Neutrino's in SMEFT and the Neutrino Option #SMEFT

M. Trott, Prospects in Neutrino Physics 2019

Michael Trott, Niels Bohr Institute, Copenhagen, Denmark

Talk summary

Two key ideas to transmit:

Small neutrino mass can be linked to the smallness of the Higgs mass. (Small here compared to UV scales linked to Lepton number violation)

A consistent treatment of the seesaw model to one loop in SMEFT points to a possible origin for the SM Higgs potential and the EW scale.

This idea is embedded in several overlapping expansions:

- 1) The SMEFT operator expansion.
- 2) A flavour space expansion for L5 operator due to seesaw.
- 3) The perturbative matching expansion of the seesaw model to the SMEFT.

The SMEFT expansion

The big picture: what was discovered at LHC

Discovery of a (Higgs like) $J^P \sim 0^+$ particle in 2012

and a theory...the Standard Model EFT

The SM, an SU(3) xSU(2)xU(1) gauge theory:

$$\begin{split} \mathcal{L}_{\mathrm{SM}} &= -\frac{1}{4} G^A_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^I_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_\mu H^\dagger) (D^\mu H) + \sum_{\psi=q,u,d,l,e} \overline{\psi} \, i \not\!\!\!\!D \, \psi \\ &- \lambda \left(H^\dagger H - \frac{1}{2} v^2 \right)^2 - \left[H^{\dagger j} \overline{d} \, Y_d \, q_j + \widetilde{H}^{\dagger j} \overline{u} \, Y_u \, q_j + H^{\dagger j} \overline{e} \, Y_e \, l_j + \mathrm{h.c.} \right], \end{split}$$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{\delta L \neq 0}} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \cdots$$

Loung Lovo Roo 1094 Ruchmullor Wylor 1

Leung, Love, Rao 1984, Buchmuller Wyler 1986, Grzadkowski, Iskrzynski, Misiak, Rosiek 2010

Runll and beyond: Resonance limits to local operators

ATLAS Preliminary

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

0.0	105.0019 2010						$\int \mathcal{L} dt = (3)$	3.2 – 79.8) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ leV}$
	Model	ί,γ	Jets†	E ^{miss} T	∫£ dt[fb	-'] Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	0 e.µ 2 y - 2 1 e.µ - 2 y muti-channe 1 e.µ 1 e.µ	1 - 4j -2j $\ge 2j$ $\ge 3j$ -1 $\ge 1b, \ge 1J$ $\ge 2b, \ge 3$	Yes - - - (2) Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	M _O M _A M _A M _A M _A G _{KK} mass G _{KK} mass G _{KK} mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 3.8 TeV 1.8 TeV	$\label{eq:nonlinear} \begin{array}{l} n=2\\ n=3 \mbox{ HLZ NLO}\\ n=6\\ n=6, M_D=3 \mbox{ TeV, rot BH}\\ n=6, M_D=3 \mbox{ TeV, rot BH}\\ k/\overline{M}_{Pl}=0.1\\ k/\overline{M}_{Pl}=1.0\\ \Gamma/m=15\%\\ \mbox{ Tier }(1,1), M(A^{(1,1)}\rightarrow tr)=1 \end{array}$	1711.03301 1707.04147 1703.08217 1806.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to t\tau \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WV \to qqqq \mbox{ model } B \\ \text{HVT } V' \to WH/ZH \mbox{ model } B \\ \text{LRSM } W'_R \to tb \end{array}$	2 e,µ 2 τ - 1 e,µ 1 τ el B 0 e,µ muti-channe muti-channe	- 2b ≥ 1 b, ≥ 1J - 2 J H	- - Yes Yes -	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W' mass	4.5 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 3.7 TeV 4.15 TeV 2.93 TeV 3.25 TeV	$\Gamma/m = 15_0$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.08992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
ũ	Cl qqqq Cl l(qq Cl tttt	2 e,μ ≥1 e,μ	2 j 	- Yes	37.0 36.1 36.1	A A A	2.57 TeV	21.8 TeV $\eta_{i,i}$ 40.0 TeV $\eta_{i,i}$ $ C_{tr} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
MQ	Axial-vector mediator (Dirac Di Colored scalar mediator (Dirac VV _{XX} EFT (Dirac DM)	M) 0.e.μ :DM) 0.e.μ 0.e.μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j	Yes Yes Yes	36.1 36.1 3.2	т _{ний} 1. т _{ний} М, 700 GeV	55 TeV 1.67 TeV	$\begin{array}{l} g_{\rm q}{=}0.25,g_{\rm q}{=}1.0,m(\chi)=1{\rm GeV}\\ g{=}1.0,m(\chi)=1{\rm GeV}\\ m(\chi)<150{\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372
9	Scalar LQ 1 st gen Scalar LQ 2 st gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	$\begin{array}{c} \geq 2j\\ \geq 2j\\ \geq 1b,\geq 3\end{array}$	- - Yes	3.2 3.2 20.3	LO mass 1.1 Tel LO mass 1.05 TeV LO mass 640 GeV		$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} \text{VLQ } TT \rightarrow Ht/Zt/Wb + X \\ \text{VLQ } BB \rightarrow Wt/Zb + X \\ \text{VLQ } T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X \\ \text{VLQ } Y \rightarrow Wb + X \\ \text{VLQ } B \rightarrow Hb + X \\ \text{VLQ } QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe 2(SS)/≥3 e.μ 1 e.μ 0 e.μ, 2 y 1 e.μ	H x ≥1 b, ≥1 ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	i Yos i Yos i Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1.37 B mass 1.34 T _{5/3} mass 1.34 Y mass 1.4 B mass 1.21 T Q mass 690 GeV	TeV TeV 64 TeV 4 TeV eV	$\begin{array}{l} \mathrm{SU(2) \ doublet} \\ \mathrm{SU(2) \ doublet} \\ \mathrm{SI(7_{5/3} \rightarrow Wt)=1, \ c(7_{5/3}Wt)=1} \\ \mathrm{SI(Y \rightarrow Wb)=1, \ c(YWb)=1/\sqrt{2}} \\ \mathrm{sg=0.5} \end{array}$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2016-XXX 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 y 3 e.µ 3 e.µ, r	2j 1j 1b,1j -	-	37.0 36.7 36.1 20.3 20.3	q* mass q* mass b* mass /* mass y* mass	6.0 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet H ^{±±} → ℓℓ Higgs triplet H ^{±±} → ℓτ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e.\mu$ $2 e.\mu$ $2.3.4 e.\mu$ (SS $3 e.\mu, \tau$ $1 e.\mu$ - - - $\sqrt{s} = 8 TeV$	≥ 2 j 2 j 3) - 1 b - -	Yes - - Yes - 3 TeV	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N° mass 560 GeV N° mass 870 GeV H** mass 870 GeV H** mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 1.0 - 2 1.0 - 2	2.0 TeV	$\label{eq:Wg} \begin{split} m(W_g) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production} \\ \text{DY production, } \mathcal{B}(H^{n+}_{\xi} \to \ell \tau) = 1 \\ a_{\text{non-rest}} &= 0.2 \\ \text{DY production, } g &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \\ \end{split}$	ATLAS-CONF-2018-020 1506-06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059
						10 -		Mass scale [TeV]	

"Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Runll and beyond: Resonance limits to local operators

ATLAS Preliminary

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

	, ,							$\mathcal{L} dt = 0$	3.2 – 79.8) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$
Model	ί,γ	Jets†	E ^{miss}	∫£ dt[fb	-"]		Limit	<i>v</i>		Reference
ADD $G_{KK} + g/q$ ADD non-resonant ADD OBH ADD OBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	γγ 2 γ 2 γ ≥ 1 e,μ - 2 γ W/ZZ muti-chann 1 e,μ 1 e,μ	$\begin{array}{c} 1-4j\\ -\\ 2j\\ \geq 2j\\ \geq 3j\\ -\\ el\\ \geq 1b, \geq 1,J/2\\ \geq 2b, \geq 3j \end{array}$	Yes - - - - - Yos Yos	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1 36.1	M ₀ M ₅ M ₆ M ₆ M ₆ G ₈₂ mass G ₈₂ mass S ₈₂ mass S ₈₂ mass			7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 3.8 TeV 1.8 TeV	$eq:rescaled_$	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
$\begin{array}{c} \text{SSM } Z^* \rightarrow \ell\ell \\ \text{SSM } Z^* \rightarrow \tau\tau \\ \text{Leptophobic } Z^* \rightarrow \\ \text{Leptophobic } Z^* \rightarrow \\ \text{SSM } W^* \rightarrow \ell \gamma \\ \text{SSM } W^* \rightarrow \tau\nu \\ \text{HVT } V^* \rightarrow WV \rightarrow \\ \text{HVT } V^* \rightarrow WH/Z \\ \text{LRSM } W_R^* \rightarrow tb \end{array}$	2 e,μ 2 τ 2 t tt 1 e,μ 1 e,μ 1 τ gqqq model B 0 e,μ H model B multi-chann multi-chann	- 2b ≥ 1 b, ≥ 1J/2 - 2 J el el	- Yes Yes - Yes	36.1 36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass V' mass V' mass W' mass			4.5 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 3.7 TeV 4.15 TeV 2.93 TeV 3.25 TeV	$\Gamma/m = 15_{0}$ $g_{V} = 3$ $g_{V} = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
Cl qqqq Cl tttt	– 2 e.µ ≥1 e.µ	2j 	- Yes	37.0 36.1 36.1	A A A			2.57 TeV	21.8 TeV q_{11}^{-} 40.0 TeV q_{13}^{-} $ C_{44} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
Axial-vector media Colored scalar mer VV _{XX} EFT (Dirac	or (Dirac DM) 0 e, µ liator (Dirac DM) 0 e, µ OM) 0 e, µ	1-4j 1-4j 1J,≤1j	Yes Yes Yes	36.1 36.1 3.2	m _{and} M _{and}		1. 700 GeV	55 TeV 1.67 TeV	$\begin{split} g_{q}\text{-0.25}, g_{c}\text{-1.0}, m(\chi) &= 1 \text{ GeV} \\ g\text{-1.0}, m(\chi) &= 1 \text{ GeV} \\ m(\chi) &< 150 \text{ GeV} \end{split}$	1711.03301 1711.03301 1608.02372
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	- Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass		1.1 Te\ 1.05 TeV 640 GeV	4	$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
$\begin{array}{c} \text{VLQ } TT \rightarrow Ht/Zt\\ \text{VLQ } BB \rightarrow Wt/Z\\ \text{VLQ } BB \rightarrow Wt/Z\\ \text{VLQ } T_{5/3}T_{5/3}T_{5/3}\\ \text{VLQ } Y \rightarrow Wb + 3\\ \text{VLQ } B \rightarrow Hb + X\\ \text{VLQ } QQ \rightarrow WqW \end{array}$	Wb + X multi-chann b + X multi-chann $\rightarrow Wt + X$ 2(SS)/23 e, 1 e, μ 0 e, μ , 2 y 1 e, μ	ei ei $\mu \ge 1$ b, ≥ 1 j ≥ 1 b, ≥ 1 j ≥ 1 b, ≥ 1 j ≥ 4 j	Yos Yos Yes Yes	36.1 36.1 3.2 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass		1.37 1.34 1.4 1.4 1.21 T 690 GeV	TeV TeV .64 TeV 4 TeV eV	$\begin{array}{l} SU(2) \ doublet\\ SU(2) \ doublet\\ SI(2) \ doublet\\ SI(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1\\ S(Y \rightarrow Wb) = 1, \ c(YWb) = 1/\sqrt{2}\\ \kappa_B = 0.5 \end{array}$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2016-XXX 1509.04261
Excited quark q ² – Excited quark q ² – Excited quark d ² – Excited quark b ² – Excited lepton t ² Excited lepton v ²	αg – αγ 1 γ bg – 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		37.0 36.7 36.1 20.3 20.3	q" mass q" mass b" mass I" mass y" mass			6.0 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u' and d', $\Lambda=m(q')$ only u' and d', $\Lambda=m(q')$ $\Lambda=3.0~\text{TeV}$ $\Lambda=1.6~\text{TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana v Higgs triplet H ⁺⁺ – Higgs triplet H ⁺⁺ – Monotop (non-res Multi-charged parti Magnetic monopoli	$\begin{array}{c} 1 \ e, \mu \\ 2 \ e, \mu \\ e \ (\ell \\ 2,3,4 \ e, \mu \ (S \\ e \ (\tau \\ 3 \ e, \mu, \tau \\ rod) \\ 1 \ e, \mu \\ es \\ - \\ rs \\ \hline \sqrt{s} = 8 \ TeV \end{array}$	≥ 2 j 2 j 5) - 1 b - - - - - - - - - -	Yes - Yes - TeV	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N ⁴ mass N ⁴ mass H ⁴⁴ mass spin-1 me muti-chaig monopole	cle particle m ed particle m nasa 10 ⁻¹	550 GeV 870 GeV 400 GeV 911 657 GeV 911 657 GeV 1.34 1.34	2.0 TeV TeV	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathfrak{S}(H_{\xi}^{nx} \rightarrow t\tau) = 1$ $s_{nin-rmi} = 0.2$ DY production, $ \mathfrak{g} = 5\mathfrak{e}$ DY production, $ \mathfrak{g} = 1\mathfrak{g}_0$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Masses of EW scale ($\sim g v$) states m_W, m_Z, m_t, m_h

