CHAMP Cosmic Rays DD, Lawrence Hall, Keisuke Harigaya arXiv:1812.11116 #### Motivation - Theories Beyond the Standard Model may contain exotic stable CHArged Massive Particles, or CHAMPs, of mass m, electric charge qe and abundance $f_X \equiv \Omega_X/\Omega_{\rm DM}$ - May arise from: - Exotic color-neutral matter added to SM - Exotic heavy colored states that hadronize with SM quarks - Hidden U(1). Dark photon kinetically mixed with our photon #### Outline - Collapse of CHAMPs into the Galactic Disk - Three Key Rates In the Galactic Disk - Acceleration and Ejection from the Galaxy - Diffusion into the Disk and the Local CHAMP Flux - Direct Detection of Accelerated CHAMP Cosmic Rays $$t_{coll} = \sqrt{3\pi/32G\rho_{vir}} = \frac{1}{6\sqrt{2}} \frac{1}{H_0\sqrt{\Omega_M}} (1+z_{vir})^{-3/2}$$ $$t_{coll} = \sqrt{3\pi/32G\rho_{vir}} = \frac{1}{6\sqrt{2}} \frac{1}{H_0\sqrt{\Omega_M}} (1+z_{vir})^{-3/2}$$ $$t_{therm} = \frac{3}{8\sqrt{2\pi}} \frac{m m_{e,p}}{q^2 \alpha^2 n_{e,p} \ln \Lambda} \left(\frac{T}{m_{e,p}} + \frac{T_X}{m} \right)^{3/2}$$ $$t_{coll} = \sqrt{3\pi/32}G\rho_{vir} = \frac{1}{6\sqrt{2}} \frac{1}{H_0\sqrt{\Omega_M}} (1 + z_{vir})^{-3/2}$$ $$t_{therm} = \frac{3}{8\sqrt{2\pi}} \frac{mm_{e,p}}{q^2\alpha^2 n_{e,p} \ln \Lambda} \left(\frac{T}{m_{e,p}} + \frac{T_X}{m}\right)^{3/2}$$ $$\uparrow$$ $$T_X/m = T_{vir}/m_p$$ $$t_{coll} = \sqrt{3\pi/32G\rho_{vir}} = \frac{1}{6\sqrt{2}} \frac{1}{H_0\sqrt{\Omega_M}} (1 + z_{vir})^{-3/2}$$ $$t_{therm} = \frac{3}{8\sqrt{2\pi}} \frac{mm_{e,p}}{q^2\alpha^2 n_{e,p} \ln \Lambda} \left(\frac{T}{m_{e,p}} + \frac{T_X}{m}\right)^{3/2}$$ $$\uparrow \qquad \uparrow \qquad \uparrow \qquad T_X/m = T_{vir}/m_p$$ $$T = T_{cool} \approx 10^4 \text{ K}$$ $$t_{coll} = \sqrt{3\pi/32G\rho_{vir}} = \frac{1}{6\sqrt{2}} \frac{1}{H_0\sqrt{\Omega_M}} (1 + z_{vir})^{-3/2}$$ $$t_{therm} = \frac{3}{8\sqrt{2\pi}} \frac{mm_{e,p}}{q^2\alpha^2 n_{e,p} \ln \Lambda} \left(\frac{T}{m_{e,p}} + \frac{T_X}{m}\right)^{3/2}$$ $$\uparrow \qquad \uparrow \qquad \uparrow \qquad T_X/m = T_{vir}/m_p$$ $$T = T_{cool} \approx 10^4 \text{ K}$$ $$n \equiv n_b x_{ion} = \frac{\Omega_B}{\Omega_M} \frac{\rho_{vir}}{m_p} x_{ion}$$ $$t_{coll} = \sqrt{3\pi/32G\rho_{vir}} = \frac{1}{6\sqrt{2}} \frac{1}{H_0\sqrt{\Omega_M}} (1+z_{vir})^{-3/2}$$ $$t_{therm} = \frac{3}{8\sqrt{2\pi}} \frac{m m_{e,p}}{q^2 \alpha^2 n_{e,p} \ln \Lambda} \left(\frac{T}{m_{e,p}} + \frac{T_X}{m} \right)^{3/2}$$ $$\uparrow \qquad \uparrow \qquad \uparrow \qquad T_{X}/m = T_{vir}/m_{p}$$ $$T = T_{cool} \approx 10^{4} \text{ K}$$ $$n \equiv n_{b}x_{ion} = \frac{\Omega_{B}}{\Omega_{M}} \frac{\rho_{vir}}{m_{p}} x_{ion}$$ - Collapsing CHAMPs ruled out if $f_X = \frac{\Omega_X}{\Omega_{\rm DM}} = 1$ - If $f_X < 1$, number density of CHAMPs in MW disk about 100x greater if collapse, $m/q^2 \lesssim 10^5 \ {\rm GeV}$ Three key rates determine fate of CHAMPs residing in the disk: Three key rates determine fate of CHAMPs residing in the disk: (1) Thermalization rate in Interstellar Medium (ISM) Three key rates determine fate of CHAMPs residing in the disk: (1) Thermalization rate in Interstellar Medium (ISM) Decelerate X to thermal speeds Three key rates determine fate of CHAMPs residing in the disk: (1) Thermalization rate in Interstellar Medium (ISM) Decelerate X to thermal speeds (2) SN Shock encounter rate Three key rates determine fate of CHAMPs residing in the disk: (1) Thermalization rate in Interstellar Medium (ISM) Decelerate X to thermal speeds (2) SN Shock encounter rate Accelerate X to shock speeds and beyond Three key rates determine fate of CHAMPs residing in the disk: (1) Thermalization rate in Interstellar Medium (ISM) Decelerate X to thermal speeds (2) SN Shock encounter rate Accelerate X to shock speeds and beyond (3) Escape rate from the disk Three key rates determine fate of CHAMPs residing in the disk: (1) Thermalization rate in Interstellar Medium (ISM) Decelerate X to thermal speeds (2) SN Shock encounter rate Accelerate X to shock speeds and beyond (3) Escape rate from the disk \longrightarrow ISM magnetic field confines X to disk #### Rate 1: Thermalization in ISM | ISM Phase | $n_{tot} (\mathrm{cm}^{-3})$ | $n_e (\mathrm{cm}^{-3})$ | T(K) | Fractional Volume f | |--------------|-------------------------------|---------------------------|-----------------|-----------------------| | Hot Ionized | 3×10^{-3} | 3×10^{-3} | 5×10^5 | 0.5 | | Warm Ionized | 0.3 | 0.2 | 8×10^3 | 0.15 | | Warm Neutral | 0.5 | 0.05 | 8×10^3 | 0.3 | | Cold Neutral | 50 | < 0.1 | 80 | 0.04 | | Molecular | > 300 | < 0.1 | 10 | 0.01 | #### Rate 1: Thermalization in ISM | ISM Phase | $n_{tot} \; (\mathrm{cm}^{-3})$ | $n_e (\mathrm{cm}^{-3})$ | T(K) | Fractional Volume f | |--------------|---------------------------------|---------------------------|-----------------|-----------------------| | Hot Ionized | 3×10^{-3} | 3×10^{-3} | 5×10^5 | 0.5 | | Warm Ionized | 0.3 | 0.2 | 8×10^3 | 0.15 | | Warm Neutral | 0.5 | 0.05 | 8×10^3 | 0.3 | | Cold Neutral | 50 | < 0.1 | 80 | 0.04 | | Molecular | > 300 | < 0.1 | 10 | 0.01 | Thermalization dominated by Warm Ionized Medium $$\Gamma_{therm} = \sum_{\text{phase } i} \frac{f_i}{t_{therm,i}} \approx \frac{f_{WIM}}{t_{therm,WIM}}$$ $$\approx \left(4 \times 10^7 \text{ yr}\right)^{-1} \left(\frac{m/q^2}{10^6 \text{ GeV}}\right)^{-1} \left(\frac{v}{10^3 \text{ km/s}}\right)^{-3} \left(\frac{n_e}{0.2 \text{ cm}^3}\right) \left(\frac{f_{WIM}}{0.15}\right)$$ #### Rate 2: Shock Encounter - Rate at which CHAMPs are accelerated is tied to the rate of encountering strong shocks - Expected rate to encounter a SN shock of speed $\,v_s$ $$\Gamma_{Enc}(v_s) = \frac{V_{SN}(v_s)}{V_{Disk}} \Gamma_{SN}$$ SN Shockwave Evolution $$\begin{array}{c} 100 \\$$ $$\Gamma_{\rm SH} = (2.5 \times 10^7 \text{ yr})^{-1} \left(\frac{R_{max}}{40 \text{ pc}}\right)^3 \left(\frac{R_{disk}}{15 \text{ kpc}}\right)^{-2} \left(\frac{H_{disk}}{300 \text{ pc}}\right)^{-1} \left(\frac{\Gamma_{SN}}{.03 \text{ yr}^{-1}}\right)$$ • CHAMPs accelerated