Matter Effect in LBL Experiments

Sanjib Kumar Agarwalla

sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Neutrino Oscillations in 3 Flavors

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$\theta_{23} : P(\nu_{\mu} \rightarrow \nu_{\mu}) \text{ by} \quad \theta_{13} : P(\nu_{e} \rightarrow \nu_{e}) \text{ by Reactor } \nu \\ \theta_{13} \& 5 : P(\nu_{\mu} \rightarrow \nu_{e}) \text{ by } \nu \text{ beam} \end{pmatrix} \quad \theta_{12} : P(\nu_{e} \rightarrow \nu_{e}) \text{ by} \\ \text{Reactor and solar } \nu \\ \text{Three mixing angles:} \quad \theta_{23} , \theta_{13} , \theta_{12} \text{ and one CP violating (Dirac) phase } \delta_{CP} \\ \hline \tan^{2} \theta_{12} \equiv \frac{|U_{e2}|^{2}}{|U_{e1}|^{2}}; \quad \tan^{2} \theta_{23} \equiv \frac{|U_{\mu3}|^{2}}{|U_{\tau3}|^{2}}; \quad U_{e3} \equiv \sin \theta_{13}e^{-i\delta} \\ 3 \text{ mixing angles simply related to flavor components of 3 mass eigenstates} \end{cases}$$

Over a distance L, changes in the relative phases of the mass states may induce flavor change

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}[U_{\alpha i}^{*}U_{\alpha j}U_{\beta i}U_{\beta j}^{*}] \sin^{2}\Delta_{ij} - 2 \sum_{i>j} \operatorname{Im}[U_{\alpha i}^{*}U_{\alpha j}U_{\beta i}U_{\beta j}^{*}] \sin 2\Delta_{ij}, \qquad \Delta_{ij} = \Delta m_{ij}^{2}L/4$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - M_{ij}^{2}L/4$$

2 independent mass splittings Δm_{21}^2 and Δm_{32}^2 , for anti-neutrinos replace δ_{CP} by $-\delta_{CP}$

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Neutrino Oscillations in Matter

 ν_e Neutrino propagation through matter modify the oscillations significantly Coherent forward elastic scattering of neutrinos with matter particles W^{\pm} Charged current interaction of v_e with electrons creates an extra potential for v_e ν_e e $A = \pm 2\sqrt{2}G_F N_e E$ or $A(eV^2) = 0.76 \times 10^{-4} \rho \ (g/cc) E(GeV)$ MSW matter term: N_e = electron number density , + (-) for neutrinos (anti-neutrinos) , ρ = matter density in Earth Matter term changes sign when we switch from neutrino mode to anti-neutrino mode $P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) \neq 0$ even if $\delta_{CP} = 0$, causes fake CP asymmetry Matter term modifies oscillation probability differently depending on the sign of Δm^2 E^{Earth} $= 6 - 8 \,\mathrm{GeV}$ $\Delta m^2 \simeq A$ ⇔ Resonant conversion – Matter effect **Resonance occurs for neutrinos (anti-neutrinos)** $\Delta m^2 > 0$ MSW if Δm^2 is positive (negative) $\Delta m^2 < 0$ MSW

Neutrino Mass Ordering: Important Open Question

If The sign of Δm_{31}^2 $(m_3^2 - m_1^2)$ is not known

Mass Ordering Discrimination : A Binary yes-or-no type question

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Octant of 2-3 Mixing Angle: Important Open Question

 \rightarrow In v_{μ} survival probability, the dominant term is mainly sensitive to $\sin^2 2\theta_{23}$

→ If $sin^2 2\theta_{23}$ differs from 1 (recent hints), we get two solutions for θ_{23}

→ One in lower octant (LO: $\theta_{23} < 45$ degree)

→ Other in higher octant (HO: $\theta_{23} > 45$ degree)

Octant ambiguity of θ_{23} Fogli and Lisi, her. ph/9604415

Fogli and Lisi, hep-ph/9604415

 v_{μ} to v_{e} oscillation channel can break this degeneracy preferred value would depend on the choice of neutrino mass ordering

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Leptonic CP-violation: Important Open Question

Is CP violated in the neutrino sector, as in the quark sector?