Runll and beyond: Resonance limits to local operators

ATLAS Preliminary

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

Deviations then look like local contact operator effects in EFT

IPMU, Prospects for Neutrino Physics, April 11th 2019

When you do measurements below a particle threshold

• Observable is a function of the Lorentz invariants:

f(s,t,u)

Generally an analytic function of these invariants, except in special regions of phase space, ex. where an internal state goes on-shell.

IF the collision probe does not reach $\sim m^2_{heavy}$ THEN observable's dependence on that scale simplified

EFT approach not a guess.

General approach based on S matrix theory and motivated by experimental situation. You can Taylor expand in LOCAL functions (operators)

$$\langle \rangle \sim O_{SM}^0 + \frac{f_1(s,t,u)}{M_{heavy}^2} + \frac{f_2(s,t,u)}{M_{heavy}^4} + \cdots$$

This is the core idea of EFT interpretations of the data.

General "BSM heavy" approach is SMEFT/HEFT

SMEFT:development cycle

SMEFT - built of H doublet + higher D ops

Glashow 1961, Weinberg 1967 (Salam 1967)

Weinberg 1979, Wilczek and Zee 1979

Leung, Love, Rao 1984, Buchmuller Wyler 1986, Grzadkowski, Iskrzynski, Misiak, Rosiek 2010

Weinberg 1979, Abbott Wise 1980

Lehman 1410.4193, Henning et al. 1512.03433

Lehman, Martin 1510.00372, Henning et al. 1512.03433

The Lagrangian expansion theory technology is a solved problem Henning et al arXiv:1706.0852.

Neutrino's in SMEFT and the Neutrino Option

Q: "Are any of these damn Wilson coefficients in the SMEFT not 0?"A: "Yes." — Motivation for this neutrino work.

arXiv:1703.04415 JHEP 1711 (2017) 088 Gitte Elgaard-Clausen, MT arXiv:1703.10924 Phys.Rev.Lett. 119 (2017) no.14, 141801 I. Brivio, MT arXiv:1809.03450 JHEP 1902 (2019) 107 I. Brivio, MT

Are any Wilson coefficients not 0?

