Leptogenesis and Low-Energy Leptonic CP Violation

Jessica Turner Prospects of Neutrino Physics 2019 Kavli IPMU

Work in collaboration with K. Moffat, S. Pascoli, S.T. Petcov.

Energy Budget of the Universe

1

Cosmic Microwave Background

$$\eta_{\rm CMB} = (6.23 \pm 0.17) \times 10^{-10}$$

Jessica Turner

Big Bang Nucleosynthesis

Sakharov Conditions*

*Only necessary if QFT is CPT conserving Dolgov, Zeldovich & Cohen, Kaplan

Jessica Turner

Nice overview by Takehiko Asaka yesterday

Jessica Turner

Seesaw Mechanism

 Most theories of leptogenesis assume neutrinos are Majorana (of course there are exceptions*)

7

Mechanism

 $\epsilon = \frac{\Gamma\left(N_1 \to HL\right) - \Gamma\left(N_1 \to H^{\dagger}\overline{L}\right)}{\Gamma\left(N_1 \to HL\right) + \Gamma\left(N_1 \to H^{\dagger}\overline{L}\right)}$

Jessica Turner

Washout and Scattering processes

$$\frac{dN_{N_1}}{dz} = -D_1(N_{N_1} - N_{N_1}^{\text{eq}})$$
$$\frac{dN_{B-L}}{dz} = \epsilon_1 D_1(N_{N_1} - N_{N_1}^{\text{eq}}) - W_1 N_{B-L}$$

$$\Gamma_i \equiv \Gamma_i \left(N_i \to \phi^{\dagger} l_i \right) \qquad D_i \equiv \frac{\Gamma_i + \overline{\Gamma}_i}{Hz}. \qquad W_i \equiv \frac{1}{2} \frac{\Gamma_i^{\rm ID} + \overline{\Gamma}_i^{\rm ID}}{Hz}.$$

Jessica Turner

Jessica Turner

Fermilab

10

Jessica Turner

Model Parameter Space

 $Y_{\nu} = \frac{1}{v} U_{\rm PMNS} \sqrt{m} R^T \sqrt{M}$

Model Parameter Space

η_B is a function of up to 18 parameters

Jessica Turner

Flavour Effects in Kinetic Equations

 $T \gtrsim 10^{13} \,\text{GeV} \qquad \underbrace{\ell_1}_{\ell_1} \qquad |\ell_1\rangle = \sum_{\alpha = e, \mu, \tau} c_{1\alpha} |\ell_\alpha\rangle \quad \Gamma_\ell < H$

Flavour Effects in Kinetic Equations $T \gtrsim 10^{13} \,\text{GeV} \qquad \underbrace{\ell_1}_{\ell_1} \qquad |\ell_1\rangle = \sum_{\alpha = e, \mu, \tau} c_{1\alpha} |\ell_\alpha\rangle \quad \Gamma_\ell < H$ SM Yukawa coupling $\Gamma_{\tau} \propto h_{\tau}^2 T > H$ ℓ_2 $T \sim 10^{11} \,\mathrm{GeV} \quad \ell_{\tau}$ $\overline{\ell_2}$

Why bother with flavour effects?

Density matrix equation which account for lepton flavour oscillation (pictured above) are needed.

In 1804.05066 we* demonstrated non-resonant thermal leptogenesis can be lowered to T~10⁶ GeV

*K. Moffat, S. Pascoli, S.T. Petcov, H. Schulz, JT

Jessica Turner

Leptogenesis from Leptonic CP Violation

S. Pascoli, S.T. Petcov and A. Riotto (0609125, 0611338)

All CPV stems from low energy phases. This implies the "high scale" phases of the R-matrix must be CP conserving*.

From CP invariance conditions on N_i implies entries of Rmatrix are **purely real** or **imaginary**.

They found low scale CPV could explain the observed BAU: $10^{10} \lesssim M(\,{\rm GeV}) \lesssim 10^{12}$

Upper bound was placed as in the one-flavoured regime $\ensuremath{\epsilon_1}=0$

*models that include a feature have been studied in the context of flavour and generalised CP symmetries (1203.4435 [Petcov etal], 1506.06788 [Mohapatra etc], 1602.03873 [Ding etal],1602.04206 [Hagedorn etal])

Jessica Turner

Leptogenesis from Leptonic CP Violation

S. Pascoli, S.T. Petcov and A. Riotto (0609125, 0611338)

In the high energy limit (T > 5 x 10^{12} GeV) low energy phase could not be connected with leptogenesis since:

$$\epsilon_{1} \equiv \frac{\Gamma(N_{1} \to \ell H) - \Gamma(N_{1} \to H^{\dagger}\overline{L})}{\Gamma(N_{1} \to \ell H) + \Gamma(N_{1} \to H^{\dagger}\overline{L})}$$

$$\propto \sum_{j} \operatorname{Im}(Y_{\nu}Y_{\nu}^{\dagger})_{1j}^{2} \frac{M_{j}}{M_{1}}$$

In the low(er) energy limit (T < 10^{10} GeV) low energy phase could not be connected with leptogenesis because decay asymmetry is too small.

