Coherent Elastic Neutrino Nucleus Scattering: Results & Future Prospects

Matthieu VIVIER

Institut de recherche sur les lois fondamentales de l'Univers CEA Paris-Saclay, IRFU, 91191 Gif-sur-Yvette, FRANCE

IPMU

Prospects of Neutrino Physics Kavli IPMU, Kashiwa, Japan April 12th 2019

Outline

1. Experimental aspects of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

2. The COHERENT experiment and results

3. CEvNS experiment at reactors

Outline

1. Experimental aspects of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

2. The COHERENT experiment and results

3. CEvNS experiment at reactors

WORKSHOP THE MAGNIFICENT CEVNS

Some of the materials presented here based on presentations given at « THE MAGNIFICENT CEvNS » workshop

NOVEMBER 2-3, 2018

CHICAGO, IL USA

https://kicp-workshops.uchicago.edu/2018-CEvNS/index.php

CEvNS review talk - Prospects of Neutrino Physics, Kavli IPMU, Kashiwa, Japan

. Experimental aspects of CEvNS

Coherent elastic neutrino nucleus scattering

Neutral current process first predicted by Freedman (1974), which is insensitive to neutrino/antineutrino flavor

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

Coherent elastic neutrino nucleus scattering

Cross-section mostly scales with the (number of neutrons)² in the target nucleus:

$$\sigma(E_{\nu}) \approx \frac{G_{\rm F}^2}{4\pi} \left[Z \left(4 \sin^2 \theta_{\rm W} - 1 \right) + N \right]^2 E_{\nu}^2 \approx 0.42 \times 10^{-44} N^2 (E/1 \,{\rm MeV})^2 \,{\rm cm}^2$$

- No energy threshold
- The heavier the target, the larger the boost in the cross-section but the smaller the recoils...
- Cross-section x 100-1000 with respect to other v detection channels

Potential to miniaturize neutrino detectors and perform precision physics with < ton-scale detectors

CEvNS physics

Particle physics:

- New couplings to u & d quarks: non-standard flavor conserving and flavor changing interactions
- > Running of $\sin^2\theta_W$ at low momentum transfers
- Neutrino electro-magnetic properties
- > Test of the reactor antineutrino anomaly and search for sterile neutrinos
- Nuclear physics: neutron density distributions
- Interesting for:
 - \succ Direct dark matter detection \rightarrow irreducible background
 - Detection of supernovae
 - Solar neutrino physics
 - Nuclear reactor safeguarding

Need percent-level precision measurements to be competitive with other experiments

See J. Walker's talk for particle physics perspectives

Man-made neutrino sources for CEvNS

- \succ Pion-decay-at-rest (DAR) sources ightarrow multiple flavors
- \succ Pulsed sources ightarrow high bck discrimination through timing
- > Relatively « high » recoil energies ≥ keV
- Close to decoherence
- First observation of CEvNS by COHERENT in 2017

Reactor antineutrinos

- > Nuclear fission \rightarrow single (electronic) flavor
- \blacktriangleright Lower energies than accelerator \rightarrow full coherence + smaller recoils
- Lower cross-section but much higher flux
- \succ Continuous source ightarrow moderate bck discrimination through timing
- Wealth of on-going and planned experiments: CONUS, CONNIE, MINER, NU-CLEUS, RICOCHET, vGEN, etc...

CEvNS review talk - Prospects of Neutrino Physics, Kavli IPMU, Kashiwa, Japan

Detection: experimental challenges

Reach the lowest possible energies

Low energy neutrinos from accelerators

Reactor antineutrinos

Detection: experimental challenges

Understand and mitigate the backgrounds in a yet unexplored energy regime

Low energy neutrinos from accelerators

Reactor antineutrinos

- Suitable for \geq keV nuclear recoils, not
- Superheated liquids: C₃F₈, CF₃I, Xe

- Energy to nucleate a bubble \geq keV
- Suitable for \geq keV nuclear recoils, not possible for sub-keV
- Superheated liquids: C₂F₈, CF₂I, Xe

- Energy to create phonon in the µeV range
- Suitable for nuclear recoils below 0.1-1 keV
- Big expertise from DM and $00v\beta$ exp.: Ge, Si, CaWO₄, etc...