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{\delta L \neq 0}} \mathcal{L}_{5} + \frac{1}{\Lambda_{\delta B=0}^{2}} \mathcal{L}_{6} + \frac{1}{\Lambda_{\delta B\neq0}^{2}} \mathcal{L}_{6}' + \frac{1}{\Lambda_{\delta L \neq0}^{3}} \mathcal{L}_{7} + \frac{1}{\Lambda^{4}} \mathcal{L}_{8} + \cdots$$

seems to be non zero.
$$\mathcal{Q}_{5}^{\beta \kappa} = \left(\overline{\ell_{L}^{c,\beta}} \, \tilde{H}^{\star}\right) \left(\tilde{H}^{\dagger} \, \ell_{L}^{\kappa}\right).$$

- Working in dirac spinors causes a bit of pain as we define $~~\psi^c = (-i\gamma_2\,\gamma_0)\,ar{\psi}^T$
- Introduce singlet right handed fields with majorana mass terms as

 C^5

$$\overline{N_{R,p}^c} M_{pr} N_{R,r} + \overline{N_{R,p}} M_{pr}^{\star} N_{R,r}^c$$

 Shift phases to couplings defining a field that is not a chiral eigenstate that satisfies Majorana condition (Broncano et al. hep-ph/0406019)

$$N_p \ = \ N_p^c \ = e^{i heta_p/2} \, N_{R,p} + e^{-i heta_p/2} \, (N_{R,p})^c.$$

 Obtaining the Standard (type I) seesaw (Minkowski 77, Gell Mann et al 79, Yanagida 79, Mohapatra at al 79…)

$$2\mathcal{L}_{N_p} = \overline{N_p}(i\partial \!\!\!/ - m_p)N_p - \overline{\ell_L^\beta}\tilde{H}\omega_\beta^{p,\dagger}N_p - \overline{\ell_L^{c\beta}}\tilde{H}^*\,\omega_\beta^{p,T}N_p - \overline{N_p}\,\omega_\beta^{p,*}\tilde{H}^T\ell_L^{c\beta} - \overline{N_p}\,\omega_\beta^p\tilde{H}^\dagger\ell_L^\beta.$$

Seesaw model to SMEFT.

Integrating out the seesaw at tree level. Matching now done out to L7

$$(s + m_p) rac{-1}{m_p^2} \Big(rac{1}{1 - s^2/m_p^2} \Big) = -rac{1}{m_p} - rac{s}{m_p^2} - rac{s^2}{m_p^3} + \cdots$$

Expand the propagator in the small momentum transfer - MATCH!

Extremely well known result

$$\mathcal{L}^{(5)} = \frac{c_{\beta\kappa}}{2} \mathcal{Q}_5^{\beta\kappa} + h.c. \qquad c_{\beta\kappa} = (\omega_\beta^p)^T \, \omega_\kappa^p / m_p$$

p summed over

Here the ω_{β}^{p} are complex vectors in flavour space. To proceed with further matching we can perform a flavour space expansion

$$x,y\in \mathbb{C}^3.$$
 $x\cdot y=x_i^\star\,y^i, \quad \|x\|=\sqrt{x\cdot x} \qquad x imes y=((x imes y)_\Re)^\star$

L6 SMEFT matching

• At
$$\mathcal{L}_6$$
 the fun begins:

$$\mathcal{L}^{(6)} = rac{(\omega_{eta}^p)^{\dagger} \, \omega_{\kappa}^p}{2 \, m_p^2} \left(\mathcal{Q}^{(1)}_{\substack{H\ell \ eta\kappa}} - \mathcal{Q}^{(3)}_{\substack{H\ell \ eta\kappa}}
ight)$$

$$\begin{aligned} \mathcal{Q}_{\substack{H\ell\\\beta\kappa}}^{(3)} &= H^{\dagger} \, i \overleftrightarrow{D}_{\mu}^{I} H \ell_{\beta} \gamma^{\mu} \tau_{I} \ell_{\kappa} \\ \mathcal{Q}_{\substack{H\ell\\\beta\kappa}}^{(1)} &= H^{\dagger} \, i \overleftrightarrow{D}_{\mu} H \ell_{\beta} \gamma^{\mu} \ell_{\kappa} \end{aligned}$$

Can compare to Broncano et al. hep-ph/0406019

But the N are integrated out in sequence so you also get:

$$\begin{split} \frac{1}{2} \mathcal{L}_{N_{2,3}}^{(6)} &\supseteq \frac{\operatorname{Re} \left[x_{\beta}^{\dagger} x^{\star} \cdot y^{\dagger} \right]}{4 \, m_{1}^{2}} \left(\mathcal{Q}_{N_{2}}^{\beta} - \mathcal{Q}_{N_{2}}^{\star,\beta} \right) + \frac{i \operatorname{Im} \left[x_{\beta}^{\dagger} x^{\star} \cdot y^{\dagger} \right]}{4 \, m_{1}^{2}} \left(\mathcal{Q}_{N_{2}}^{\beta} + \mathcal{Q}_{N_{2}}^{\star,\beta} \right) \\ &+ \frac{\operatorname{Re} \left[x_{\beta}^{\dagger} x^{\star} \cdot z^{\dagger} \right]}{4 \, m_{1}^{2}} \left(\mathcal{Q}_{N_{3}}^{\beta} - \mathcal{Q}_{N_{3}}^{\star,\beta} \right) + \frac{i \operatorname{Im} \left[x_{\beta}^{\dagger} x^{\star} \cdot z^{\dagger} \right]}{4 \, m_{1}^{2}} \left(\mathcal{Q}_{N_{3}}^{\beta} + \mathcal{Q}_{N_{3}}^{\star,\beta} \right) \\ &+ \frac{\operatorname{Re} \left[y_{\beta}^{\dagger} y^{\star} \cdot z^{\dagger} \right]}{4 \, m_{2}^{2}} \left(\mathcal{Q}_{N_{3}}^{\beta} - \mathcal{Q}_{N_{3}}^{\star,\beta} \right) + \frac{i \operatorname{Im} \left[y_{\beta}^{\dagger} y^{\star} \cdot z^{\dagger} \right]}{4 \, m_{2}^{2}} \left(\mathcal{Q}_{N_{3}}^{\beta} + \mathcal{Q}_{N_{3}}^{\star,\beta} \right) \end{split}$$