Mixing can cause CPV in v sector, provided $\delta_{CP} \neq 0^{\circ}$ *and* 180°

Need to measure the CP-odd asymmetries:

$$\Delta P_{\alpha\beta} \equiv P(\nu_{\alpha} \to \nu_{\beta}; L) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}; L) \ (\alpha \neq \beta)$$

$$\Delta P_{e\mu} = \Delta P_{\mu\tau} = \Delta P_{\tau e} = 4J_{CP} \times \left[\sin\left(\frac{\Delta m_{21}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{32}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{13}^2}{2E}L\right) \right]$$

Jarlskog CP-odd Invariant $\rightarrow J_{CP} = \frac{1}{8}\cos\theta_{13}\sin 2\theta_{13}\sin 2\theta_{23}\sin 2\theta_{12}\sin \delta_{CP}$

Three-flavor effects are key for CPV, need to observe interference

Conditions for observing CPV: 1) Non-degenerate masses \checkmark 2) Mixing angles $\neq 0^{\circ}$ and $90^{\circ} \checkmark$ 3) $\delta_{CP} \neq 0^{\circ}$ and 180° (Hints) Superbeams

Traditional approach: Neutrino beam from pion decay

Accelerator Long-baseline Neutrino Experiments

Appearance: $(v_{\mu} \rightarrow v_{e})$ and $(anti-v_{\mu} \rightarrow anti-v_{e})$ (essential for MO, CPV, Octant)

Disappearance: $(v_{\mu} \rightarrow v_{\mu})$ and $(anti-v_{\mu} \rightarrow anti-v_{\mu})$ (key for precise measurement of Δm_{32}^2 and θ_{23})

Present: T2K & NOvA

Future: DUNE, T2HK, T2HKK, ESSvSB

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Matter Effect in LBL Experiments

P_{µe}(matter) - P_{µe}(vacuum)

SKA, Soumya C., Masoom Singh, in preparation

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Matter Effect in LBL Experiments

P_{µe}(matter) - P_{µe}(vacuum)

SKA, Soumya C., Masoom Singh, in preparation

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ oscillation probability

This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Published for SISSA by 🖄 Springer

RECEIVED: March 27, 2013 REVISED: February 28, 2014 ACCEPTED: March 12, 2014 PUBLISHED: April 7, 2014

Analytical approximation of the neutrino oscillation matter effects at large θ_{13}

Sanjib Kumar Agarwalla,^{*a*,1} Yee Kao^{*b*} and Tatsu Takeuchi^{*c*,*d*}

- ^aInstitute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, Orissa, India
- ^bDepartment of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723, U.S.A.
- ^cCenter for Neutrino Physics, Physics Department, Virginia Tech, Blacksburg, VA 24061, U.S.A.
- ^dKavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa-shi, Chiba-ken 277-8583, Japan

E-mail: sanjib@iopb.res.in, ykao@email.wcu.edu, takeuchi@vt.edu

ABSTRACT: We argue that the neutrino oscillation probabilities in matter are best understood by allowing the mixing angles and mass-squared differences in the standard parametrization to 'run' with the matter effect parameter $a = 2\sqrt{2}G_F N_e E$, where N_e is the electron density in matter and E is the neutrino energy. We present simple analytical approximations to these 'running' parameters. We show that for the moderately large

Matter Effect Parameter a

$$a = 2\sqrt{2}G_F N_e E = 7.63 \times 10^{-5} (\text{eV}^2) \left(\frac{\rho}{\text{g/cm}^3}\right) \left(\frac{E}{\text{GeV}}\right)$$

Agarwalla, Kao, Takeuchi, JHEP 1404, 047 (2014)

- Matter effects play an important role
- Mixing angles and and mass-squared differences run with the matter effect parameter 'a'
- We present simple analytical approximations to these running parameters using the Jacobi method
- We show that for large θ_{13} , the running of θ_{23} and δ_{CP} can be neglected, simplifying the probability expression
- We need to rotate only θ_{12} and θ_{13}