by SN shocks by reflecting off moving magnetic fields near shock $\Delta p \approx p \times (v_s/v)$ - CHAMPs accelerated by SN shocks by reflecting off moving magnetic fields near shock $\Delta p \approx p \times (v_s/v)$ - If X slower than shock \longrightarrow accelerated to shock speed - If X faster than shock \longrightarrow repeatedly reflect off shock - CHAMPs accelerated by SN shocks by reflecting off moving magnetic fields near shock $\Delta p \approx p \times (v_s/v)$ - If X slower than shock \longrightarrow accelerated to shock speed - If X faster than shock \longrightarrow repeatedly reflect off shock Exponential momentum gain, first-order Fermi acceleration Probability $$(p > p_0 \mid p_0) = \frac{p_0}{p} \longrightarrow f = \frac{dn}{dp} = n_0 \frac{p_0}{p^2}$$ Easier to Fermi-accelerate CHAMPs since large m or small q allow X to remain supra-thermal between encountering shocks - CHAMPs accelerated by SN shocks by reflecting off moving magnetic fields near shock $\Delta p \approx p \times (v_s/v)$ - If X slower than shock \longrightarrow accelerated to shock speed - If X faster than shock \longrightarrow repeatedly reflect off shock Exponential momentum gain, first-order Fermi acceleration Probability $$(p > p_0 \mid p_0) = \frac{p_0}{p} \longrightarrow f = \frac{dn}{dp} = n_0 \frac{p_0}{p^2}$$ - Easier to Fermi-accelerate CHAMPs since large m or small q allow X to remain supra-thermal between encountering shocks - Max momentum set by $t_{\rm acc} = \frac{8}{3} \frac{r_{gyro}v}{v_s^2} \le t_{\rm remnant} = \frac{2}{5} \frac{R}{v_s}$ $$\left(\frac{p}{q}\right)_{max} \approx \frac{5.5 \times 10^4 \text{ GeV}}{\beta} \left(\frac{B}{15 \mu\text{G}}\right) \left(\frac{R_{max}}{40 \text{ pc}}\right) \left(\frac{v_s}{200 \text{ km/s}}\right)$$ • Max momentum set by $t_{\rm acc} = \frac{8}{3} \frac{r_{gyro}v}{v_s^2} \le t_{\rm remnant} = \frac{2}{5} \frac{R}{v_s}$ CHAMPs diffuse through the ISM by resonantly scattering off magnetic irregularities on the scale $$k=\frac{2\pi}{r_{gyro}} \qquad r_{gyro}=\frac{\gamma m v}{qB} \qquad \longrightarrow \qquad \lambda \propto R^a \qquad \qquad R\equiv r_{gyro}B=p/q$$ Mean free path Rigidity CHAMPs diffuse through the ISM by resonantly scattering off magnetic irregularities on the scale $$k=\frac{2\pi}{r_{gyro}} \qquad r_{gyro}=\frac{\gamma m v}{qB} \qquad \longrightarrow \qquad \lambda \propto R^a \qquad \qquad R\equiv r_{gyro}B=p/q$$ Mean free path Rigidity • Observed steady-state cosmic ray secondary to primary spallation ratios at various rigidities implies $a\approx .5$ and leads to a mean free path CHAMPs diffuse through the ISM by resonantly scattering off magnetic irregularities on the scale $$k=\frac{2\pi}{r_{gyro}} \qquad r_{gyro}=\frac{\gamma mv}{qB} \qquad \longrightarrow \qquad \lambda \propto R^a \qquad R \equiv r_{gyro}B = p/q$$ Mean free path Rigidity • Observed steady-state cosmic ray secondary to primary spallation ratios at various rigidities implies $a\approx .5$ and leads to a mean