

# Prospects of JUNO

#### Miao HE Institute of High Energy Physics, Beijing On behalf of the JUNO collaboration

"Prospects of Neutrino Physics" at Kavli IPMU

2019/04/11



#### JUNO: a multipurpose neutrino experiment

#### Project

- 20 kton liquid scintillator, 3%@1MeV energy resolution, 700 m underground
- Approved in **2013**, construction started in **2015**, operation in **2021**



#### **Physics**

- Determine mass hierarchy
- Precision measurement of oscillation parameters
- Astronomical and geo-  $\boldsymbol{\nu}$
- Proton decay and exotics



#### M. He: Prospects of JUNO



M. He: Prospects of JUNO



### JUNO detector





# Neutrino Mass Hierarchy (MH)





- Disappearance of reactor electron antineutrinos at ~60 km: interference between  $\Delta m_{31}^2$  and  $\Delta m_{32}^2$
- Very unique approach, independent on  $\theta_{23}$  and CP phase
- Key: energy resolution



## Sensitivity to MH







|                                             | Size      | Δχ² <sub>MH</sub> |
|---------------------------------------------|-----------|-------------------|
| Ideal                                       | 52.5 km   | +16               |
| Core distr.                                 | Real      | -3                |
| DYB & HZ <sup>1)</sup>                      | Real      | -1.7              |
| Spectral Shape                              | 1%        | -1                |
| B/S <sup>2)</sup> (rate)                    | 6.3%      | -0.6              |
| B/S (shape)                                 | 0.4%      | -0.1              |
| 1) Daya Bay & Huizh<br>2) Background to Sig | ou<br>nal |                   |

M. He: Prospects of JUNO

## Sensitivity improvement from $\Delta m^2_{\mu\mu}$



- $v_{\mu} \rightarrow v_{e}$  (appearance) channel can directly determine the MH
- T2K+NOvA: |Δm<sup>2</sup><sub>µµ</sub>|~ 1%
- Combining T2K+NOvA (both disappearance and appearance) with JUNO: 4- $\sigma$  to 5- $\sigma$  or better.

# Energy resolution: photon statistics

• Energy resolution:  $\Delta m_{21}^2 / \Delta m_{32}^2 < 3\% / \sqrt{E} \rightarrow 1200 \text{ p.e./MeV}$ 

|             | KamLAND      | JUNO          |  |
|-------------|--------------|---------------|--|
| LS mass     | ~1 kt        | 20 kt         |  |
| Light yield | 250 p.e./MeV | 1200 p.e./MeV |  |

LS Attenuation length/Diameter:  $15m/16m \rightarrow 30m/34m$ ×0.9 **→** 0.6 00 LS light yield (1.5g/l PPO  $\rightarrow$  5g/l PPO) 00  $30\% \rightarrow 45\%$  $\times$  1.5 **Photocathode coverage :**  $34\% \rightarrow \sim 80\%$ 00  $\times 2.3$ High QE\*CE "PMT": KamLAND 25%\*60% = 15% 00 New PMT 40%\*60% = 24%× 1.6 → 2.0 TOTAL:  $\times \sim 5 - 6$ 

## Energy resolution: calibration

- 1200 p.e.→2.89% stat. fluctuation.
   Room for systematics: <1%.</li>
   Calibration is critical!
- Detector energy response: non-uniformity and non-linearity
  - Routinely Source into LS by
    - ACU: at central axis
    - Rope loop: a plane
  - Source into Guided tube
  - "sub-marine": anywhere in the LS
- Single channel charge response
  - Suppression of over-shoot and Flash-ADC readout
  - Double-calorimetry: measure energy via "photon counting"



Redundant calibration system



# Impact of fine structure to JUNO



- Large scale fine structure: constrained by Daya Bay
- Known fine structure does not hurt JUNO, e.g. Xin Qian some calculation (JUNO-doc-503)
- Unknown fine structure (5% bin-to-bin uncorrelated shape uncertainty) has larger impact (Huber, arXiv:1710.07378)
- Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution LS detector at 30 m from the core, a satellite exp. of JUNO.
- Measure reactor neutrino spectrum w/ sub-percent E resolution (1.5%/ $\sqrt{E}$ ). Provide model-independent reference spectrum for JUNO