First noticed by Krastev and Petcov Phys.Lett. B205 (1988) 84-92

Our Approach

Use the expressions for the vacuum oscillation probabilities as it is, but make the following replacements:

$$\theta_{12} \rightarrow \theta'_{12}, \quad \theta_{13} \rightarrow \theta'_{13}, \quad \delta m^2_{jk} \rightarrow \lambda_j - \lambda_k$$

where

$$\tan 2\theta_{12}' = \frac{(\delta m_{21}^2 / c_{13}^2) \sin 2\theta_{12}}{(\delta m_{21}^2 / c_{13}^2) \cos 2\theta_{12} - a}, \qquad \tan 2\theta_{13}' = \frac{(\delta m_{31}^2 - \delta m_{21}^2 s_{12}^2) \sin 2\theta_{13}}{(\delta m_{31}^2 - \delta m_{21}^2 s_{12}^2) \cos 2\theta_{13} - a},$$

$$\begin{split} \lambda_{1} &= \lambda'_{-} & \lambda'_{\pm} &= \frac{(\delta m_{21}^{2} + ac_{13}^{2}) \pm \sqrt{(\delta m_{21}^{2} - ac_{13}^{2})^{2} + 4ac_{13}^{2}s_{12}^{2}\delta m_{21}^{2}}}{2} \\ \lambda_{2} &= \lambda''_{\mp} & \lambda_{3} &= \lambda''_{\pm} & \lambda''_{\pm} &= \frac{\left[\lambda'_{+} + (\delta m_{31}^{2} + as_{13}^{2})\right] \pm \sqrt{\left[\lambda'_{+} - (\delta m_{31}^{2} + as_{13}^{2})\right]^{2} + 4a^{2}s_{12}'^{2}c_{13}^{2}s_{13}^{2}}}{2} \end{split}$$

upper (lower) sign for NH (IH)

Approximation works when $\theta_{13} = O(\epsilon)$, where $\epsilon = \sqrt{\delta m_{21}^2 / |\delta m_{31}^2|} = 0.17$

a-dependence of effective mixing angles

a-dependence of effective mass-squared differences

Normal Hierarchy

Inverted Hierarchy

L=1300 km, δ =0, Normal Hierarchy

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

L=810 km, δ =0, Normal Hierarchy

L=295 km, δ =0, Normal Hierarchy

Other analytical expressions suffer in accuracy due to their reliance on expansion in θ_{13} , or in simplicity when higher order terms in θ_{13} included

Our method gives accurate probability for all channels, baselines, and energies

Compact Perturbative Expressions For Neutrino Oscillations in Matter

arXiv:1604.08167v1 [hep-ph] 27 Apr 2016

Peter B. Denton^{a,b} Hisakazu Minakata^{c,d} Stephen J. Parke^a

^a Theoretical Physics Department, Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

^bPhysics & Astronomy Department, Vanderbilt University, PMB 401807, 2301 Vanderbilt Place, Nashville, TN 37235, USA

Instituto de Física, Universidade de São Paulo, C. P. 66.318, 05315-970 São Paulo, Brazil

^dDepartment of Physics, Yachay Tech University, San Miguel de Urcuquí, 100119 Ecuador E-mail: peterbd10gnail.com, hminakata@yachaytech.edu.ec, parko@fnal.gov

ABSTRACT: We further develop and extend a recent perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the *exact* oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmospheric Δm^2 scales but with a unique choice of the atmospheric Δm^2 such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and $\sin \theta_{13}$. It facilitates immediate physical interpretation of the analytic results, and makes the expressions for the neutrino oscillation probabilities extremely compact and very accurate even at zeroth order in our perturbative expansion. The first and second order results are also given which improve the precision by approximately two or more orders of magnitude per perturbative order.

Similar treatment by Ioannisian & Pokorski, arXiv:1801.10488

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Neutrino oscillation probabilities through the looking glass

Gabriela Barenboim^{a,1}, Peter B. Denton^{b,2}, Stephen J. Parke^{c,3}, Christoph A. Ternes^{d,4}

^aDepartament de Física Teórica and IFIC, Universitat de València-CSIC, E-46100, Burjassot, Spain

^bPhysics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

^c Theoretical Physics Department, Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

^dInstitut de Física Corpuscular (CSIC-Universitat de València), Parc Científic de la UV, C/ Catedratico José Beltrán, 2, E-46980 Paterna (València), Spain

Abstract

In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.