free path $$\lambda \equiv \frac{3D}{v} \simeq 10 \text{ pc} \left(\frac{v}{10^3 \text{ km/s}}\right)^{1/2} \left(\frac{m/q}{10^6 \text{ GeV}}\right)^{1/2} \gamma^{1/2}$$ CHAMPs diffuse through the ISM by resonantly scattering off magnetic irregularities on the scale $$k=\frac{2\pi}{r_{gyro}} \qquad r_{gyro}=\frac{\gamma m v}{qB} \qquad \longrightarrow \qquad \lambda \propto R^a \qquad \qquad R\equiv r_{gyro}B=p/q$$ Mean free path Rigidity • Observed steady-state cosmic ray secondary to primary spallation ratios at various rigidities implies $a \approx .5$ and leads to a mean free path $$\lambda \equiv \frac{3D}{v} \simeq 10 \text{ pc} \left(\frac{v}{10^3 \text{ km/s}}\right)^{1/2} \left(\frac{m/q}{10^6 \text{ GeV}}\right)^{1/2} \gamma^{1/2}$$ $$\Gamma_{esc} = \frac{2D}{H_{disk}^2} \approx (2 \times 10^7 \text{ yr})^{-1} \left(\frac{v}{10^3 \text{ km/s}}\right)^{3/2} \left(\frac{m/q}{10^6 \text{ GeV}}\right)^{1/2} \left(\frac{H_{disk}}{300 \text{ pc}}\right)^{-2} \gamma^{1/2} \theta \left(v - v_{esc}\right)$$ #### Rate Hierarchy Case 1 $$\frac{dn}{d\ln v} \propto R_{SN}^3 \propto v^{-2}$$ # Acceleration and Ejection # Acceleration and Ejection • To be Fermi-accelerated, CHAMPs must encounter critical shock $v_s = v_1$ $$\Gamma_A = \Gamma_{enc}(v_s = v_1)$$ $$f_{remain} \approx \exp\left(-\Gamma_A \times 10^{10} \text{ yr}\right)$$ #### Diffusion into Disk and Local Flux $$\frac{\partial n(t,z)}{\partial t} = D \frac{\partial^2 n(t,z)}{\partial z^2} - \Gamma_A \theta(z + H_{\text{disk}}/2) \theta(H_{\text{disk}}/2 - z) n(t,z)$$ $$\frac{dn_A(t)}{dt} = \Gamma_A n(t,0) - \Gamma_{esc} n_A(t), \quad n_A(0) = 0$$ Don't collapse: $$n(0,z) = n(t, \pm H_c/2) = f_X n_0,$$ $n_0 \approx \frac{0.3}{m} \text{ GeV/cm}^3$ Collapse: $$n(0,z) = 100 \, f_X n_0 \, \theta(z + H_{\rm disk}/2) \, \theta(H_{\rm disk}/2 - z), \quad n(t, \pm H_c/2) \lesssim n_0$$ - Fermi-accelerated CHAMP background moving faster than typically assumed Dark Matter speeds $\sim 220~\rm km/s$ - Leads to new signals and regions of (m,q) parameter space constrained since: - Fermi-accelerated CHAMP background moving faster than typically assumed Dark Matter speeds $\sim 220~\rm km/s$ - Leads to new signals and regions of (m,q) parameter space constrained since: - (1) CHAMPs can easily reach underground detectors - Fermi-accelerated CHAMP background moving faster than typically assumed Dark Matter speeds $\sim 220~\rm km/s$ - Leads to new signals and regions of (m,q) parameter space constrained since: - (1) CHAMPs can easily reach underground detectors - (2) CHAMPs below $1~{\rm GeV}$ can impart nuclear recoils above the $\sim {\rm keV}$ threshold of experiments like XENON1T - Fermi-accelerated CHAMP background moving faster than typically assumed Dark Matter speeds $\sim 220~\rm km/s$ - Leads to new signals and regions of (m,q) parameter space constrained since: - (1) CHAMPs can easily reach underground detectors - (2) CHAMPs below $1~{\rm GeV}$ can impart nuclear recoils above the $\sim {\rm