Resonant leptogenesis at TeV-scale and neutrinoless double beta decay

Takahiro Yoshida (Niigata Univ.)

Based on arXiv: 1812.11323

in collaboration with Takehiko Asaka (Niigata Univ.)

2019/04/11 @Kavli IPMU

- 1. Introduction
- 2. Model
- 3. Resonant leptogenesis by TeV-scale right-handed neutrinos
- 4. Resonant leptogenesis and neutrinoless double beta decay
- 5. Summary

Introduction

Seesaw mechanism

by right-handed neutrinos is an attractive mechanism for tiny neutrino masses

Leptogenesis

Such right-handed neutrinos can also generate the baryon asymmetry of the universe (BAU)

M.Fukugita and T.Yanagida Pays.Lett. **B174** (1986) 45

$$Y_B^{\text{OBS}} = \frac{n_B}{s} \Big|_{\text{obs}} = (0.870 \pm 0.006) \times 10^{-10}$$
 [Planck 2018]

When right-handed neutrinos are hierarchical, they must be heavier than $\mathcal{O}(10^9)~{\rm GeV}$.

S. Davidson and A. Ibarra, Phys. Lett. **B535** (2002) 25

Resonant leptogenesis

When right-handed neutrinos are quasi-degenerate, the production of the BAU is enhanced

A.Pilaftsis and T. E. J. Underwood, Null. Pays. **B 692** (2004) 303

Masses of right-handed neutrinos can be smaller than $\mathcal{O}(10^9)$ GeV

Flavor effect of leptogenesis becomes important

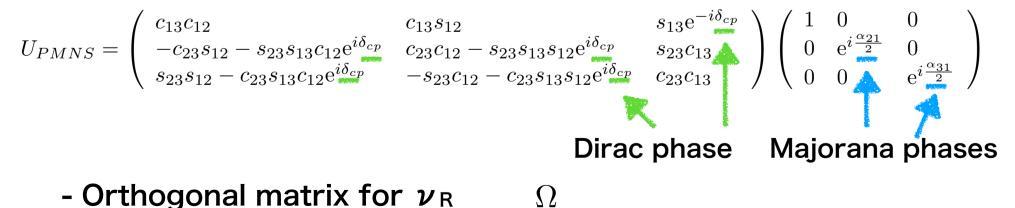
The BAU can depend on the mixing matrix of active neutrinos !

We consider resonant leptogenesis by TeV-scale right-handed neutrinos

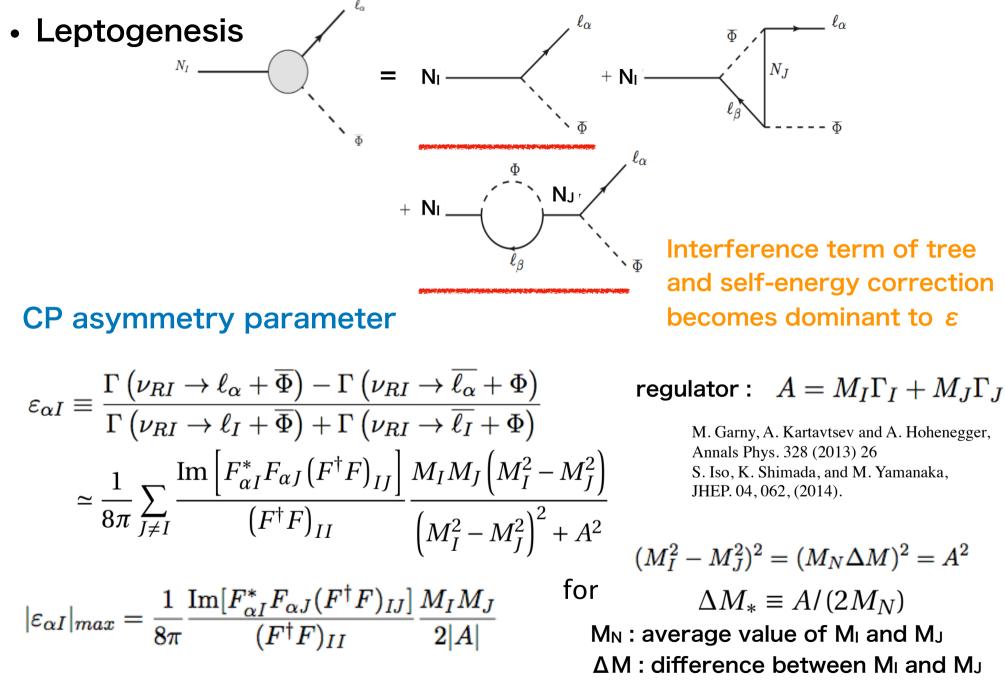
- 1) The dependence of the BAU on CP-violating phases in the PMNS matrix
- 2) The impacts on $0\nu\beta\beta$ decay from resonant leptogenesis