Jessica Turner

Fermilab

$$\epsilon \propto M_1$$

if D roal

1809.08251 revisits this question using modern numerical machinery: density matrix equations + MultiNest* for effective PS exploration

* 0809.3437

Jessica Turner

Leptogenesis from Leptonic CP Violation

T<10⁹ GeV

Jessica Turner

$m_1 = 0.21 \,\mathrm{eV}^*$

* Can be lowered to m1=0.05 eV

 $M_1 = 3.16 \times 10^6 \text{ GeV}, M_2 = 3.5M_1, M_3 = 3.5M_2$

Lowest mass for non-resonant low scale CPV from Dirac and Majorana phases $\sim 10^6$ GeV. At this scale all low energy phases.

Jessica Turner

Pure Dirac CP Violation

 $m_1 = 0.21 \,\mathrm{eV}$

 $M_1 = 7.0 \times 10^8 \,\text{GeV}, \, M_2 = 3.5 M_1, \, M_3 = 3.5 M_2$

Pure Dirac phase leptogenesis requires minimally M₁~10⁸ GeV scale is higher than Majorana only as we are sinθ₁₃ penalised Jessica Turner Fermilab

$m_1 = 0.21 \,\mathrm{eV}$ Pure Majorana CPV

 $M_1 = 3.71 \times 10^6 \,\text{GeV}, \, M_2 = 3.5M_1, \, M_3 = 3.5M_2$

Pure Majorana phase leptogenesis requires minimally M₁~10⁶ GeV

Jessica Turner

Mini summary: non-resonant thermal leptogenesis can explain BAU using only low scale phases at M₁~10⁶ GeV

Leptogenesis from Leptonic CP Violation

T>10¹² GeV

Jessica Turner

Before in very high energy regime ("one flavoured") not possible to produce the BAU from low phases

Although $\epsilon = 0$, the washout terms are still flavour dependent and can generate sufficient lepton asymmetry.

30

Leptogenesis from Leptonic CP Violation

 $M_1 = 10^{13} \text{ GeV}, M_2 = 3.5 M_1, M_3 = 3.5 M_2$

Pure Dirac CPV

 $M_1 = 10^{13} \,\text{GeV}, \, M_2 = 3.5 M_1, \, M_3 = 3.5 M_2$

Jessica Turner

Fermilab

32

Pure Majorana CPV

 $M_1 = 10^{13} \,\text{GeV}, \, M_2 = 3.5 M_1, \, M_3 = 3.5 M_2$

Jessica Turner

Mini summary: non-resonant thermal leptogenesis can explain BAU using only low scale phases at M₁ > 10¹² GeV

Conclusions

- Thermal leptogenesis is a very plausible mechanism to explain the BAU.
- The scale can be lowered (but still non-resonant) using a mild hierarchy of RHN, flavour effects and broad PS exploration.
- Low scale leptonic phases can produce the BAU over many (10⁶ - 10¹³ GeV) orders of magnitude.

"The observation of low-scale leptonic Dirac CP violation, in combination with the positive determination of the Majorana nature of the massive neutrinos,

would make more plausible, but will not be a proof of, the existence of high or intermediate-scale thermal leptogenesis. These remarkable discoveries would indicate, in particular, that thermal leptogenesis could produce the BAU with the requisite CP violation provided by the Dirac CPviolating phase in the neutrino mixing matrix."

Back Up Slides

Abada, Ibarra, Simone, Riotto, Garbrecht, Di Bari, Millington

Density Matrix Equations

*We are justified in using

"semi-classical"

