

Results and Prospects on Geo-Neutrinos

Kavli IPMU, Kashiwa, Japan, 8-12, April 2019

Research Center for Neutrino Science, Tohoku University **Hiroko Watanabe** for KamLAND Collaboration

- 1. Introduction
- **3. Future Prospects**
- 4. Summary

2. Results from KamLAND and Borexino

1. Introduction 2. Results from KamLAND and Borexino **3. Future Prospects** 4. Summary

Contents

What is geo-neutrino?

Electron-antineutrino from <u>natural radioactive decay</u>

Why geo-neutrino?

plate motion

Question on geophysical activity

- What are energy sources? How much energy? How is the mantle convecting, single or multi-layer convection? What is driving source of geodynamo?

 \rightarrow It is important to find out the terrestrial heat.

- * Releases of gravitational energy through accretion or metallic core separation
- * Latent heat from the growth of inner core

Primordial Heat

- * Releases of gravitational energy through accretion or metallic core separation
- * Latent heat from the growth of inner core

Q: How much radiogenic heat contributes to Earth's heat?

Primordial Heat

- * Releases of gravitational energy through accretion or metallic core separation
- * Latent heat from the growth of inner core

Q: How much radiogenic heat contributes to Earth's heat?

Q: Which model can explain current Earth?

Geo-neutrino can <u>directly</u> define power to drive the Earth's engine

1. Introduction 2. Results from KamLAND and Borexino **3. Future Prospects** 4. Summary

KamLAND and Borexino

Two running liquid scintillator (LS) experiments have measured geoneutrinos.

KamLAND (Japan, 2002~)

*LS: 1000 t *Depth: 2700 m.w.e. *expected event ratio reactor/geo ~6.7 (up to 2010) ~0.4 (2011~) w/o Japanese reactors

Borexino (Italy, 2007~)

*LS: 280 t
*Depth: 3600 m.w.e.
*expected event ratio reactor/geo ~0.3 (up to 2010)

Water Cherenkov Outer Detector

m stainless

* Muon veto

KamLAND : Collaboration

Scientists : ~50

Institutes : 5 Japan 7 US 1 Europe

KamLAND

KamLAND : Anti-neutrino Studies

inverse-beta decay

Geoneutrinos : Neutrino Application

- Direct measurement of radiogenic heat contribution

KamLAND : Geo-neutrino Flux at Kamioka

Contributions from each area

- 50%: distance < 500km
- 25%: distance < 50km
- 1~2%: from Kamioka mine

Important to understand Japanese geology

KamLAND : Data-set & Reactor Neutrinos

2013 data-set : 2991 days 4.90×10³² proton-year

PRD 88, 033001 (2013)

Precise understanding of reactor neutrino spectrum enhances geo-neutrino measurement.

Preliminary

2016 data-set : 3901 days 6.39×10³² proton-year

- 1.3 times of 2013 data-set
- low-reactor operation period : ~3.5 years livetime
- advantages { all Japanese reactor-off period : ~2.0 years livetime

KamLAND : Reactor Neutrino Spectrum

- Reactor neutrino spectrum for KamLAND analysis
- 2013 paper : Huber + Mueller & Bugey-4 normalization
- **<u>2016 preliminary</u>** : Daya Bay estimation
 - $\sigma_{\rm f}$ (cm²/fission) = (5.92\pm0.12)×10⁻⁴³ (uncertainty : 2.03%)
 - Excess at 4-6 MeV : ~+5%.
 - In the publication, Daya Bay also shows contributions from
 - <u>"spent nuclear fuel</u>" and <u>"Non-equilibrium"</u>.
 - \rightarrow We **subtract** these contributions from Daya-Bay spectrum, and then **add**
 - KamLAND evaluation from history of fission rate (90Sr, 16Ru, 144Ce, 97Zr, 132I, 93Y)

 $\mathbf{V} = \mathbf{V} + \mathbf{V} = \mathbf{V} + \mathbf{V} +$

Seffect of reactor spectrum uncertainty is much smaller than

the statistical uncertainty of geo-neutrino events.