Particles

Magnetic field

. The COHERENT experiment and results

The COHERENT experiment

- \rightarrow 60Hz-pulsed neutron source with 5 × 10²⁰ POT/day
- > Neutrino flux $\approx 10^7$ cm⁻² s⁻¹ @ 20 m
- > Beam related neutrons shielded by iron & steel monolith around mercury target + 12 m of concrete
- Pragmatic approach, using well-known detector technologies and taking advantage of the pulsed structure of the v source to detect the "high" energy CEvNS-induced recoils

Target	Technology	Mass [kg]	Distance [m]	Threshold [keV _{nr}]	Data-taking start date
CsI[Na]	Scintillation	14	20	4	Sept. 2015
Ge PPC	lonization	10	22	≤1	By summer 2019
LAr	Scintillation	35	29	20	June 2017
Nal[Tl]	Scintillation	185	28	30	Summer 2016

((C)HE

The COHERENT detection

Statut of CsI[Na] detector: accumulating data, improving QF measurement & bck characterization

Source-detector baseline

Backgrounds

Negligible

25%

COHERENT status

CENNS-10 Liquid argon detector

Scintillation only

Cryocooler System

Vacuum Jacke

Detector Chambe

ater Shield Tan

b-Cu Shield

- 22 kg fiducial mass, 20 keV_{NR} threshold expected
- Extensive study of backgrounds
- Accumulating data since June 2017 (100 CEvNS events expected in Nov. 2018)

Ge PPC

- Planning for the deployment of a 10-kg array
- ≤ 1 keV_{NR} demonstrated on the first two
 2.5 kg modules
- Data taking to be started by summer 2019

Measure N² dependence of CEvNS cross-section

Nal[TI]

- 185 kg prototype operating since 2016
- Characterization of in-situ backgrounds
- ➤ Development of new PMT bases + calibration → energy threshold ≈ 30 keV_{NR}
- Working on the final detector design (ton scale) to measure CEvNS on Na

The future of COHERENT

- My bet for the near future: new results to be released soon with the LAr detector \rightarrow new CEvNS measurement on Ar
- Huge efforts on measuring the quenching factors of CsI[Na] and other detectors → dominating systematics
- Development of a ton-scale D_2O detector to monitor SNS neutrino flux \rightarrow reduce systematics
- Detector upgrades under consideration:
 - \succ LAr detector \rightarrow ton-scale
 - > Additional Ge mass in the array of Ge PPCs
 - > Nal[Tl] setup \rightarrow up to 9 tonnes
 - > Detectors with other targets, such as Ne and Xe

SNS neutrino flux monitor

Possible setups for a ton-scale Nal detector @ SNS

Cs & I neutron rms radii

$$\frac{d\sigma}{dT} = \frac{G_{\rm F}^2 (2g_{\rm L}^{\nu} Q_{\rm W})^2 F^2(q^2)}{4\pi} M \times \begin{cases} \left(1 - \frac{T}{E_{\nu}} - \frac{MT}{2E_{\nu}^2} \right) \text{ for spin } 0\\ 1 - \frac{T}{E_{\nu}} - \frac{MT}{2E_{\nu}^2} + \frac{T^2}{2E_{\nu}^2} \right) \text{ for spin } \frac{1}{2} \end{cases}$$

M. Lindner, W. Rodejohann & X-J. Xu, J. High Energ. Phys. (2017) 2017: 97

$$F(q^2) = \frac{1}{Q_W} \left[N F_n(q^2) - (1 - 4\sin^2\theta_W) Z F_p(q^2) \right]$$

- Proton rms radii are rather well measured, neutron rms radii more seldom and uncertain
- First measurement ever of neutron rms radii with neutrinos → very interesting for nuclear physics and astrophysics

$$R_n = \langle r_n^2 \rangle^{1/2} = 5.5^{+0.9}_{-1.1} \, \mathrm{fm} \, \bigg]$$

Evidence from departure from full coherence in COHERENT data ($F(q^2) \le 1$)

Weak mixing angle at low energies

• Using the neutron radius estimate from COHERENT data, APV result on ¹³³Cs can be reconciled with SM prediction:

Combining APV measurement with COHERENT data can further constrain Cs neutron rms radius:

$$R_n = \langle r_n^2 \rangle^{1/2} = 5.42 \pm 0.31 \, \text{fm}$$

$$L^{\text{st meaningful value on }^{133}\text{Cs neutron skin}} \land \Delta R_{np} = 0.62 \pm 0.31 \, \text{fm}$$

. Experiments at reactors

CEvNS experiments worldwide

The CONUS experiment

- At Brokdorf reactor (Germany): d = 17 m, P_{th} = 3.9 GW_{th}, overburden = 10 m w.e.
- Commercial p-type point HPGe (m \approx 4 kg) \rightarrow ionization detector with $E_{th} \approx 300 \text{ eV}_{ee} \approx 1-1.5 \text{ keV}_{NR}$
- Multi-layered passive shielding + active μ veto \rightarrow targeted bck. rate in setup: 10 d⁻¹ keV⁻¹ kg⁻¹
- Highly sensitive to ionization quenching, which will define final $E_{th} \rightarrow$ systematics...