$${\cal Q}^{eta}_{N_p}\,=\,(H^{\dagger}H)\,(\overline{\ell^{eta}_L} ilde{H})\,N_p$$

v

 N_1

 N_2

 N_3

L6 SMEFT matching

• At
$$\mathcal{L}_6$$
 the fun begins:

$$\mathcal{L}^{(6)} = \frac{(\omega_{\beta}^{p})^{\dagger} \, \omega_{\kappa}^{p}}{2 \, m_{p}^{2}} \left(\mathcal{Q}_{H\ell}^{(1)} - \mathcal{Q}_{H\ell}^{(3)}_{\beta\kappa} \right)$$

$$\begin{aligned} \mathcal{Q}_{\substack{H\ell\\\beta\kappa}}^{(3)} &= H^{\dagger} \, i \overleftrightarrow{D}_{\mu}^{I} H \ell_{\beta} \gamma^{\mu} \tau_{I} \ell_{\kappa} \\ \mathcal{Q}_{\substack{H\ell\\\beta\kappa}}^{(1)} &= H^{\dagger} \, i \overleftrightarrow{D}_{\mu} H \ell_{\beta} \gamma^{\mu} \ell_{\kappa} \end{aligned}$$

12

Can compare to Broncano et al. hep-ph/0406019 (SU(2) diff)

• As a Majorana scale in the EOM:

$$\partial \!\!\!/ N_p = -i \Big(m_p N_p + w_\beta^{p,*} \tilde{H}^T \ell_L^{c\beta} + w_\beta^p \tilde{H}^\dagger \ell_L^\beta \Big)$$

which gives the extra matching contributions

$$\begin{split} \frac{1}{2} \mathcal{L}_{N_{2,3}}^{(6)} &\supseteq \frac{(x_{\beta})^T x^{\star} \cdot y^{\dagger} m_2}{4 m_1^3} \left[\overline{\ell_{L\beta}^c} \, \tilde{H}^{\star} N_2 \right] (H^{\dagger} H) + \frac{(x_{\beta})^T x^{\star} \cdot z^{\dagger} m_3}{4 m_1^3} \left[\overline{\ell_{L\beta}^c} \, \tilde{H}^{\star} N_3 \right] (H^{\dagger} H), \\ &+ \frac{(y_{\beta})^T y^{\star} \cdot z^{\dagger} m_3}{4 m_2^3} \left[\overline{\ell_{L\beta}^c} \, \tilde{H}^{\star} N_3 \right] (H^{\dagger} H) + h.c. \end{split}$$

Keeping track of all the terms is critical as a set of cancelations occur.

 N_1

 N_2

 $\overline{N_3}$

L7 SMEFT matching

• Summary of dim 7 results:

Basis of Lehman 1410.4193

L7 SMEFT matching

Basis of Lehman 1410.4193

Linking the Higgs potential with Neutrino mass generation.

Strangeness of the Higgs potential

Reminder: Why is the Higgs mechanism and classical potential curious?

$$S_H = \int \, d^4x \, \left(|D_\mu H|^2 - \lambda \left(H^\dagger H - rac{1}{2} v^2
ight)^2
ight),$$

Partial Higgs action

 $m_{W/Z} = 0$ field config. energetically excluded (i.e. spon. sym breaking)

$$LG(s) = \int_{\Re^3} dx^3 \left[rac{1}{2} |(d-2\,i\,e\,A)s|^2 + rac{\gamma}{2} \left(|s|^2 - a^2
ight)
ight],$$

Landau-Ginzberg actional, parameterization of Superconductivity

E. Witten, From superconductors and four-manifolds to weak interactions,

Magnetic field energetically excluded from interior of SC

Challenge of constructing potential

 It would make sense for the Higgs mechanism to just parameterize symmetry breaking. To do better we can try and construct the Higgs potential with QFT

Naturally leads to the idea of composite Higgs field due to some new strong interaction

Kaplan, Georgi, Dimopoulos, Dugan 84-85

Initial efforts studied the induced potential of a scalar and used vacuum misalignment to get SU(2)_L × U(1)_Y → U(1)_Q

$$\Sigma(x) = e^{i\Pi_a T^a/f} U e^{i\Pi_a T^a/f} \quad \mathcal{L} = rac{f^2}{4} (D_\mu \Sigma) (D^\mu \Sigma)^T + \Lambda^4 \mathrm{Tr} \left[T^a \Sigma (T^a)^T \Sigma^\dagger
ight] + \cdots$$

 Group theory embedding of SM into larger global sym groups exhaustively studied

Challenge of constructing potential

 It would make sense for the Higgs mechanism to just parameterize symmetry breaking. To do better we should construct the Higgs potential

$$V(H) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$
Muon decay: $v = 246 \text{ GeV}$ Higgs mass : $m_h = 125 \text{ GeV}$ $\lambda = 0.13$
The problem.