Keywords: Neutrino physics, Neutrino oscillations in matter

In order to qualify as an expansion parameter, the authors require that the probability recovers the exact (to all orders) expression as that parameter goes to zero. That is, x is an expansion parameter if and only if

$$\lim_{x\to 0} P_{\text{approx}}(x) = P_{\text{exact}}(x = 0)$$

Berenboim, Denton, Parke, Ternes, arXiv:1902.00517

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Bi-event Plot for DUNE

 ρ - δ_{CP} - θ_{23} degenearacy

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

DUNE Sensitivity to Reject Vacuum Solution

SKA, Soumya C., Masoom Singh, in preparation

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Precision in measuring Line-Averaged Constant Density

For δ_{CP} = - 90 degree Relative 1 σ precision in ρ_{avg} is ~ 15%

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Testing Standard Matter Profile

 $\rho_{avg} \rightarrow \alpha_{SF} \times \rho_{avg}$ Vacuum: $\alpha_{SF} = 0$ Standard Profile: $\alpha_{SF} = 1$ Super-K

Solar+KamLAND arXiv:1507.05287

arXiv:1710.09126

Standard $\alpha_{SF} = 1$ disfavored by Solar + KamLAND data due to tension between them in measuring Δm_{21}^2

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Degeneracies in $\rho_{avg} - \delta_{CP}$ Plane for DUNE

SKA, Soumya C., Masoom Singh, in preparation

S. K. Agarwalla, Prospects of Neutrino Physics, Kavli IPMU, Japan, 12th April, 2019

Degeneracies in $\rho_{avg} - \sin^2 \theta_{23}$ Plane for DUNE

SKA, Soumya C., Masoom Singh, in preparation

- Earth's Matter Effect plays an important role in present and future long-baseline neutrino oscillation experiments
- Precise understanding of mixing angles and mass-squared differences in matter is important to explain the results
- Approximate analytical expressions of oscillation probability can help to understand various parameter degeneracies
- Future goal is to have a robust test of three-flavor paradigm in presence of Earth Matter
- Future large-scale oscillation facilities should measure Earth Matter Density and explore possible degeneracies among line-averaged constant density, CP Phase, and θ₂₃

Thank you

Hierarchy – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

Favorable combinations NH, LHP (-180° to 0°) and IH, UHP (0° to 180°)

Degeneracy pattern different between T2K & NOvA

DUNE: Large Earth matter effects Clear separation between NH and IH

Agarwalla, arXiv:1401.4705 [hep-ph]

Octant – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

Unfavorable CP values for neutrino are favorable for anti-neutrino & vice-versa

Agarwalla, Prakash, Sankar, arXiv: 1301.2574

Oscillation Data and Neutrino Mixing Schemes

the coloured dots corresponding to the values of $\sin^2 \theta_{12}^{\nu}$ which characterise the GRB (violet), TBM (red), GRA (blue) and HG (green) symmetry forms.

Mass Hierarchy Discovery with T2K and NOvA

Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644 [hep-ph]

CP-Violation Discovery with T2K and NOvA

Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644 [hep-ph] Ghosh, Ghosal, Goswami, Raut, arXiv:1401.7243 [hep-ph]

Resolving Octant of θ_{23} with T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

If $\theta_{23} < 41^{\circ}$ or $\theta_{23} > 50^{\circ}$, we can resolve the octant issue at 2σ irrespective of δ_{CP} If $\theta_{23} < 39^{\circ}$ or $\theta_{23} > 52^{\circ}$, we can resolve the octant issue at 3σ irrespective of δ_{CP} **Important message: T2K must run in anti-neutrino mode in future**