Antineutrino Energy (MeV)

KamLAND : Event Rate Time Variation (0.9-2.6MeV)

LS purification \rightarrow non-neutrino backgrounds reduction Earthquake \rightarrow reactor neutrino reduction

- Constant contribution of geo-neutrino

- Time information is useful to extract the geo-neutrino signal

KamLAND : Energy Spectrum (0.9-2.6MeV)

2016 Preliminary Result

Livetime : 3900.9 days Candidate: 1130 ev **Background Summary**

9 Li	3.4 ± 0.1
Accidental	114.0 ± 0.1
Fast neutron	< 4.0
¹³ C(α, n) ¹⁶ O	205.5 ± 22.6
Reactor $\overline{\nu}_e$	618.9 ± 33.8
Total	941.8 ± 40.9

KamLAND : Energy Spectrum, Low Reactor Phase

KamLAND : Rate + Shape + Time Analysis

geoscientific findings from measurement results

* Th/U* Radio

* Th/U Mass Ratio

Radiogenic Heat

Th/U Mass Ratio : Introduction

- According to geochemical studies, ²³²Th is more abundant than ²³⁸U. Mass ratio (Th/U) in bulk silicate Earth is expected to be around 3.9.

Models : 3.58-4.2

- 4.2 : Allegre et al. (1986)
- 3.89 : Taylor (1980)
- 3.85 : Anderson (2007)
- 3.77 : Palm & O'Neil (2003)
- Chondrite samples analysis : **1.06-6.42**

-

Fall statistics for the meteorites identified and catalogued since 980 A.D.

Geo-neutrino observed rate can be converted to amount of Th & U assuming homogeneous distribution. Independent & direct measurement of entire Earth

slide from McDonough, 2015, in Ehime

Th/U Mass Ratio : Measurement Result

<u>2016 Preliminary Result</u>

ref) 2013 paper Th/U < 19 (90% C.L.)

We have a sensitivity of Th/U mass ratio of entire Earth.

MamLAND best-fit is consistent with chondrite data and BSE models.

ref) chondrite data

Ordinary Chondrites : J. S. Goreva & D. S. Burnett, Meteoritics & Planetary Science 36, 63-74 (2001)

Carbonaceous Chondrites : A. Rocholl & K. P. Jochum, EPSL 117, 265-278 (1993)

Enstatite Chondrites : M. Javoy & E. Kaminski, EPSL 407, 1-8 (2014)

Radiogenic Heat

[BSE models]

High Q

based on balancing mantle viscosity and heat dissipation

Middle Q

based on mantle samples compared with chondrites

Low Q

based on isotope constraints and chondritic models

Borexino (1) slides from L. Ludhova, ISAPP 2018 Latest Borexino geoneutrino results

PRD 92, 031101(2015)

Two types of fits:

1) $m(^{232}Th)/m(^{238}U) = 3.9$ (CI chondrites) $S(^{232}Th)/S(^{238}U) = 0.27$ $S(^{238}U)/S(^{232}Th) = 3.7$ ~28% error

 $N_{geo} = 23.7 + 6.5_{-5.7} (stat) + 0.9_{-0.6} (sys) events$

 $S_{geo} = 43.5 + 11.8 - 10.4 (stat) + 2.7 - 2.4 (sys) TNU$

2) U and Th free fit paramters

Borexino (2) slides from L. Ludhova, ISAPP 2018

- Radiogenic heat (U+Th): 23-36 TW for the best fit and 11-52 TW for 1σ range
- Considering chondritic mass ratio Th/U=3.9 and K/U = 10⁴ : Radiogenic heat $(U + Th + K) = 33^{+28}_{-20}TW$

PRD 92, 031101(2015)