Model

Model


- We consider the SM with 3 right-handed neutrinos $\nu_{RI} (I = 1, 2, 3)$ $\mathcal{L} = \mathcal{L}_{SM} + i \overline{\nu_{RI}} \partial_{\mu} \gamma^{\mu} \nu_{RI} - \left(F_{\alpha I} \overline{\ell_{\alpha}} \Phi \nu_{RI} + \frac{M_{MIJ}}{2} \nu_{RI}^{c} \nu_{RJ} + h.c. \right)$
- Majorana masses $M_M = diag(M_1, M_2, M_3)$
- Yukawa couplings for the seesaw mechanism

$$F = \frac{\imath}{\langle \phi^0 \rangle} U_{PMNS} D_{\nu}^{\frac{1}{2}} \Omega M_M^{\frac{1}{2}}$$


[Casas,Ibarra '01]

- Active neutrino masses mixing

$$D_
u = diag(m_1,m_2,m_3)$$

Leptogenesis and resonant leptogenesis

Prospects of Neutrino Physics

Assumptions

- · Only two RH ν are responsible to leptogenesis and seesaw mechanism.
- · The lightest active ν is massless.
- · CP-violation occurs only in the active ν sector (ω_{IJ} is real)

$$\Omega = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega_{23} & \sin \omega_{23} \\ 0 & -\sin \omega_{23} & \cos \omega_{23} \end{pmatrix}$$
(for NH)
$$\begin{pmatrix} \cos \omega_{12} & \sin \omega_{12} & 0 \\ -\sin \omega_{12} & \cos \omega_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(for IH)

• Take $M_N = 1$ TeV and evaluate the maximal Y_B by setting the mass difference as $\Delta M = \Delta M_*$

- $\Delta M_* \equiv A/(2M_N)$
- θ_{23} θ_{13} Δm_{2}^{2} [eV²] Λm^2 [eV²] θ_{12} • Take the central values of θ_{ij} and Δm^2_{ij}

	012	UZ3	013		$\Delta m_{3\ell}$ [CV]
NH	33.62°	47.2°	8.54°	7.40×10^{-5}	$+2.494 \times 10^{-3} \ (\ell = 1)$
IH	33.62°	48. 1°	8.58°	7.40×10^{-5}	$-2.465 \times 10^{-3} \ (\ell = 2)$

[NuFIT 2018]

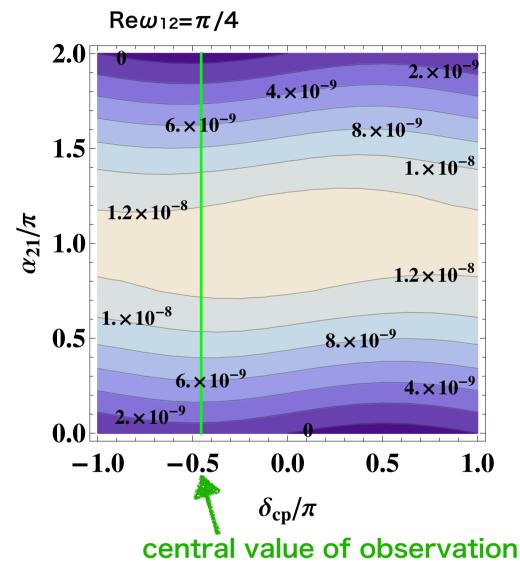
BAU depends on

Active ν : δ_{CP} , α_{21} - α_{31} : NH (α_{21} : IH) Sterile ν : Re ω_{23} : NH (Re ω_{12} : IH)