- data

prompt energy/MeV

full uncertainty

reactor uncertainty

integrated



## **JUNO-TAO Detector Concept**

- 2.6 ton Gd-LS in a spherical vessel
  1-ton FV, 4000 v's/day
- 10 m<sup>2</sup> SiPM of 50% PDE Operate at -50°C
- From Inner to Outside
  - Gd-LS working at -50°C
  - SiPM and support
  - Cryogenic vessel
  - 1~1.5 m water or HDPE shielding
  - Muon veto
- Laboratory in a basement at -10 m, 30-35 m from Taishan core (4.6 GW)
- Plan to be online in 2020





### **Precision Measurement**

#### **Current precision**

|                      | $\Delta m_{21}^2$ | $ \Delta m^2_{31} $ | $\sin^2 \theta_{12}$ | $\sin^2 	heta_{13}$ | $\sin^2 \theta_{23}$ | δ   |
|----------------------|-------------------|---------------------|----------------------|---------------------|----------------------|-----|
| Dominant Exps.       | KamLAND           | T2K                 | SNO+SK               | Daya Bay            | $NO\nu A$            | T2K |
| Individual $1\sigma$ | 2.4%              | 2.6%                | 4.5%                 | 3.4%                | 5.2%                 | 70% |
| Nu-FIT 4.0           | 2.4%              | 1.3%                | 4.0%                 | 2.9%                | 3.8%                 | 16% |



**JUNO**: First experiment to measure solar and atmospheric mass splitting simultaneously. <1% precision to  $\theta_{12}$ ,  $\Delta m_{21}^2$  and  $\Delta m_{31}^2 (\Delta m_{32}^2)$ .



## **Precision Measurement**

Probing the unitarity of U<sub>PMNS</sub> to ~1%, more precise than CKM matrix elements!

**Correlation among parameters** 



M. He: Prospects of JUNO



## Supernova Burst Neutrinos



The delayed neutrino-driven mechanism of CCSN

- Galactic CCSN rate~3 per century
- Real-time detection of SN burst neutrinos, international SN alert, e.g. SNEWS
- Almost background free, since SN burst neutrinos last for ~10 s



- Full flavor detection and low threshold energy ~0.2 MeV in LS
- IBD is the golden channel, ~5000 events for SN@10 kpc
- Especially the pES channel can provide us more information about  $v_x$ , better than other type of detectors, e.g. WC, LAr-TPC detectors
- PSD method to distinguish events from eES and pES
- Implications of SN neutrinos for particle physics and astrophysics



#### Diffused Supernova Neutrino Background



- DSNB rate: approx. 10 core collapse/sec in the visible universe
- Provide information of star formation rate,  $\nu$  emission from average CCSNe and BHs.
- PSD to suppress background, mainly atmospheric neutrinos
- The expected **detection significance~3** $\sigma$  after 10 years of data taking in JUNO, with  $\langle E_{\bar{\nu}_e} \rangle$ ~15 MeV, bkg systematic uncertainty ~20%



### **Geo-neutrino physics**

 Geo-neutrino as a tool to explore the composition of the Earth and to estimate the amount of radiogenic power driving the Earth's engine.



Geoneutrino Event Rate (Crust+Mantle)



- The detector can only get the total contribution from crust and mantle.
- With a 3-D crust model, mantle neutrino fluxes can be extracted.







- 400-500 IBD/year, larger than all the accumulated geo-neutrino events before. Challenge: reactor background, ~40 times larger
- With 10 years: total uncertainty reach 5%
- Measure U/Th ratio at percent level
- A local refined crust model is required to get information of Mantle

#### A Local Crust Model for JUNO

arXiv:1903.11871





| Done by an interdisciplinary group of geo- and                         |           |                      |                     |                      |  |
|------------------------------------------------------------------------|-----------|----------------------|---------------------|----------------------|--|
| barticle physics scientists: $S_{Th} \pm \sigma$ $S_{U+Th} \pm \sigma$ |           |                      |                     |                      |  |
| Upper Crust                                                            | Top Layer | $10.5^{+0.7}_{-0.7}$ | $3.2^{+0.3}_{-0.3}$ | $13.8^{+0.8}_{-0.7}$ |  |
|                                                                        | Basement  | $8.1^{+3.7}_{-7.0}$  | $2.6^{+1.1}_{-1.8}$ | $11.0^{+5.9}_{-3.9}$ |  |
| Middle Crust                                                           |           | $1.7 \pm 1.0$        | $0.4 \pm 0.3$       | $2.1 \pm 1.1$        |  |
| Lower Crust                                                            |           | $1.9^{+1.3}_{-3.8}$  | $0.8^{+5.7}_{-0.7}$ | $1.7^{+4.0}_{-1.2}$  |  |
| Oceanic Crust                                                          |           | $0.2 \pm 0.05$       | $0.1 \pm 0.01$      | $0.3 \pm 0.05$       |  |
| Total <b>Un</b>                                                        | it: TNU   | 21.3±4.0             | 6.6±1.3             | 28.5±4.5             |  |

- Research area: around 500 km  $\times$  500 km
- Seismic station data give the structure and density of the local crust. Rock samples represent U/Th abundance distributions.
- This result (28.5 TNU) is 30% larger than the prediction using the global model.
- Difference means particular geo-scientific importance!