equations rather than $\frac{\mathrm{Im}(\Lambda_{\tau})}{H_{\tau}} = 4.85 \times 10^{-8} \frac{M_{PL}}{M_1}$ first principles derived $\frac{\mathrm{Im}(\tilde{\Lambda}_{\mu})}{Hz} = 1.69 \times 10^{-10} \frac{M_{PL}}{M_1} \qquad \frac{dN_{N_1}}{dz} = -D_1(N_{N1} - N_{N_1}^{\mathrm{eq}})$ **NE-QFT** equations given we are in the strong washout regime $N = \begin{pmatrix} N_{\tau\tau} & N_{\tau\mu} & N_{\tau e} \\ N_{\mu\tau} & N_{\mu\mu} & N_{\mu e} \\ N_{e\tau} & N_{e\mu} & N_{ee} \end{pmatrix} \quad \frac{dN_{N_2}}{dz} = -D_2(N_{N2} - N_{N_2}^{\text{eq}}) \qquad \text{washout pr} \\ \frac{dN_{N_3}}{dz} = -D_3(N_{N3} - N_{N_3}^{\text{eq}}) \qquad \frac{dN_{\alpha\beta}}{dz} = \epsilon_{\alpha\beta}^{(1)}D_1(N_{N1} - N_{N_1}^{\text{eq}}) - \frac{1}{2}W_1 \left(\underbrace{P^{0}}_{0}^{(1)}, N \right)$ washout projects along different directions of flavour space $\{\epsilon_{\alpha\beta}^{(2)}D_2(N_{N2} - N_{N_2}^{\text{eq}}) - \frac{1}{2}W_2 \left\{ P^{0(2)}, N \right\}$ **CP-asymmetry promoted** $\epsilon_{\alpha\beta}^{(3)}D_3(N_{N3} - N_{N_3}^{\text{eq}}) - \frac{1}{2}W_3\left\{P^{0(3)}, N\right\}$ to matrix $\underbrace{\operatorname{Im}(\Lambda_{\tau})}_{Hz} \left| \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \left| \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N \right| \right|$ $-\frac{\operatorname{Im}(\Lambda_{\mu})}{Hz} \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N \end{bmatrix} \Big]_{\alpha\beta},$ thermal width

Self-energy of tau/muon controls flavour effects

Formulae

$$D_1(z) = \frac{\Gamma_1(T)}{Hz} = K_1 z \langle \frac{\mathcal{K}_1(z)}{\mathcal{K}_2(z)} \rangle$$
$$N_1^{eq} = \frac{1}{2} z^2 K_2(z)$$
$$W_1(z) = \frac{1}{2} \frac{\Gamma_1^{ID}}{Hz} = \frac{1}{4} K_1 \mathcal{K}_\infty z^3$$

$$\eta_B(T = T_{rec}) = \frac{28}{29} \frac{N_{B-L}^f}{N_{\gamma}} \frac{g_*(T = T_{rec})}{g_*(T = T_{lep})} \simeq 0.96 \times 10^{-2} N_{B-L}^f$$

Jessica Turner

Semi-Classical Justification

 $|Y_l|$

Light Neutrino Mass

$$\begin{split} m^{\text{tree}} &\approx m_D M^{-1} m_D^T \qquad \qquad m_\nu = m^{\text{tree}} + m^{1-\text{loop}} \\ m^{1-\text{loop}} &= \\ &- m_D \left(\frac{M}{32\pi^2 v^2} \left(\frac{\log\left(\frac{M^2}{m_H^2}\right)}{\frac{M^2}{m_H^2} - 1} + 3\frac{\log\left(\frac{M^2}{m_Z^2}\right)}{\frac{M^2}{m_Z^2} - 1} \right) \right) m_D^T, \\ &= -\frac{1}{32\pi^2 v^2} m_D \text{diag} \left(g\left(M_1\right), g\left(M_2\right), g\left(M_3\right) \right) m_D^T, \\ &g\left(M_i\right) \equiv M_i \left(\frac{\log\left(\frac{M_i^2}{m_H^2}\right)}{\frac{M_i^2}{m_H^2} - 1} + 3\frac{\log\left(\frac{M_i^2}{m_Z^2}\right)}{\frac{M_i^2}{m_Z^2} - 1} \right), \end{split}$$

$$f(M) \equiv M^{-1} - \frac{M}{32\pi^2 v^2} \left(\frac{\log\left(\frac{M^2}{m_H^2}\right)}{\frac{M^2}{m_H^2} - 1} + 3\frac{\log\left(\frac{M^2}{m_Z^2}\right)}{\frac{M^2}{m_Z^2} - 1} \right) = \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_3}\right) - \frac{1}{32\pi^2 v^2} \operatorname{diag}\left(g\left(M_1\right), g\left(M_2\right), g\left(M_2\right)\right) = \frac{1}{41} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_3}\right) - \frac{1}{32\pi^2 v^2} \operatorname{diag}\left(g\left(M_1\right), g\left(M_2\right), g\left(M_2\right)\right) = \frac{1}{41} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_3}\right) - \frac{1}{32\pi^2 v^2} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_3}\right) - \frac{1}{M_1} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_3}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}, \frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_1}, \frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_2}, \frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_2}, \frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{1}{M_2}\right) - \frac{1}{M_2} \operatorname{diag}\left(\frac{$$

Fine Tuning

F.T.
$$\equiv \frac{\sum_{i=1}^{3} \text{SVD}[m^{1-\text{loop}}]_{i}}{\sum_{i=1}^{3} \text{SVD}[m_{\nu}]_{i}}$$

CP Conserving R Matrix Conditions

The above condition impose CP invariance on heavy and light Majorana neutrinos respectively. But we are only interested in the case where CP is conserved the R matris. This implies

$$R_{ij}^* = R_{ij}\rho_i^N \rho_j^\nu, \quad i, j \in \{1, 2, 3\}.$$