Diagonalization of the Effective Hamiltonian

$$H_{a} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \delta m_{21}^{2} & 0 \\ 0 & 0 & \delta m_{31}^{2} \end{bmatrix} U^{\dagger} + \begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \tilde{U} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix} \tilde{U}^{\dagger},$$

$$\begin{aligned} H_{a}^{\prime} &= Q^{\dagger} U^{\dagger} H_{a} U Q \\ &= Q^{\dagger} \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & \delta m_{21}^{2} & 0 \\ 0 & 0 & \delta m_{31}^{2} \end{bmatrix} + U^{\dagger} \begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} U \right\} Q \\ &= \begin{bmatrix} ac_{12}^{2}c_{13}^{2} & ac_{12}s_{12}c_{13}^{2} & ac_{12}c_{13}s_{13} \\ ac_{12}s_{12}c_{13}^{2} & as_{12}^{2}c_{13}^{2} + \delta m_{21}^{2} & as_{12}c_{13}s_{13} \\ ac_{12}c_{13}s_{13} & as_{12}c_{13}s_{13} & as_{13}^{2} + \delta m_{31}^{2} \end{bmatrix}, \qquad Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\delta} \end{bmatrix}. \end{aligned}$$

Jacobi Method (1846)

- Carl Gustav Jacob Jacobi (1804-1851)
- "Über ein leichtes Verfahren die in der Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen," Crelle's Journal **30** (1846) 51-94.

1st Rotation

$$H'_{a} = \begin{bmatrix} ac_{12}^{2}c_{13}^{2} & ac_{12}s_{12}c_{13}^{2} & ac_{12}c_{13}s_{13} \\ ac_{12}s_{12}c_{13}^{2} & as_{12}^{2}c_{13}^{2} + \delta m_{21}^{2} & as_{12}c_{13}s_{13} \\ ac_{12}c_{13}s_{13} & as_{12}c_{13}s_{13} & as_{12}^{2} + \delta m_{31}^{2} \end{bmatrix}$$

$$V = \begin{bmatrix} c_{\varphi} & s_{\varphi} & 0 \\ -s_{\varphi} & c_{\varphi} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \tan 2\varphi = \frac{a\sin 2\theta_{12}}{(\delta m_{21}^{2}/c_{13}^{2}) - a\cos 2\theta_{12}}$$

$$H''_{a} = V^{\dagger}H'_{a}V = \begin{bmatrix} \lambda'_{-} & 0 & ac_{12}'c_{13}s_{13} \\ 0 & \lambda'_{+} & as_{12}'c_{13}s_{13} \\ ac_{12}'c_{13}s_{13} & as_{12}'c_{13}s_{13} \\ ac_{12}'c_{13}'c_{13} & as_{12}'c_{13}'c_{13}'c_{13} \\ ac_{12}'c_{13}'c_{13}'c_{13} \\ ac_{12}'c_{13}'c_{13}'c_{13} \\ ac_{12}'c_{13}'c$$

$$\theta_{12}' = \theta_{12} + \varphi, \qquad \lambda_{\pm}' = \frac{(\delta m_{21}^2 + ac_{13}^2) \pm \sqrt{(\delta m_{21}^2 - ac_{13}^2)^2 + 4ac_{13}^2 s_{12}^2 \delta m_{21}^2}}{2}$$

1st Rotation

$$\tan 2\theta_{12}' = \tan 2(\theta_{12} + \varphi) = \frac{(\delta m_{21}^2 / c_{13}^2) \sin 2\theta_{12}}{(\delta m_{21}^2 / c_{13}^2) \cos 2\theta_{12} - a}$$