Composite models (nobly) try to construct the Higgs potential:

$$V(H) \simeq \frac{g_{SM}^2 \Lambda^2}{16 \pi^2} \left(-2 a H^{\dagger} H + 2b \frac{(H^{\dagger} H)^2}{f^2} \right) \text{see } 1401.2457 \text{ Bellazzini et a}$$

• Can get the quartic to work: $\sim 0.1 \left(\frac{g_{SM}}{N_c y_t}\right)^2 \left(\frac{\Lambda}{2f}\right)^2$ for $\Lambda/f \ll 4\pi$ implied, lighter new states

Challenge of constructing potential.II

 It would make sense for the Higgs mechanism to just parameterize symmetry breaking. To do better we should construct the Higgs potential

$$V(H) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

- Higgs coupling deviations scale as $\sim 1-rac{v^2}{f^2}$ but pheno studies imply $f\gtrsim {
 m TeV}$
- Where are the new states at a weakly coupled mass scale below the full cut off?
- Extensive tuning in these models: see 1401.2457 Bellazzini et al,
- This problem killed the initial composite idea initially (Georgi-Kaplan 80's), Modern models introduce tunings and constructed to avoid this. Generic feature - tev or below states to construct potential.

We know more about the potential now

Due to the improved knowledge of the top and Higgs mass:

An interesting mass scale is 10-100 PeV (or $10^7 - 10^8$ GeV)

1205.6497 Degrassi et al, 1112.3022 Elias-Miro et al..

- What does this mean?
- For fate of the universe considerations
 see |205.6497 Degrassi et al.
 I505.04825 Espinosa et al.
- This might be a different message.
- Build the Higgs potential in the UV, as there $\lambda \sim 0$

Unexplored compared to the fate of the universe issues.

A set of clues?

arXiv:1205.6497 Degrassi et al, arXiv:1112.3022 Elias-Miro et al.

Higgs quartic coupling A

0.04

0.02

0.00

-0.02

-0.04

S/(S+B) Weighted Events / GeV

Observed mass spectrum is such that the running of the quartic does something interesting

Neutrino's have mass

Photo: A. Mahmoud Takaaki Kajita

Prize share: 1/2

Photo: A. Mahmoud Arthur B. McDonald The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

4.4057

20

Idea is use the non trivial spectrum we have

Still need a non trivial spectrum with lots of interactions (and some weird couplings) to generate a non trivial potential. But lets use the weird spectrum we have.

Field	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$	$SO^{+}(3, 1)$
$q_{i} = (u_{L}^{i}, d_{L}^{i})^{T}$	3	2	1/6	(1/2, 0)
$u_i = \{u_R, c_R, t_R\}$	3	1	2/3	(0, 1/2)
$d_i = \{d_R, s_R, b_R\}$	3	1	-1/3	(0, 1/2)
$\ell_i = (\nu_L^i, e_L^i)^T$	1	2	-1/2	(1/2, 0)
$e_i = \{e_R, \mu_R, \tau_R\}$	1	1	$^{-1}$	(0, 1/2)
Н	1	2	1/2	(0, 0)

Turns out the SM can do it.

Lets use the weird spectrum we have expressed through the SM RGE's

$$\begin{split} \beta(g_Y^2) \ &= \ g_Y^4 \, \frac{41}{6}, \ \beta(g_2^2) = g_2^4 \left(-\frac{19}{6}\right), \ \beta(g_3^2) = g_3^4(-7), \\ \beta(\lambda) \ &= \ \left[\lambda \left(12\lambda + 6Y_t^2 - \frac{9}{10}(5g_2^2 + \frac{5}{3}g_Y^2)\right) \right. \\ &- \ 3Y_t^4 + \frac{9}{16}g_2^4 + \frac{3}{16}g_Y^4 + \frac{3}{8}g_Y^2g_2^2\right], \\ \beta(m^2) \ &= \ m^2 \left[6\lambda + 3Y_t^2 - \frac{9}{20}(5g_2^2 + \frac{5}{3}g_Y^2)\right], \\ \beta(Y_t^2) \ &= \ Y_t^2 \left[\frac{9}{2}Y_t^2 - 8g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{12}g_Y^2\right]. \end{split}$$

Seesaw to SMEFT one loop

Necessarily one loop results coming with tree level matchings:

If you assume a seesaw model for neutrino mass generation - this is a "known unknown".

This threshold matching can be done to CW

Coleman-Weinberg potential:

$$\Delta V_{CW} = -\frac{1}{32\pi^2} \left[(m_{\nu}^i (H^{\dagger} H))^4 \log \frac{m_{\nu_i}^2 (H^{\dagger} H)}{\mu^2} \right]$$

$$m_{\nu}^{i}(H^{\dagger}H) = \frac{1}{2}(M \mp \sqrt{M^{2} + 2 |\omega_{p}|^{2}(H^{\dagger}H)})$$

$$\mu = Me^{-3/4}$$

• μ_{CW}

If $\frac{|\omega_p|^2 m_p^2}{16\pi^2} \gg v_0^2 \Lambda_{QCD}^2$ such a threshold matching can dominate the potential and give low scale pheno that is the SM. IR scales are

 Λ_{QCD}

Can be small Doesn't have to be 0.

 $\bullet v_0$

than induced vev.

