Status and Prospects of eV Sterile Neutrinos

Iván Martínez Soler

Prospects of Neutrino Physics

Based on: M. Dentler, A. Hernandez-Cabezudo, J. Kopp, P.A.N. Machado, M. Maltoni, IMS, T. Schwetz, JHEP 1808 (2018) 010 (2018-08-03)

April 11th, 2019

Motivation to: Scenario 3+1

Why do we need to consider a ν_s with mass around 1 eV?

- ▶ **LSND**: excess of $\overline{\nu}_e$ compatible with $E/L \sim 1 \text{eV}^2$
- MiniBooNE: excess of the ν_e and $\overline{\nu}_e$ compatible with an oscillation with $0.1 < \Delta m^2 < 1$.
- ▶ Gallium anomaly can be explained by an oscillation of ν_e into ν_s with $\Delta m^2 \ge 1 \text{eV}^2$
- ▶ Reactor anomaly can be explained as an oscillation of $\overline{\nu}_e$ with $\Delta m^2 \ge 1 \text{eV}^2$

Scenario $3{+}1$

In the 3+1 ν scenario, neutrino evolution is described by the Schrödinger equation

$$\begin{split} i\frac{d\vec{\nu}}{dt} &= \frac{1}{2E} \begin{bmatrix} U^{\dagger} Diag(0,\Delta m_{21}^{2},\Delta m_{31}^{2},\Delta m_{41}^{2})U \pm V_{mat} \end{bmatrix} \vec{\nu} \qquad \vec{\nu} = (\nu_{e} \,\nu_{\mu} \,\nu_{\tau})^{T} \\ V_{mat} &= \sqrt{2}G_{F} \begin{pmatrix} N_{e} - N_{n} & 0 & 0 & 0 \\ 0 & -N_{n} & 0 & 0 \\ 0 & 0 & -N_{n} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{split}$$

Scenario 3+1

In the 3+1 ν scenario, neutrino evolution is described by the Schrödinger equation

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \left[U^{\dagger} Diag(0, \Delta m_{21}^2, \Delta m_{31}^2, \Delta m_{41}^2) U \pm V_{mat} \right] \vec{\nu} \qquad \vec{\nu} = (\nu_e \, \nu_\mu \, \nu_\tau)^T$$

▶ Depends on:

▶ 6 mixing angles and 3 complex phases.

 $U \equiv R_{34}(\theta_{34}) R_{24}(\theta_{24}, \delta_{24}) R_{14}(\theta_{14}) R_{23}(\theta_{23}) R_{13}(\theta_{13}, \delta_{13}) R_{12}(\theta_{12}, \delta_{12}),$

 $\blacktriangleright\,$ Three mass splittings: $(\Delta m^2_{21}\sim 10^{-5} eV^2,\,\Delta m^2_{31}\sim 10^{-3} eV^2$ and $\Delta m^2_{41})$

$\overline{\nu_e}$ disappearance: Reactor anomaly

- ▶ $\overline{\nu}_e$ emitted from ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu fissions
- $E_{\nu} \sim 4$ MeV and $L \leq 1$ Km;
- The reevaluation of the $\overline{\nu}_e$ flux determined a deficit in the experimental data (reactor anomaly).
- ▶ Data/Prediction = 0.952 ± 0.014 ± 0.023 (Daya Bay), 0.918 ± 0.018 (RENO)

How can be explained the reactor anomaly?

 $\overline{\nu_e}$ disappearance: Reactor anomaly

Sterile neutrinos

• For
$$\Delta m_{41}^2 \ge 0.05 \mathrm{eV}^2$$

$$P_{ee} \approx 1 - 2|U_{e4}|^2 (1 - |U_{e4}|^2)$$

▶ The flux coming from all the isotopes would be equally affected

$\overline{\nu_e}$ disappearance: Reactor anomaly Problem with the Flux prediction

- Daya Bay measured the contribution of the different isotopes.
- Discrepancies between measurement/prediction:
 - 1.7σ in the overall yield.
 - 3.1σ in the dependence of the yield with the fuel composition.
- Preference for ^{235}U as a source of the anomaly

See ISHITSUKA's Talk

Phys. Rev. Lett. 118 (2017) 251801 [arXiv:1704.01082]

 $\overline{\nu_e}$ disappearance: Reactor anomaly

Can be excluded the existence of ν_s ?