2nd Rotation

$$\begin{split} H_{a}'' &= \begin{bmatrix} \lambda_{-}' & 0 & ac_{12}'c_{13}s_{13} \\ 0 & \lambda_{+}' & as_{12}'c_{13}s_{13} \\ ac_{12}'c_{13}s_{13} & as_{12}'c_{13}s_{13} & as_{13}^{2} + \delta m_{31}^{2} \end{bmatrix} \\ W &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\phi} & s_{\phi} \\ 0 & -s_{\phi} & c_{\phi} \end{bmatrix}, \qquad \tan 2\phi = \frac{as_{12}' \sin 2\theta_{13}}{\delta m_{31}^{2} + as_{13}^{2} - \lambda_{+}'} \approx \frac{a \sin 2\theta_{13}}{(\delta m_{31}^{2} - \delta m_{31}^{2}s_{12}^{2}) - a \cos 2\theta_{13}} \\ H_{a}''' &= W^{\dagger} H_{a}''W = \begin{bmatrix} \lambda_{-}' & -ac_{12}'c_{13}s_{13}s_{\phi} & ac_{12}'c_{13}s_{13}c_{\phi} \\ -ac_{12}'c_{13}s_{13}s_{\phi} & \lambda_{\pm}'' & 0 \\ ac_{12}'c_{13}s_{13}c_{\phi} & 0 & \lambda_{\pm}'' \end{bmatrix}, \\ \lambda_{\pm}'' &= \frac{\left[\lambda_{+}' + (\delta m_{31}^{2} + as_{13}^{2})\right] \pm \sqrt{\left[\lambda_{+}' - (\delta m_{31}^{2} + as_{13}^{2})\right]^{2} + 4a^{2}s_{12}'^{2}c_{13}^{2}s_{13}^{2}}}{2} \end{split}$$

Effective Mixing Matrix

 $\tilde{U} = UQVW$

- $= R_{23}(\theta_{23}, 0)R_{13}(\theta_{13}, \delta)R_{12}(\theta_{12}, 0)QR_{12}(\varphi, 0)R_{23}(\phi, 0)$
- $= R_{23}(\theta_{23}, 0) Q R_{13}(\theta_{13}, 0) R_{12}(\theta_{12}, 0) R_{12}(\varphi, 0) R_{23}(\phi, 0)$
- $= R_{23}(\theta_{23}, 0) Q R_{13}(\theta_{13}, 0) R_{12}(\theta_{12} + \varphi, 0) R_{23}(\phi, 0)$
- $= R_{23}(\theta_{23}, 0) Q R_{13}(\theta_{13}, 0) R_{12}(\theta_{12}', 0) R_{23}(\phi, 0)$
- $\approx R_{23}(\theta_{23},0) Q R_{13}(\theta_{13},0) R_{13}(\phi,0) R_{12}(\theta_{12}',0)$
- $= R_{23}(\theta_{23}, 0) Q R_{13}(\theta_{13} + \phi, 0) R_{12}(\theta_{12}', 0)$
- $= R_{23}(\theta_{23}, 0) Q R_{13}(\theta_{13}', 0) R_{12}(\theta_{12}', 0)$
- $= R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}', \delta) R_{12}(\theta_{12}', 0) Q$

$$\theta_{13}' = \theta_{13} + \phi$$

Effective Mixing Matrix

$R_{12}(\theta_{12}',0)R_{23}(\phi,0)$ $= \begin{bmatrix} c_{12}' & s_{12}' & 0 \\ -s_{12}' & c_{12}' & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & c_{\phi} & s_{\phi} \\ 0 & -s_{\phi} & c_{\phi} \end{vmatrix} \approx \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & c_{\phi} & s_{\phi} \\ 0 & 0 & 1 \end{vmatrix}$ $= \begin{bmatrix} c_{\phi} & 0 & s_{\phi} \\ 0 & 1 & 0 \\ -s_{\phi} & 0 & c_{\phi} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} c_{\phi} & 0 & s_{\phi} \\ 0 & 1 & 0 \\ -s_{\phi} & 0 & c_{\phi} \end{bmatrix} \begin{bmatrix} c_{12}' & s_{12}' & 0 \\ -s_{12}' & c_{12}' & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= R_{13}(\phi, 0)R_{12}(\theta_{12}', 0)$

Effective Mixing Angles

L=8770 km, $\delta=0$, Normal Hierarchy

Agarwalla, Kao, Takeuchi, JHEP 1404, 047 (2014)

Other analytical expressions suffer in accuracy due to their reliance on expansion in θ_{13} , or in simplicity when higher order terms in θ_{13} included