Radiogenic heat

to be compared with $47 \pm 2 \text{ TW}$ of the total Earth surface heat flux (including all sources)

KamLAND & Borexino : Radiogenic Heat

KamLAND

- testing BSE models

Geo-neutrino Measurement giving total radiogenic heat

TNU: anti-neutrino event seen by a kiloton detector in a year

1. Introduction 2. Results from KamLAND and Borexino **3. Future Prospects** 4. Summary

Contents

Status & Prospect of "Neutrino Geoscience"

Next Target : Mantle Contribution

1. Observation - <u>Crust (Model)</u> = Mantle

17% error (2016, KamLAND)

20% error Method of uncertainty estimation is unclear

Consider geoscientific inputs

- Seismology
- Geochemistry
- Measurement result of heat flux etc

2. Multi-site measurements Note : Assuming homogeneous mantle

Flux model needs to be improved (higher reliability and accuracy)

TNU

geonu

otal

ted measurement:

Simula

10

20

30

Geophysical prediction: Lithospheric flux in TNU

Medium-Q

Low–Q

40

50

60

N. Geo. 1205 (2011)

Anti-neutrino Detectors

SNO+

1kt, LS+, 5.4 kmwe Liquid scintillator filling is in progress!

Ocean Bottom Detector

10-50kt, LS, ~5kmwe, movable, R&D

scintillator purification

Borexino

0.3kt, LS 3.7kmwe running

Ocean Bottom Detector (OBD)

2005 : Specific engineering study was started in Hawaii.

- **Direct measurement of mantle contribution**
- Test of Earth models
- Geoneutrino has power to measure deep Earth

Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u>

Mantle / Total

Total Flux

Reactor Crust(<500km)* **Crust(other)** Mantle

Ocean Bottom Detector (OBD)

2005 : Specific engineering study was started in Hawaii.

- **Direct measurement of mantle contribution**
- Test of Earth models
- Geoneutrino has power to measure deep Earth

Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u>

- Results from geo-neutrino measurements
 - Geoscientific results
 - Total radiogenic heat in the Earth
 - Th/U mass ratio
 - Test of Earth model
 - Measurement uncertainty gets close to the uncertainty of Earth model prediction.
 - soon!
- Future prospects of geo-neutrino measurement
- Nest target : Mantle contribution
 - Near future
 - * Estimation of geo-neutrino contribution from mantle
 - * Better understanding of crust model
 - * Multi-site measurements

Summary

• Geoneutrinos bring unique and direct information about the Earth's interior and dynamics.

- KamLAND : New results with additional 500-day low reactor phase data will be published

- Ocean Bottom Detector has strong power to measure mantle contribution directory.

Backup

Anti-neutrino Detectors

Multi-site measurements can distinguish crustal differences.

Understanding of geochemical evolution of the Earth.

Directional Measurement

Directional Measurement with ⁶LiLS and Imaging Detector Development of the contraction of the contract -⁶⁰⊓ 0

[Li loaded liquid scintillator]

- large neutron capture cross section (⁶Li 940 barns vs ¹H 0.3 barns)
- α does't travel far

- higher than 2 cm resolution (PMT ~10cm)

► ⁴⁰K geoneutrino

Motivation

- ~16% of Earth's radiogenic heat is from ⁴⁰K
- K may reside in the Earth's core?

⁴⁰K Decay

- - 10.67 % to 1.461 MeV state (Ev=44 keV)
 - 0.05 % to g.s. (Ev=1.5 MeV)

⁴⁰K Anti-neutrino

 $\nu_e - e$ scattering

requires electron recoil directionality due to large flux of solar neutrinos

⁴⁰K geoeutrino measurement is useful to know amout and distribution

► ⁴⁰K geoneutrino

Liquid Scintillator Cherenkov Neutrino Detector

-Slow LS. Cherenkov and scintillation can be measured.

-Cherenkov \rightarrow Directional information

-Serious effects from solar ν and radioactive background