Known to be smaller Exponentially separated

due to asy nature of pert theory.

Such threshold corrections are a direct representation of the Hierarchy problem F. Vissani, Phys. Rev. D 57, 7027 (1998)

Can one go the full way of dominantly generating the EW scale in this manner? X ? arXiv:1703.10924 Neutrino Option Ilaria Brivio, MT

Can the Neutrino Option work?

 Use the RGE (1205.6497 Degrassi et al, 1112.3022 Elias-Miro et al..) to run down the threshold matching corrections arXiv:1703.10924 Neutrino Option Ilaria Brivio, MT

- Can get the troublesome $\lambda \sim 0.13$
- This essentially fixes the mass scale and couplings (large uncertainties)

$$m_p \sim 10^7 {
m GeV}$$

 $|\omega| \sim 10^{-5}$

Expand around the classically scaleless limit of the SM. Punch the potential with threshold matching you kick off low scale EW sym. breaking?

Higgs potential. Check. Neutrino mass scale. Check.

In a non-trivial manner - and the right neutrino mass scale (diff) can result.

 $---- \Delta m_{\nu} (eV)$

 $\begin{array}{lll} \Delta m^2_{21}/10^{-5} {\rm eV}^2 &=& 6.93-7.97, \\ \Delta m^2/10^{-3} {\rm eV}^2 &=& 2.37-2.63\,(2.33-2.60) \end{array}$

 The EW potential does get constructed correctly running down in a non-trivial manner

Neutrino option: the bad

- Very significant numerical uncertainties
 -top quark mass driven
- This is NOT a total solution to the Hierarchy problem. As there is no symmetry protection mechanism against other threshold corrections.
- No non-resonant leptogenesis in this
 parameter space 1404.6260 Davoudias, Lewis

Resonant leptogenesis can work here (S. Petcov - private communication)

 No dynamical origin of the Majorana scale supplied. So the IR limit taken is not clearly self consistent.

Improving numerical stability

- Severe upgrade in rigor of one loop calc and one loop running of C^5 1809.03450 Brivio, Trott
- Consistency test reformulated to avoid asymptotic numerical sensitivity to λ

Minimal case with two heavy neutrino's.

Improving numerical stability

Required bare lambda

- Beyond one loop need a bare λ OR other threshold corrections
- An interpretation:

A consistent treatment of the seesaw model to one loop in SMEFT points to a possible origin for the SM Higgs potential and the EW scale.

What "breaks" EW symmetry in the Neutrino Option?

Fermi statistics + Majorana scale in the UV + SM state spectrum for RGE.

Conclusions/summary

- SMEFT is a theory defined by field redefinitions leading to local operators. Neutrino's with mass embedded.
- <u>Combined global studies are key</u> to interpretation
- Severe care required in formulating the SMEFT (TH job) and in combining the data (EXP job)
- Seesaw model supplies an option for low energy pheno of the SM With the Higgs potential having an interesting UV boundary condition

$$m_{\nu} \sim \frac{\omega^2 \bar{v}_T^2}{M}, \quad m_h \sim \frac{\omega M}{4\pi}, \quad \bar{v}_T \sim \frac{\omega M}{4\sqrt{2}\pi\sqrt{\lambda}}, \quad m_p \sim 10^7 \text{GeV} \quad |\omega| \sim 10^{-5}$$

 This is a "self seesaw" with only one scale, the EW scale is a loop down from the Majorana scale. We don't see new states at LHC due to a stabilizing symmetry consistent with this.

- Can you build a UV completion that generates the majorana scale in a manner that does not induce other threshold corrections?
 - 1807.11490 Brdar et al. Conformal UV completion of Neutrino Option

• ?

• IF this was true what is the right experimental approach to probe $m_p \sim 10^7 {
m GeV} ~~|\omega| \sim 10^{-5}$

• 1810.12306 Brdar et al. Gravitational Waves are potentially significant

Flavour space expansion

• Summary of dim 7 results its VERY small, down by ${\cal O}(v^2/M_p^2)$ and interesting!

Far bigger effect is how the expansion of

$$\mathcal{L}^{(5)} = rac{c_{eta\kappa}}{2} \mathcal{Q}_5^{eta\kappa} + h.c.$$
 $c_{eta\kappa} = (\omega_eta^p)^T \, \omega_\kappa^p / m_p$

is perturbed as the N states are integrated out in sequence.

no known quantum numbers

expected to be uniform in interaction eigenbasis, once diagonalized expect

$$\|x\|\sim \|y\|\sim \|z\|$$

Flavour space expansion

Lightest singlet state dominates the neutrino mass matrix, heavier singlet states then perturb the mass spectrum and eigenstate spectrum

$$M_{\nu\nu}^{\beta\,\alpha}\,(M_{\nu\nu}^{\kappa\,\alpha})^{\dagger} \simeq \frac{\|z^{\star} \cdot z\|}{m_{3}^{2}} \begin{bmatrix} z_{\beta}^{T} z_{\kappa} + \frac{z^{\star} \cdot y^{\dagger}}{\|z^{\star} \cdot z\|} \frac{m_{3}}{m_{2}} z_{\beta}^{T} y_{\kappa}^{\star} + \frac{y^{\star} \cdot z^{\dagger}}{\|z^{\star} \cdot z\|} \frac{m_{3}}{m_{2}} y_{\beta}^{T} z_{\kappa}^{\star} + \cdots \end{bmatrix}.$$

$$\text{use complex Cauchy-Schwarz}$$

$$a \cdot b = ||a||||b|| \underline{\Delta}_{ab}$$

$$< 1 \text{ by construction}$$

$$again$$

If it is true that $\frac{\|y\|}{\|z\|}\Delta_{y^{\dagger}z} < m_2/m_3, \qquad \frac{\|y\|}{\|z\|}\Delta_{yz^{\dagger}} < m_2/m_3.$