Resonant leptogenesis by TeV-scale right-handed neutrinos

Contour plot of BAU (δ_{cp} and Majorana phase)

NH case


 $\text{Re}\omega_{23}=\pi/4$

2.0 $-1. \times 10^{-1}$ 0 $-2. \times 10^{-1}$ $2. \times 10^{-6}$ 1.5 $2. \times 10^{-6}$ $2. \times 10^{-6}$ $(\alpha_{21}-\alpha_{31})/\pi$ $-1. \times 10^{-1}$ 1.0 $-2. \times 10^{-10}$ $1. \times 10^{-6}$ $1. \times 10^{-6}$ 0.5 2×10^{-6} $1. \times 10^{-6}$ 0.0 -1.0-0.5 0.0 0.5 1.0 $\delta_{\rm cp}/\pi$ central value of observation

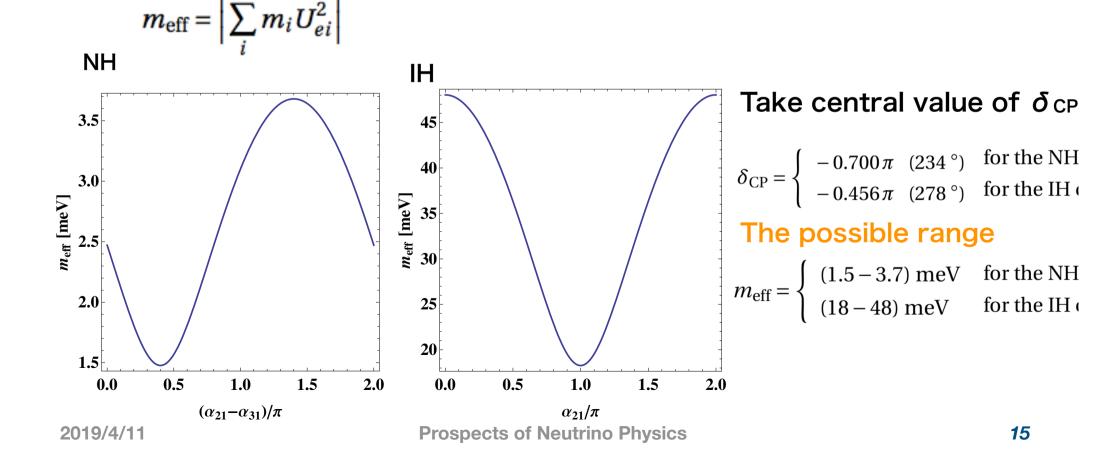
- Y_B can be large as O(10⁻⁶)
- Y_B depends on not only difference of Majorana phase(α₂₁ - α₃₁) but also Dirac phase(δ_{cp})
- Dependence on CPV phases is approximately given by

$$Y_B \propto \sin\left(\frac{\alpha_{21} - \alpha_{31}}{2} + \delta_{\rm CP}\right)$$