CEvNS recoil spectra as function of Ge ionization quenching

Ge ionization quenching measurements

CONUS status and future

- Detector construction and commissioning late 2017/beginning 2018
 - Demonstrated radon mitigation, background stability & absence of reactor-correlated background
 - Performed calibration of detector energy response
- Hint for a 2.4σ event excess showed at Neutrino 2018
- New results presented at the Moriond 2019 conference:
 - ➤ Data from April to November 2018 → downward stat. fluctuation with respect to Neutrino 2018 result.
 - Measurement is background limited: next reactor outage in 2019 (4 weeks), long reactor OFF after 2021
- Future plans for CONUS:
 - \succ Scale up the detector mass to 100 kg \rightarrow precision physics with CEvNS

C. Buck @ Moriond 2019

Rate only analysis

Counting analysis [300-550 keV]	Counts
Reactor OFF (65 kg.day)	354 ± 19
Reactor ON (417 kg.day)	2405 ± 49
ON-OFF	133 ± 130

The CONNIE experiment

- At Angra nuclear power plant (Brazil): d = 30 m, P_{th} = 3.95 GW_{th}, surface
- Ionization detectors mutualized with the DAMIC DM direct detection experiment
 - > Mpixels Si CCDs imaging the energy deposition of particles
 - ► Energy threshold down to 30 eV_{ee} \rightarrow ≈ 300-400 eV_{NR} taking quenching into account
- Multi-layered passive shielding + active μ veto
- Performed full calibration of quenching at low energy recoils

CEvNS review talk - Prospects of Neutrino Physics, Kavli IPMU, Kashiwa, Japan

CONNIE status & future

- Engineering run in 2015 with a 1-g active mass demonstrator \rightarrow no signal
 - Study of detector response + characterization of backgrounds
- Large detector upgrade in 2016, data taking with an array of 14×6 -g CCDs \rightarrow analysis on-going, results to be published soon
- Plans for the future:
 - R&D to increase mass by a factor 200 (SkipperCCD for DM and CEvNS)

A. Aguilar-Arevalo et al.

JINST 11 P07024 (2016)

The MINER experiment

- At Nuclear Science Center, Texas A&M university, 1-MW TRIGA research reactor (movable core!) \rightarrow baseline 2-10 m \rightarrow sterile !
- Ionization and/or phonons detectors developed for SuperCDMS DM experiment:
 - > Ge & Si iZip detectors with both ionization and phonon readout: particle discrimination $E_{th} \approx 270/170 \text{ eV}_{NR}$ (Ge/Si)
 - High voltage Ge & Si detector with phonon readout only: no particle discrimination aim at $E_{th} \approx 40/80 \text{ eV}_{NR}$ (Ge/Si) using ionization signal amplification (Neganov-Luke)
- Neutron/gamma background at a level of 1000 kg⁻¹ d⁻¹ keV⁻¹(measurements + simulation)

Experimental efforts in Russia

Two CEvNS experiments being commissioned/ran at the Kalinin 3 GW_{th} nuclear reactor

vGEN HPGe array

RED-100 dual phase Xe TPC

The TEXONO experiment

- At Kuo-Sheng nuclear reactor (Taiwan): 2.7 GW_{th} baseline \approx 28 m
- Neutrino physics program started with $v_e^-e^-$ scattering in CsI[TI], NaI[TI] and HPGe detectors \rightarrow moving now to CEvNS physics

- Achieved $E_{th} \approx 300 \text{ eV}_{ee} \approx 1.5 \text{ keV}_{NR}$ with bck index of 10 kg⁻¹ d⁻¹ keV⁻¹
- Current focus is on lowering the background (target 1 kg⁻¹ d⁻¹ keV⁻¹) and energy threshold (target 100 eV_{ee})

The Ricochet experiment

- CEvNS physics program at reactors using low temperature bolometers, in an R&D stage
- "Cryocube" concept: an array of 27 cubic 32-g detectors \rightarrow 1-kg payload total mass
 - **Ge bolometers** a la EDELWEISS: ionization + heat for particle identification
- Prospecting for an experimental site close to a reactor: Chooz? MIT? RHF Grenoble?