Our method gives accurate probability for all channels, baselines, and energies

Comparison between Constant and Varying Earth Density Profile

Agarwalla, Kao, Saha, Takeuchi, JHEP 1511 (2015) 035

Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ *oscillation probability*

$$P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) =$$
 \leftarrow Our measurement

$$\frac{16A}{\Delta m_{31}^2} \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) c_{13}^2 s_{13}^2 s_{23}^2 (1 - 2s_{13}^2) \quad \Leftarrow \text{ Matter Effects, small}$$

$$-\frac{2AL}{E}\sin\left(\frac{\Delta m_{31}^2 L}{4E}\right)c_{13}^2 s_{13}^2 s_{23}^2 (1-2s_{13}^2) \quad \Leftarrow \text{ Matter Effects, } \infty \text{ L}$$

$$-8\frac{\Delta m_{21}^2 L}{2E}\sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)\sin\delta s_{13}c_{13}^2c_{23}s_{23}c_{12}s_{12} \quad \Leftarrow \text{ CPV, Our goal!}$$

Here,
$$A = 2\sqrt{2}G_{\rm F}n_{\rm e}E = 7.6 \times 10^{-5} {\rm eV}^2 \cdot \frac{\rho}{{\rm g\,cm^{-3}}} \cdot \frac{E}{{\rm GeV}}$$

First possibility:

Choose small L (~ 200 km), so that matter effects are small

But, we want to work at oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Rightarrow \quad \mathbf{E}_{\nu} < 1 \text{ GeV}$$

Since, $\sigma \propto E_v$: we need a high flux at oscillation maximum

Off-axis beam: narrow range of neutrino energies

This is the working principle of Hyper-Kamiokande

Second possibility:

Take large L (> 1000 km)

Estimate the matter effects, and settle the issue of Mass Hierarchy

But, we still want to work at oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Rightarrow \quad \mathbf{E}_{v} > 2 \text{ GeV}$$

Unfold CP-violation from matter effects through energy dependence

On-axis beam: wide range of neutrino energies

This is the working principle of DUNE

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\text{eff}} \sin^2 \left(\frac{\Delta m_{\text{eff}}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\rm eff}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$

$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right) \quad \text{where} \quad \frac{|U_{\mu3}|^2}{|U_{\tau3}|^2} = \tan^2 \theta_{23}$$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining bean and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

 $\sin^2 2\theta_{\text{eff}} = 0.95^{+0.035}_{-0.036} (10.71 \times 10^{21} \text{ p.o.t}) \qquad \qquad \sin^2 2\bar{\theta}_{\text{eff}} = 0.97^{+0.03}_{-0.08} (3.36 \times 10^{21} \text{ p.o.t})$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of $\sin^2 2\theta_{eff} = 1 ~(\geq 0.94 ~(90\% ~C.L.))$

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

	Forero etal	Fogli etal	Gonzalez-Garcia etal
$\sin^2\theta_{23}$ (NH)	$0.427^{+0.034}_{-0.027} \oplus 0.613^{+0.022}_{-0.040}$	$0.386^{+0.024}_{-0.021}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$
3σ range	0.36 ightarrow 0.68	$0.331 \rightarrow 0.637$	0.34 ightarrow 0.67
$\sin^2\theta_{23}$ (IH)	$0.600\substack{+0.026\\-0.031}$	$0.392^{+0.039}_{-0.022}$	Relative 1σ precision of 11%
3σ range	0.37 ightarrow 0.67	$0.335 \rightarrow 0.663$	

All the three global fits indicate for non-maximal 2-3 mixing!

In v_{μ} survival probability, the dominant term is mainly sensitive to $\sin^2 2\theta_{23}$! If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} : one in lower octant (LO: $\theta_{23} < 45$ degree), other in higher octant (HO: $\theta_{23} > 45$ degree)

In other words, if $(0.5 - \sin^2 \theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

This is known as the octant ambiguity of θ₂₃ ! Fogli and Lisi, hep-ph/9604415

 v_{μ} to v_{e} oscillation data can break this degeneracy!

The preferred value would depend on the choice of the neutrino mass hierarchy!