keV}$ threshold of experiments like XENON1T - (3) CHAMPs are strongly ionizing and produce dE/dx ionization losses in detectors like MAJORANA - Fermi-accelerated CHAMP background moving faster than typically assumed Dark Matter speeds $\sim 220~\rm km/s$ - Leads to new signals and regions of (m,q) parameter space constrained since: - (1) CHAMPs can easily reach underground detectors - (2) CHAMPs below $1~{\rm GeV}$ can impart nuclear recoils above the $\sim {\rm keV}$ threshold of experiments like XENON1T - (3) CHAMPs are strongly ionizing and produce dE/dx ionization losses in detectors like MAJORANA - (4) Relativistic CHAMPs emit or induce Cherenkov light when traveling through water detectors like Super Kamiokande ## Barriers to Detection CHAMPs must travel 'upstream' through solar wind $$J(r) = n(r)v_w(r) - D\frac{\partial n(r)}{\partial r} \qquad \longrightarrow \qquad n(r) = n_0(r_0) \exp\left(-\int_r^{r_0} \frac{v_w(r)dr}{\frac{1}{3}\lambda(R)v}\right)$$ ## Barriers to Detection CHAMPs must travel 'upstream' through solar wind $$J(r) = n(r)v_w(r) - D\frac{\partial n(r)}{\partial r} \qquad \longrightarrow \qquad n(r) = n_0(r_0) \exp\left(-\int_r^{r_0} \frac{v_w(r)dr}{\frac{1}{3}\lambda(R)v}\right)$$ • CHAMPs must travel through Earth's crust $-\left\langle \frac{dE}{dx} \right\rangle = 0.15 \text{ MeV cm}^2/\text{g} \left(\frac{q}{\beta} \right)^2 \left(\frac{Z/A}{1/2} \right) \ln \left(\frac{2m_e \gamma^2 \beta^2}{10Z \text{ eV}} \right)$ #### Nuclear Recoil at Underground Detectors $$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 Z^2 q^2}{\mu^2 v^4 (1 - \cos \theta)^2}$$ $$\Gamma_{Sig} = N_N \int dv \, \sigma(E_R > E_{R,th}) v \, \frac{dn_A}{dv} \simeq N_N \left[\sigma(E_R > E_{R,th}) v \frac{dn_A}{d \ln v} \right]_{v=v_-}$$ < 15 events/1 ton-year #### Induced/Emitted Cherenkov Light - Relativistic CHAMPs passing through water may deposit enough energy to accelerate electrons to speeds > 0.75c, which emit detectable Cherenkov light in Super-K - Relativistic CHAMPs passing through Antarctic ice may produce more Cherenkov photons than IceCube's dark count #### Ionization Particle Searches - As q grows, CHAMPs yield significant ionization - Experiments typically scintillation detectors. with constraints in form of upper bound on CHAMP flux $\Phi(p>p_0)=\int_{p_0}^{p_{max}}\frac{dn_A}{dp}v\,dp$ #### Ionization Particle Searches - As q grows, CHAMPs yield significant ionization - Experiments are typically scintillation detectors with constraints in form of upper bound on CHAMP flux $\Phi(p>p_0)=\int_{p_0}^{p_{max}}\frac{dn_A}{dp}v\,dp$ ## CHAMP Dark Matter # Summary - For $m \gtrsim 10^{10} q~{\rm GeV}$, CHAMPS unaffected by thermalization, Fermi acceleration and diffusion - For $m \lesssim 10^{10} q~{\rm GeV}$, there is a large flux of accelerated CHAMPs in the disk today - Nuclear/electron recoil experiments, Cherenkov and ionization detectors place stringent bounds on $f_{\it X}$ - X excluded as dark matter for q above 10^{-9} for any m