R e_R$; $v_R W_R$ and esite $W_R e_R$; $v_R W_R$ and esite $W_R e_R$; w_R * Example TeV-scale *W_R*: leads to w Universe via $e_R e_R \leftrightarrow W_R W_R$ and processes stay long in equili Vertongen; Dev, Mohapatra;
- more model-indepen

$$\log_{10} \frac{\Gamma_W(qq \to \ell^+ \ell^+ \, qq)}{H} \gtrsim 6.9 + 0.6 \left(\frac{M_X}{\text{TeV}} - 1\right) + \log_{10} \frac{\sigma_{\text{LHC}}}{\text{fb}}$$

would need electroweak, resonant, ARS, post-sphaleron baryogenesis

Summary

Chi l'ha visto?

Ettore Majorana. ordinario di fisica teorica all' Università di Napoli, è misteriosamente scomparso dagli ultimi di marzo. Di anni 31, alto metri 1.70, snello, con capelli neri, occhi scuri, una lunga cicatrice sul dorso di una mano. Chi ne sapesse qualcosa è pregato di scrivere al R. P. E. Maria-

necci, Viale Regina Margherita 66 -Roma.

Nuclear Matrix Elements

Werner Rodejohann (MPIK)

IPMU April 19

 $g_{\rm pp}$

 $g_{\rm pp}$

Nuclear Matrix Elements

Werner Rodejohann (MPIK)

QUENCHING??

$$T^{0\nu}_{\frac{1}{2}} \propto g_A^{-4}$$

- * fact in β and $2\nu\beta\beta$
- * truncation of model-space?
- also in 0vββ??
 - $q = 10^2$ vs. 10^0 MeV?
 - higher multipolarities?
 - two-body currents?
 - muon capture?
 - SM vs. QRPA

Dirac vs. Majorana beyond V-A

$$\mathcal{L} \supset \frac{G_F}{\sqrt{2}} \sum_{a} \overline{\nu} \Gamma^a \nu \left[\overline{\ell} \Gamma^a (C_a + \overline{D}_a i \gamma^5) \ell \right] \qquad \begin{array}{c} \text{Rosen, PRL48 (1982)} \\ WR, Xu, Yaguna, 1702.05721 \end{array}$$

* gives cross section for elastic neutrino-electron scattering:

$$\frac{d\sigma}{dT}(\nu+\ell) = \frac{G_F^2 M}{2\pi} \left[A + 2B\left(1 - \frac{T}{E_\nu}\right) + C\left(1 - \frac{T}{E_\nu}\right)^2 \right]$$
$$\frac{d\sigma}{dT}(\overline{\nu}+\ell) = \frac{G_F^2 M}{2\pi} \left[C + 2B\left(1 - \frac{T}{E_\nu}\right) + A\left(1 - \frac{T}{E_\nu}\right)^2 \right]$$
$$T = \frac{2ME_\nu^2 c_\theta^2}{(M+E_\nu)^2 - E_\nu^2 c_\theta^2}$$

With:

$$A \equiv \frac{1}{4} (C_A - D_A + C_V - D_V)^2 + \frac{1}{2} C_P C_T + \frac{1}{8} (C_P^2 + C_S^2 + D_P^2 + D_S^2) - \frac{1}{2} C_S C_T + C_T^2 + \frac{1}{2} D_P D_T - \frac{1}{2} D_S D_T + D_T^2$$

$$B \equiv -\frac{1}{8} (C_P^2 + C_S^2 + D_P^2 + D_S^2) + C_T^2 + D_T^2,$$

$$C \equiv \frac{1}{4} (C_A + D_A - C_V - D_V)^2 - \frac{1}{2} C_P C_T + \frac{1}{8} (C_P^2 + C_S^2 + D_P^2 + D_S^2) + \frac{1}{2} C_T C_S + C_T^2 - \frac{1}{2} D_P D_T + \frac{1}{2} D_S D_T + D_T^2$$

* For Majorana neutrinos: $C_V = D_V = C_T = D_T = 0$

Werner Rodejohann (MPIK)

Medex (30/05/17)