We can compare the two hypotheses:

- ▶ Free fluxes (no steriles)
 - ▶ ^{235}U and ^{239}Pu vary freely.
- Fluxes fixed + ν_s
 - ▶ Huber+Muller flux prediction.
 - $\blacktriangleright \ \Delta m^2_{41} > 0.05 \mathrm{eV^2}$
- Preference of Daya Bay for the free fluxes hypothesis (2.7σ)
- ▶ Sterile neutrino hypothesis provides an acceptable gof

	PG
Free fluxes	0.7
Fluxes fixed + ν_s	0.18

M. Dentler, A. Hernandez-Cabezudo, J. Kopp, M. Maltoni, T. Schwetz, JHEP 1711 (2017) 099

Flux excess at 5 MeV

- ▶ The ratio of measured over the predicted flux shows an excess at 5 MeV.
- ▶ The excess is present in all experiments.
- ▶ The "bump" is time independent and it is correlated with the reactor power.

I. Tu (RENO), NEUTRINO 2018

$\overline{\nu_e}$ disappearance: Reactor neutrinos

DANSS

 Measurement at two locations (10.7 m and 12.7 m)

NEOS

▶ Baseline ~ 23.7 m.

Use Daya Bay as a prediction of

The combined analysis between NEOS and DANSS excluded the non-oscillation hypthesis to $3.3\sigma.$

 $\overline{\nu_e}$ disappearance: global analysis of reactor experiments

Preference of $\sim 3\sigma \ (\sim 3.5\sigma)$ for ν_s for free (fixed) fluxes.

ν_e disappearance: Solar neutrino measurement

- \blacktriangleright ν_e is produced by two different nuclear fusion reactions: pp chains and CNO cycles.
- ▶ The flux is composed by ν_e with a characteristic energy (⁷Be,pep) or spectrum (pp, CNO, ⁸B, hep).
- ▶ Sensitivity to:
 - ν_e disappearance channel.

Phys. Rev. D 98, 030001 (2018)

Gallium anomaly

- ► GALLEX and SAGE (solar Gallium experiments) has been tested by a radioactive source (⁵¹Cr, ³⁷Ar)
- Ratio measured/predited shows a ~ 3σ deficit [1]

 $R=0.84\pm0.05$

► The anomaly can be explained by $\Delta m_{41}^2 \ge 1 \text{eV}^2$

Results: ν_e and $\overline{\nu_e}$ diappearance

LSND

- The first channel that pointed to ν_s with masses in the eV scale.
- Excess of $\overline{\nu}_e$ in a $\overline{\nu}_\mu$ beam $(E_\nu \sim 30 \text{ MeV}, L \sim 35 \text{ m});$
- $\ \, \bullet \ \, \pi^+ \to \mu^+ \nu_\mu, \, \mu^+ \to e^+ \nu_e \overline{\nu}_\mu$
- Including the contribution from DaR and DiF;

A. Aguilar-Arevalo et al. [LSND collab], Phys.Rev. D64 (2001) 112007

 $\operatorname{MiniBooNE}$

- Designed to search for $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}$ at the same L/E as LSND;
- observe an excess at low energy in the $\stackrel{(-)}{\nu_e}$ $(200 \le E_{\nu} \le 1250 \text{ MeV}).$
- Combine analysis with LSND has a preference for ν_s of 6σ

Phys.Rev.Lett. 121 (2018) no.22, 221801

MiniBooNE

- Designed to search for $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}$ at the same L/E as LSND;
- observe an excess at low energy in the $\stackrel{(-)}{\nu_e}$ $(200 \le E_{\nu} \le 1250 \text{ MeV}).$
- Combine analysis with LSND has a preference for ν_s of 6σ

KARMEN, NOMAD, E776, ICARUS and OPERA couldn't confirm/reject the oscillation.