Octant – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

 $P_{\mu e} = \beta_1 \sin^2 \theta_{23} + \beta_2 \cos(\hat{\Delta} + \delta_{CP}) + \beta_3 \cos^2 \theta_{23} \text{ (upto second order in } \alpha = \Delta_{21} / \Delta_{31} \text{ and } \sin 2\theta_{13})$

$$\beta_1 = \sin^2 2\theta_{13} \frac{\sin^2 \hat{\Delta} (1 - \hat{A})}{(1 - \hat{A})^2}, \quad \beta_3 = \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{13} \frac{\sin^2 \hat{\Delta} \hat{A}}{\hat{A}^2}$$

$$\beta_2 = \alpha \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta} (1 - \hat{A})}{1 - \hat{A}}$$
$$A(\text{eV}^2) = 0.76 \times 10^{-4} \rho \ (\text{g/cc}) E(\text{GeV}) \qquad \hat{\Delta} = \Delta_{31} L/4E, \ \hat{A} = A/\Delta_{32}$$

Cervera etal, hep-ph/0002108; Freund etal, hep-ph/0105071

We demand that: $P_{\mu e}(\text{LO}, \delta_{\text{CP}}^{\text{LO}}) = P_{\mu e}(\text{HO}, \delta_{\text{CP}}^{\text{HO}})$ Above condition gives us: $\cos(\hat{\Delta} + \delta_{\text{CP}}^{\text{LO}}) - \cos(\hat{\Delta} + \delta_{\text{CP}}^{\text{HO}}) = \frac{\beta_1 - \beta_3}{\beta_2} (\sin^2 \theta_{23}^{\text{HO}} - \sin^2 \theta_{23}^{\text{LO}})$

For L=810 km & E=2 GeV, we get for NH and neutrino: $\cos(\hat{\Delta} + \delta_{CP}^{LO}) - \cos(\hat{\Delta} + \delta_{CP}^{HO}) = 1.7$

 $P_{\mu e}(\text{LO}, -116^\circ \le \delta_{\text{CP}} \le -26^\circ)$ is degenerate with $P_{\mu e}(\text{HO}, 64^\circ \le \delta_{\text{CP}} \le 161^\circ)$ Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant – δ_{CP} degeneracy in P_{ue} as a function of neutrino energy

At 2 GeV, $P_{\mu e}(\text{LO}, -116^\circ \le \delta_{\text{CP}} \le -26^\circ)$ is degenerate with $P_{\mu e}(\text{HO}, 64^\circ \le \delta_{\text{CP}} \le 161^\circ)$

As an example, $P_{\mu e}(LO, \delta_{CP} = -90^{\circ})$ is degenerate with $P_{\mu e}(HO, \delta_{CP} \approx 66^{\circ})$

Octant – δ_{CP} *degeneracy in T2K and NOvA*

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant – δ_{CP} *degeneracy in LBNE and LBNO*

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

Bi-Event Plots for T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]; see also the talk by T. Nakadaira in this workshop

neutrino vs. anti-neutrino events for various octant-hierarchy combinations, ellipses due to varying δ_{CP} !

If $\delta_{CP} = -90^{\circ}$ (90°), the asymmetry between v and anti-v events is largest for NH (IH)

For NOvA & T2K, the ellipses for the two hierarchies overlap whereas the ellipses of LO are well separated from those of HO, the same is true for T2K as well!

Octant discovery: balanced neutrino & anti-neutrino runs needed in each experiment!

Allowed regions in test $\sin^2\theta_{23}$ - true δ_{CP} plane

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Balanced neutrino & anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Allowed regions in test $\sin^2\theta_{23}$ - true δ_{CP} plane

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Balanced neutrino & anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Resolving Octant of θ_{23} with T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

A 2σ resolution of the octant, for all combinations of neutrino parameters, becomes possible if we add the balanced neutrino and anti-neutrino runs from T2K (2.5 years v + 2.5 years anti-v) and NOvA (3 years v + 3 years of anti-v)

Important message: T2K must run in anti-neutrino mode in future!

Octant discovery in θ_{23} (true) – δ_{CP} (true) plane with T2K & NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

With Normal Hierarchy If $\theta_{23} < 41^{\circ}$ or $\theta_{23} > 50^{\circ}$, we can resolve the octant issue at 2σ irrespective δ_{CP} If $\theta_{23} < 39^{\circ}$ or $\theta_{23} > 52^{\circ}$, we can resolve the octant issue at 3σ irrespective δ_{CP}