### Solar neutrinos physics



A mild tension between solar & reactor measurements in  $\Delta m^2_{21}$ , which is due to the absence of upturn in the <sup>8</sup>B solar neutrino measurement (as well as too large day-night asymmetry).

A new low-threshold <sup>8</sup>B solar neutrino measurement would be desirable to test the tension, and possible new physics if any.



|   | Flux                    | B16-GS98            | B16-AGSS09met       | $\operatorname{Solar}^a$       |
|---|-------------------------|---------------------|---------------------|--------------------------------|
|   | $\Phi(pp)$              | $5.98(1 \pm 0.006)$ | $6.03(1 \pm 0.005)$ | $5.97^{(1+0.006)}_{(1-0.005)}$ |
|   | $\Phi(\text{pep})$      | $1.44(1 \pm 0.01)$  | $1.46(1 \pm 0.009)$ | $1.45_{(1-0.009)}^{(1+0.009)}$ |
|   | $\Phi(hep)$             | $7.98(1 \pm 0.30)$  | $8.25(1 \pm 0.30)$  | $19^{(1+0.63)}_{(1-0.47)}$     |
| Γ | $\Phi(^7\mathrm{Be})$   | $4.93(1 \pm 0.06)$  | $4.50(1 \pm 0.06)$  | $4.80^{(1+0.050)}_{(1-0.046)}$ |
|   | $\Phi(^8B)$             | $5.46(1 \pm 0.12)$  | $4.50(1 \pm 0.12)$  | $5.16_{(1-0.017)}^{(1+0.025)}$ |
|   | $\Phi(^{13}\mathrm{N})$ | $2.78(1 \pm 0.15)$  | $2.04(1 \pm 0.14)$  | $\leq 13.7$                    |
|   | $\Phi(^{15}{\rm O})$    | $2.05(1 \pm 0.17)$  | $1.44(1 \pm 0.16)$  | $\leq 2.8$                     |
|   | $\Phi(^{17}{\rm F})$    | $5.29(1 \pm 0.20)$  | $3.26(1 \pm 0.18)$  | $\leq 85$                      |

Both the CNO neutrinos and <sup>8</sup>B neutrinos are important to test the metallicity problem, in order to break the degeneracy from the SSM parameters (e.g., opacity).

M. He: Prospects of JUNO



## Solar neutrinos at JUNO

- Very large volume: high statistics and self-shielding of external gamma background with fiducial volume
  - LS radioactivity: 10<sup>-15</sup> g/g (baseline), 10<sup>-17</sup> g/g (solar phase)
- Very good energy solution (3%@1 MeV): precision energy spectrum measurement
- Overburden is not high: cosmogenic background is a challenge
  - Better muon tracking and veto approach



- Solar oscillation measurement with <sup>8</sup>B v: measure up-turn and test the tension of  $\Delta m_{21}^2$  in a single detector
  - Electron kinetic energy spectrum as low as 2 MeV (v+e  $\rightarrow$  v+e)
  - Day-night asymmetry
  - v<sub>e</sub>-<sup>13</sup>C charged-current channel (E<sub>th</sub>~2.2 MeV) [for the first time]



 $10^{\circ}$ 

0

2

6

8

#### **Atmospheric neutrinos**



10

 $E_{vis}$  (GeV)

12

14

16

18

20

- Sensitive to MH and  $\theta_{23}$
- MH determination via matter effect
- Complementary to MH via reactor neutrinos
- 1-2σ for 10 years data taking
- $\theta_{23}$  accuracy of 6 deg



### Nucleon Decay

Grand Unified Theories (GUT): e.g. SU(5), SO(10), SUSY GUTs

- Single coupling constant, Charge quantization, etc
- > Nucleon decay  $\rightarrow$  1.  $p \rightarrow e^+ + \pi^0$

2.  $p \rightarrow \overline{v} + K^+$ , SUSY GUTs



M. He: Prospects of JUNO



## Search $p \rightarrow \overline{v} K^+$ in JUNO

Search  $p \rightarrow \overline{v} K^+$  in JUNO:



Triple coincidence signals:

 $3^{rd}$ : 2.  $2\mu s \rightarrow$  Michel electron





Multi-variate analysis tools are being developed for S/B discrimination.