 N_1

 N_2 N_3

v

another expansion to exploit - a flavour space expansion. 1203.4410 Grinstein, MT

Old school Perturbation theory

• Define eigenvectors that correspond to the mass eigenvalues of the C^{5} matrix

$$M_{\nu\,\nu}\,ec{
ho}_p^\star=m_p\,ec{
ho}_p,$$

Construct the orthonormal set as eigenvectors in flavour space

 N_1

 N_2

v

 $\overline{N_3}$

$$\vec{\rho}_a^{\star} = \frac{\vec{z}}{\|\vec{z}\|}, \qquad \vec{\rho}_b^{\star} = \frac{\vec{z}^{\star} \times (\vec{y} \times \vec{z})}{\|\vec{z}\| \|\vec{z} \times \vec{y}\|}, \qquad \vec{\rho}_c^{\star} = \frac{\vec{y}^{\star} \times \vec{z}^{\star}}{\|\vec{z} \times \vec{y}\|}$$

Can systematically develop perturbations of the eigenvectors and eigenvalues

$$egin{aligned} \delta ec{
ho_j} &= = \sum_{i
eq j} rac{\langle ec{
ho_i} | \mathcal{M} \delta \mathcal{M}^\dagger + \delta \mathcal{M} \, \mathcal{M}^\dagger | ec{
ho_j}
angle}{m_j^2 - m_i^2} ec{
ho_i}, \ \delta m_i^2 &= \langle ec{
ho_i} | \mathcal{M} \delta \mathcal{M}^\dagger + \delta \mathcal{M} \, \mathcal{M}^\dagger + \delta \mathcal{M} \, \delta \mathcal{M}^\dagger | ec{
ho_i}
angle \end{aligned}$$

Links perturbations of masses to PMNS

B4

Just perturb in the unknown

• Although the σ_i are unknown we do know one thing

 $\frac{N_2}{N_3}$

V

As $\mathcal{U}(e, L)$ diagonalizes a Hermitian positive mass matrix the σ_i form a basis arXiv:1703.04415 Gitte Elgaard-Clausen, MT

• So expand all the complex $\omega_i = A_i \sigma_1 + B_i \sigma_2 + C_i \sigma_3$

- Use the algebra properties $ec{\sigma_i} imes ec{\sigma_j} = \epsilon_{ijk} ec{\sigma_k} \quad ec{\sigma_i^\star} imes ec{\sigma_j^\star} = \epsilon_{ijk} ec{\sigma_k^\star}$
- This way we have a systematically improvable basis independent link between the neutrino mass spectrum and the PMNS. Might be useful long term.

Neutrino Option Numerics

	Nor	mal Hierarchy	Inverted Hierarchy			
	best fit	3σ range	best fit	3σ range		
s_{1}^{2}	0.441	0.385 - 0.635	0.587	0.393 - 0.640		
s_{2}^{2}	0.02166	0.01934 - 0.02392	0.02179	0.01953 - 0.02408		
83	0.306	0.271 - 0.345	0.306	0.271 - 0.345		
$\delta(^{\circ})$	261	0 - 360	277	145 - 391		
$\Delta m^2_{21}(10^{-5}{\rm eV^2})$	7.50	7.03 - 8.09	7.50	7.03 - 8.09		
$\Delta m^2_{3l} \ (10^{-3} {\rm eV^2})$	2.524	2.407 - 2.643	-2.514	(-2.635) - (-2.399)		

Table 1: Best fit values of neutrino parameters taken from the global fit in Ref. [35].

SMEFT up to sub-leading order ($\mathcal{L}^{(7)}$ corrections) but we restrict our attention to the matching onto $\mathcal{L}^{(5)}$ in this work.

	best fit	range		tree	1-loop	2-loop
\hat{G}_F [GeV ⁻²]	1.1663787 .10-5	5	Â	0.1291	0.1276	0.1258
$\hat{\alpha}_s(m_Z)$	0.1185		\hat{m} [GeV]	125.09	132.288	131.431
\hat{m}_Z [GeV]	91.1875		\hat{g}_1	0.451	0.463	0.461
\hat{m}_W [GeV]	80.387		\hat{g}_2	0.653	0.6435	0.644
\hat{m}_h [GeV]	125.09		\hat{g}_3		-1.22029	
\hat{m}_t [GeV]	173.2 1	71 - 175	\hat{y}_t	0.995	0.946	0.933
\hat{m}_b [GeV]	4.18		\hat{y}_b	0.024	-	-
\hat{m}_{τ} [GeV]	1.776		$\hat{y}_{ au}$	0.0102	-	-

Table 2: Left table: best fit values of the quantities used as inputs in the numerical analysis, while m_t is varied in the range specified. Right table: matching values for the SM parameters at $\mu = m_t$ obtained from the expressions in Appendix A in Ref. [42] with the inputs on the left when $m_t = 173.2 \text{ GeV}$.