Surface run with a 32-g Ge detector (heat only)

The CryoCube concept

RICOC

- Operated a 32-g Ge detector in above-ground conditions
- Achieved a 55 eV_{NR} threshold with a heat-only readout
- Need to achieve a > 100 bck discrimination power to be sensitive to CEvNS at reactors

D. Misiak @ Magnificent CEvNS workshop

CEvNS review talk - Prospects of Neutrino Physics, Kavli IPMU, Kashiwa, Japan

The Nu-cleus experiment **N**U-CLEUS

- Proposed reactor CEvNS experiment at the Chooz nuclear power plant (France): very near site identified between the two 4.25 GWth reactor cores with baseline < 100 m → high neutrino flux</p>
- Use of gram-scale cryogenic calorimeters achieving unprecedented low energy thresholds: aim at the lowest energies and for high precision

CEvNS review talk - Prospects of Neutrino Physics, Kavli IPMU, Kashiwa, Japan

The Nu-cleus experiment **N**U-CLEUS

- Mitigate the external backgrounds with a system of inner & outer vetos: > 100 background discrimination power (simulations)
- Phased approach: 10-g demonstrator then scaling up to 1-kg detector mass

First CEvNS detection + background comprehension & modeling in the 0.01-1 keV energy regime

Aim at a percent-level precision measurement

Nu-cleus status

- Very Near Site at Chooz characterized with background measurements in 2018
- Passive + active shieldings are currently being designed & optimized
- First nu-cleus full detector prototype being tested and validated at TUM (Munich)
- Commissioning of nu-cleus 10-g expected before the end of 2020: stay tuned!

NU-CLEUS

Summary

- CEvNS is a new rising field in neutrino physics: new probe for beyond SM physics at the very low energy frontier, applications in nuclear physics & astrophysics
- Experimental programs at accelerators and reactors probe different momentum transfers → complementary
- CEvNS experimental detection techniques closely linked to DM direct detection: same challenges → race towards low energies and backgrounds
- Low temperature bolometers offer a promising opportunity to perform precision physics with kg-scale (!) experiments

Stay tuned, it's just the beginning...

Backup

Worldwide CEvNS efforts: comparison

Experiment	v source	∨ flux [cm ⁻² s ⁻¹]	Overburden [m w.e.]	Technology E _{th} + mass
COHERENT	Spallation Neutron Source, Oakridge (USA) Baseline ≈ 20 m	107	≈ 8	Multiple targets & detectors E _{th} ≥ O(keV) – M ≈ 40 kg
CONUS	Brokdorf Power Plant (Germany), 3.9 GW _{th} Baseline = 17 m	2.2 x 10 ¹³	10 → 45	Ge ionization $E_{th} \ge 1 \text{ keV}_{NR} - M = 4 \text{ kg}$
CONNIE	Angra dos Reis Power Plant (Brazil) 3.8 GW _{th} Baseline = 30 m	7 x 10 ¹²	Surface	Si charged couple devices $E_{th} \approx 300 \text{ eV}_{NR} - M \approx 0.1 \text{ kg}$
TEXONO	Kuo-Sheng Power Plant (Taiwan), 2.7 GW _{th} Baseline = 28 m	5 x 10 ¹²	30	Ge ionization CsI[TI] scintillation E _{th} ≥1 keV _{NR} – M≈ kg scale
v-GEN	Kalinin Power Plant (Russia), 3 GW _{th} Baseline = 10 m	5 x 10 ¹³	≈ 10	Ge ionization $E_{th} \ge 1 \text{ keV}_{NR} - M = 2 \text{ kg}$
RED-100	Kalinin Power Plant (Russia), 3 GW _{th} Baseline = 19 m	1013	≈ 10	Liquid Xe TPC E _{th} ≈ O(1 keV _{NR}) – M = 100 kg
MINER	TAMU research reactor (Texas), 1 MW _{th} Baseline = 2-10 m	4 x 10 ¹¹	15	Ge/Si CDMS techno. Aim at E _{th} ≈ 40 eV _{NR} – M ≈ 10 kg
v-CLEUS	Chooz (France) 2 x 4.25 GW _{th} @ VNS Baseline = 70-100 m	2 x 10 ¹²	≤ 4	CaWO ₄ ,Al ₂ O ₃ , Li ₂ WO ₄ cryo. cal. $E_{th} \approx 20 \text{ eV}_{NR} - M = 0.01 \rightarrow 1 \text{ kg}$
RICOCHET	Chooz (France) 2 x 4.25 GW _{th} @ NS ? [400 m] MIT research reactor 6 MW _{th} ? ILL research reactor 58 MW _{th} ? [10 m]	8 x 10 ¹⁰ 10 ¹¹ 9 x 10 ¹¹	120 ≈ 10 ≈ 10	Ge/Zn cryo. cal. E _{th} ≈ O(50 eV _{NR}) - M ≈ 0.5 kg

CEvNS review talk - Prospects of Neutrino Physics, Kavli IPMU, Kashiwa, Japan