 $\varepsilon \approx 65\%$ 



## Prospect of JUNO physics

- JUNO is a multipurpose neutrino experiment
- Reactor antineutrinos
  - Determine neutrino mass hierarchy in a unique way,  $3\sigma$  ( $4\sigma$  with  $\Delta m^2_{\mu\mu}$ ) with 6 years data
  - Measure 3 of oscillation parameters at sub-percent level, first exp. to measure solar and atm. mass splitting simultaneously
- Neutrinos from astrophysical sources: sun, earth, supernova burst, DSNB …
- Nucleon decay and atmospheric neutrinos
- Neutrino-less double beta-decays as an upgrade plan



## Prospect of JUNO project

- **Civil construction**: reached 700 m underground, exp. hall to be started
- Central detector: production of acrylic panels and stainless steel truss will start soon
- PMT system: receive 13,000 20inch PMTs and 12,000 3-inch PMTs
- Veto system: top tracker delivered, water Cherenkov design completed
- Liquid scintillator: recipe optimized, pilot plant test nearly complete
- Electronics: all underwater, finalizing design, mass production starts soon
- Operation by the end of 2021





#### backup

### **Detection of SN neutrinos**



• Full flavor detection and low threshold energy ~0.2 MeV in LS

- IBD is the golden channel, ~5000 events for SN@10 kpc
- Especially the pES channel can provide us more information about  $v_x$ , better than other type of detectors, e.g. WC, LAr-TPC detectors
- **PSD method** to distinguish events from eES and pES

## Physics implications of SN neutrinos



#### For particle physics:

- Bound on absolute neutrino mass
- Discriminate Mass hierarchy of neutrinos?
- Collective neutrino oscillation?

#### For astrophysics:

- Locating SN
- Coincidence with Gravitational wave
- SN nucleosynthesis
- Conditions of SN explosion
- ..



## Potentials for multimessengers

- A comprehensive trigger and DAQ strategy to maximize the potentials on multi-messengers
  - Supernova Burst Neutrinos
  - Low energy events accompanied with astrophysical events

| Data taking mode  | Trigger type                                                | Energy range                                              |
|-------------------|-------------------------------------------------------------|-----------------------------------------------------------|
| Physics           | Global Trigger                                              | >0.2 MeV                                                  |
| Supernova Burst   | Self-trigger                                                | All above-threshold SPE waveforms during the SN explosion |
| 'Multi-messenger' | Stream out hits' timestamps;<br>Software trigger afterwards | Full capability in <0.2 MeV region                        |



#### M. He: Prospects of JUNO



## Future: Double beta-decays

- Once MH measurement is mostly completed(~2030), the detector can be upgraded for ββ-decays, in addition to existing capabilities
- Cosmogenic backgrounds can be removed by a cut of LS volume along the muon track for seconds

|                                 | Isotopes                              | Mass(t) | <m<sub>ββ&gt;,meV</m<sub> |
|---------------------------------|---------------------------------------|---------|---------------------------|
| nEXO                            | <sup>136</sup> Xe                     | 5       | 7-22                      |
| GERDA/Majorana<br>->LEGEND-1000 | <sup>76</sup> Ge                      | 1       | 10-40                     |
| SNO+                            | <sup>130</sup> Te                     | 8       | 19-46                     |
| KamLAND-Zen                     | <sup>136</sup> Xe                     | 1       | ~20                       |
| <b>CUORE-&gt;CUPID</b>          | <sup>130</sup> Te-> <sup>100</sup> Mo | 0.3     | 6-20                      |
| <b>JUNO-</b> ββ                 | <sup>136</sup> Xe                     | 50      | 4-12                      |



| Insert a balloon filled with                      |  |  |  |  |
|---------------------------------------------------|--|--|--|--|
| <sup>136</sup> Xe-loaded LS(or <sup>130</sup> Te) |  |  |  |  |
| into the JUNO detector                            |  |  |  |  |
| $\pi$ + 1 <b>V</b> = 1 < 10.07142                 |  |  |  |  |

Zhao et al., arXiv: 1610.07143, CPC 41 (2017) 5