Phys.Rev.Lett. 121 (2018) no.22, 221801

$$\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$

LBL experiments:

- ▶ NO ν A searches based on NC
 - ► Narrow energy beam $\rightarrow \Delta m_{41}^2 \in [0.05, 0.5] \text{eV}^2$
- MINOS/MINOS+ combined analysis
 - ► For $\Delta m_{41}^2 \in [10^{-3}, 10^{-1}] \text{eV}^2$ oscillation in the **FAR** detector.
 - ► For $\Delta m_{41}^2 \in [1, 100] \text{eV}^2$ oscillation in the **NEAR** detector.

Phys.Rev.Lett. 122 (2019) no.9, 091803

Phys. Rev. D91 (2015), no. 7 072004, [1410.7227]

High-energy atmospheric neutrinos:

- ▶ IceCube
- Resonance for neutrinos crossing the Earth at TeV scale

$$E_{res} = 5.73 \text{TeV}\left(\frac{5 \text{g/cm}^3}{\rho_{\oplus}}\right) \left(\frac{\Delta m_{41}^2}{1 \text{eV}^2}\right)$$

• The resonance take place for $\overline{\nu}$.

Phys. Rev. Lett. 117 (2016), no. 7 071801, [1605.01990].

Oscillation channels are not independent

In the short-baseline limit $(\Delta m^2_{21}L/4E<<1$ and $\Delta m^2_{31}L/4E<<1)$

$$P_{ee}^{SBL} = 1 - 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$
$$P_{\mu e}^{SBL} = 4|U_{e4}|^2 |U_{\mu 4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$
$$P_{\mu \mu}^{SBL} = 1 - 4|U_{\mu 4}|^2 \left(1 - |U_{\mu 4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

Are the different channels compatible?

$$P_{e\mu} > 0 \qquad \rightarrow \qquad \begin{array}{c} P_{ee} > 0 \\ P_{\mu\mu} > 0 \end{array}$$

Results: ν_{μ} disappearance channel

Appearance/disappearance tension

Strong tension between apperance and disapperance channels ${\rm PG}$ = 3.7×10^{-7}

Appearance/disappearance tension

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{\mathrm{app}}$	$\chi^2_{\rm min, disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG	
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.71×10^{-7}	
Removing anomalous	data sets							
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}	
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}	
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$	
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}	
Removing constraints	8							
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}	
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}	
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	$6.0 imes10^{-7}$	
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes10^{-7}$	
Removing classes of data								
$\stackrel{(-)}{\nu}_{e}$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}	
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}	
$\stackrel{\scriptscriptstyle(-)}{\nu}_{\mu}$ dis + solar v s app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}	

Conclusion

- ▶ There are several anomalies in the ν_e disappearance and ν_e appearance.
- Most of these anomalies can be explained in the $3+1\nu$ scenario.
- ▶ Strong tensions between the appearance and the disappearance data.

Thank you!

Backup:

Daya-Bay studied the number of IBD yield as a function of F_{239}

$$\sigma_f(F_{239}) = \overline{\sigma_f} + \frac{d\sigma_f}{dF_{239}}(F_{239} - \overline{F}_{239})$$

- Incompatible with a constant $\overline{\nu}_e$ flux $(d\sigma_f/dF_{239}=0)$ by 10σ
- Discrepancie of 1.7σ between prediction/measurement of σ_f
- ► Tension of 3.1σ between prediction/measurement of $d\sigma_f/dF_{239}$
 - Different contribution to $d\sigma_f/dF_{239}$ from different isotopes.
 - Disagreemnet between prediction/measurement of 2.6σ.