Dirac vs. Majorana beyond V-A

Werner Rodejohann (MPIK)

$$X \equiv \frac{B}{R}, \, Y \equiv \frac{A - C}{R}$$

$$R \equiv \sqrt{A^2 + B^2 + C^2}$$

Dirac neutrinos: $3X^2 + Y^2 \le 1$

Majorana neutrinos: $2X^2 + (Y \pm X)^2 \le 1$ and $X \le 0$

WR, Xu, Yaguna, 1702.05721

Medex (30/05/17)

Werner Rodejohann (MPIK)

Medex (30/05/17)

Comparison of Limits

Limit from Xenon is better than limit from Germanium if:

$$T_{\rm Xe} > T_{\rm Ge} \frac{G_{\rm Ge}}{G_{\rm Xe}} \left| \frac{\mathcal{M}_{\rm Ge}}{\mathcal{M}_{\rm Xe}} \right|^2 \, {
m yrs}$$

Best chance: Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

$$(T_{1/2}^{0\nu})^{-1} \propto \begin{cases} a \, M \, \varepsilon \, t & \text{without background} \\ a \, \varepsilon \, \sqrt{\frac{M \, t}{B \, \Delta E}} & \text{with background} \end{cases}$$

first background free result

current limits: $T_{\frac{1}{2}} \ge 10^{26}$ years with exposure of about 100 kg • years

Neutrinoless Double Beta Decay

				isotope mass [kg] in FV	FWHM [keV]	background [(FWHM ε t _{isotope} yr) ⁻¹]	T _{1/2} sensitivity after 4yr [10 ²⁵ yr]	upper m _β limit [meV (lowest NME
Ge detectors	GERDA		Ge	27	3	5	15	190
	Majorana-D		Ge	24	3	5	15	190
		200 kg	Ge	155	3	1	100	75
		000 kg	Ge	780	3	0.2	1000	24
liquid noble gas	EXO		Xe	80	88	220	6	240
	nEXO		Xe	4300	58	5	600	24
loaded liquid scintillator	400 kg <mark>KamLAND</mark> 800 kg		Xe	88	250	90	6	240
			Xe	~180	250	~10	50	90
	SNO+		Те	260	190	60	17	160
cryo bolometers	CUORE		Те	206	5	180	9	210

Table by Josef Jochum

Black Box Theorem

Whatever the mechanism, observation of 0vββ implies
 Majorana neutrinos (*Schechter-Valle*, '82)

* is 4-loop diagram \Rightarrow tiny mass (Dürr, Lindner, Merle, 1105.0901)

Limits on Heavy Neutrinos

$M(W_R) \leftrightarrow V_{\alpha N}$

Deppisch, Dev, Pilaftsis, 1502.06541

Antusch, Cazzato, Fischer, 1612.02728

peak searches, kink searches, LNV decays,...

see also Atre et al., 0901.3589

Werner Rodejohann (MPIK)

New Idea

assume RH neutrinos with mass less than *m*_W(*Dib*, *Kim*, 1509.05981):

$$W^+ \rightarrow e^+ \mu^- e^+ \nu_e$$

Werner Rodejohann (MPIK)

Blois LNV (01/06/17)

New Idea

(solid is mult-variate; dashed is cut-and-count) $s \equiv 2 \times 10^{6} \frac{|U_{Ne}U_{N\mu}|^{2}}{|U_{Ne}|^{2} + |U_{N\mu}|^{2}}, \quad r \equiv \frac{|U_{Ne}|^{2}}{|U_{N\mu}|^{2}}.$ Dib, Kim, Wang, 1703.01936

Werner Rodejohann (MPIK)

Blois LNV (01/06/17)

Connections to Oscillation Experiments

Factor 2 uncertainty of minimal m_{ee} in IH, mostly from θ_{12}

JUNO will fix θ_{12} and remove uncertainty in value of minimal m_{ee} in IH

Dueck, WR, Zuber, 1103.4152; Ge, WR, 1507.05514

Cosmological Mass Limits

Bernal, Verde, Riess, 1607.05617

Neutrinoless Double Beta Decay