IH case

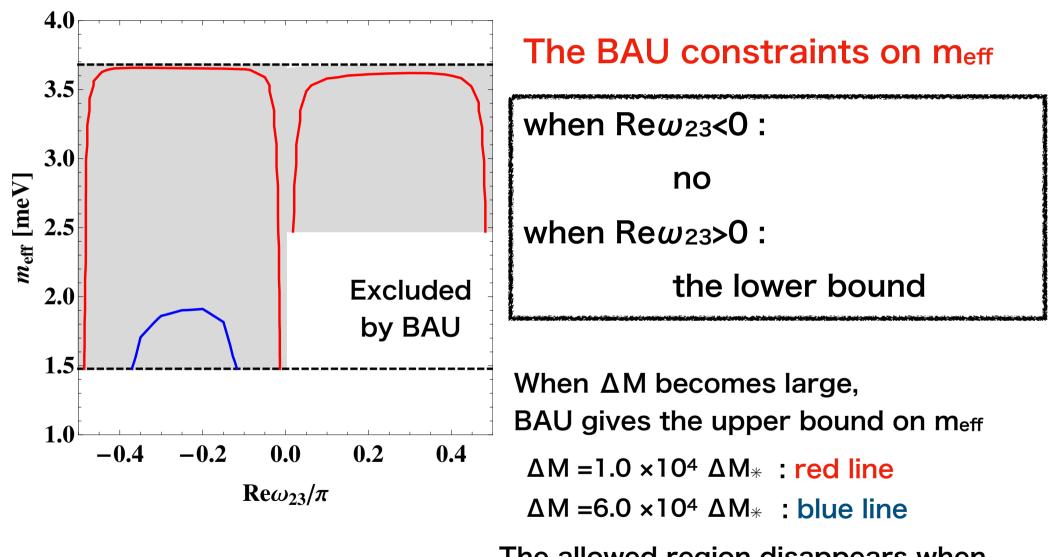
- Y_B can be large as O(10⁻⁸)
- Y_B depends on the Majorana phase significantly as the NH
- The dependence on the Dirac phase is much milder than the NH case
- Dependence on CPV phases is approximately given by

$$Y_B \propto \sin\left(\frac{\alpha_{12}}{2}\right)$$


Resonant leptogenesis and neutrinoless double beta decay

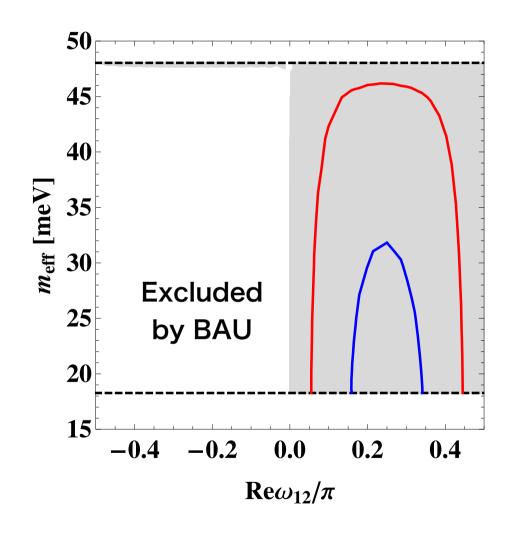
Ονββ decay

- In the seesaw mechanism neutrinos are Majorana fermions.
- The lepton number is then broken.
- If there is lepton number violation, it occurs neutrinoless double beta decay. $(A, Z) \rightarrow (A, Z+2) + 2e^{-1}$


Effective neutrino mass of $0\nu\beta\beta$ $\Gamma_{0\nu\beta\beta} \propto m_{eff}^2$

Ονββ decay

NH case



The allowed region disappears when

 $\Delta M \geq \mathcal{O}(10^5) \Delta M_*$

Ονββ decay

IH case

The BAU constraints on meff

when $\text{Re}\omega_{23}<0$:

maximal value of meff

 $(\alpha_{21} \sim 2\pi)$

when $\text{Re}\omega_{23}>0$:

no

When ΔM becomes large, BAU gives the upper bound on m_{eff} $\Delta M = 1.0 \times 10^2 \Delta M_*$: red line $\Delta M = 2.5 \times 10^2 \Delta M_*$: blue line

The allowed region disappears when

 $\Delta M \gtrsim 300 \, \Delta M_{*}$

- •We investigated resonant leptogenesis at TeV-scale.
- •We found that sufficient baryon number can be generated.
- •We demonstrated how the baryon asymmetry correlates with CP-violating parameters in the PMNS matrix.
- We showed that the region of effective neutrino mass in neutrinoless double beta decay is restricted in order to explain the observed baryon asymmetry.