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Dark Matter Direct Detection Experiment

The Earth is immersed in a dark matter halo (ρDM ~ 0.3-0.6  GeV/cm3)  
Dark Matter in such a halo has a velocity dispersion (<vDM>~220km/s) 
The Sun moves at a speed of 220 km/s around the Galaxy.  
(The Earth moves around the Sun with a speed of 30 km/s)

Dark matter scatters a nucleus of the detector  
material and deposits recoil energy.

Underground

detector

DM
DM

vDM The recoil energy is detected through ionization, 
scintillation, and the production of heat in the 
detectors. recoil energy



Why Nucleus Scattering ?

Weakly Interacting Massive Particle (WIMP)

Thermal freeze out temperature >> O(1) MeV

→ MDM >> O(10) MeV

Typical Momentum Transfer 

q  =  2 μ vDM sin2 θCM/2

μ  = mtarget MDM / (mtarget + MDM)

Free Electron Target at rest (unrealistic) (me << MDM) 

μ  ~ me q  ~ keV Erecoil  ~ O(1) eV

Too low to be detected… (scintillator threshold ~ keV)

Nucleus Target ?  mtarget = O(10-100)GeV

q  < O(100) MeV Erecoil  < O(100) keV

The nuclear recoil is more detectable !

ER (Lab) = q2/2mtarget

CM :

pI = μ vDM

θCM

Atomic Electron kinetic energy < O(1) keV
Still low energy deposit…  



How is the Nucleus Scattering detected ?
e.g. Liquid Xenon (LXe) Detector

Xe

Xe

Xe

Recoiled Xe lose its energy  
via (in)elastic scattering with 
other Xe.

DM

Inelastic scattering leads to 
excitation/ionization of Xe’s.

The excited/ionized Xe’s 
form excited molecular 
(excimer). 

Xe
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Xe

Xe

Excimer eventually decays by emitting a photon with a 
characteristic wave length (~ 175nm ) 
                                              = scintillation photon !

γ

Scintillation photons & emitted electrons @ ionizations
Nuclear recoil is detected by looking for 

(Typical Time Scale ~ O(1)ns - O(10)ns )

Xe

Xe

DM

# scintillation photon ∝ Recoil Energy



What is missing in this analysis?

In conventional analysis, the recoiled nucleus is treated as a 
recoiled neutral atom. 

(a) (b)
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In reality, it takes some “time“ for the electrons to catch up…

v
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The process to catch up causes electron excitations/ionizations (of inner elecgtrons) !

→ Migdal Effect ! [1939, Migdal]

Xe

Xe

Xe

DM DM

e.g. Liquid Xenon (LXe) Detector

[ ’05 Vergados&Ejiri, ’07 Bernabei et al.  Application to DM detection ]



Migdal’s approach
(a) (b)
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Just after the nuclear recoil, we assume only the nucleus is moving 
while the electron cloud is left behind.
(The electron clouds are no more in the energy eigenstates.)

Take the rest frame of the nucleus by the Galilei transformation. 

(a) (b)
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In this frame, the wave function of the electron cloud looks like :
approach, the state of the electron cloud just after a nuclear recoil is approximated by

|�0
eci = e�ime

P
i v·x̂i |�eci , (1)

in the rest frame of the nucleus. Here me is the electron mass, x̂i the position operator of the

i-th electron, v the nucleus velocity after the recoil, and |�eci the state before the nuclear

recoil. The probability of the ionizations/excitations is then given by,

P = |h�⇤
ec|�

0
eci|

2 , (2)

where |�⇤
eci denotes either the ionized or excited energy eigenstate of the electron cloud.

In the conventional estimation of the Migdal e↵ect, the final state ionizations/excitations

are treated separately from the nuclear recoil. Accordingly, the energy-momentum conser-

vation is made somewhat obscure. In this paper, we reformulate the Migdal e↵ect so that

the “atomic recoil” cross section is obtained coherently. In our reformulation, the energy-

momentum conservation is manifest while the final state ionizations/excitations are treated

properly. We also provide numerical estimates of the ionization and the excitation proba-

bilities for isolated atoms of Ar, Xe, Ge, Na, and I, where we use the single electron wave

functions obtained by the Dirac-Hartree-Fock method.

The Migdal e↵ect should be distinguished from the ionizations and the excitations in

scintillation processes, for example. The Migdal e↵ect takes place even for an isolated atom,

while the latter occur due to the interaction between atoms in the detectors. Furthermore,

the Migdal e↵ect can lead to ionizations/excitations from the inner orbitals, which are

not considered in scintillation processes. As we will see, the ionizations/excitations from

the inner orbitals lead to extra electronic energy injections in a few keV range, which can

enhance the detectability of a rather light dark matter in the GeV mass range even through

the nuclear scattering.

The organization of the paper is as follows. In Sec. II, we construct approximate energy

eigenstates of an atomic state by paying particular attention to the total atomic motion. In

Sec.III, we reformulate the atomic recoil cross section with the Migdal e↵ect by taking the

energy eigenstates in Sec. II as asymptotic states. In Sec. IV, we calculate the Migdal e↵ect

with single electron wave functions. In Sec.V, we estimate the probabilities of the ionizations

and the excitations at a nuclear recoil for isolated atoms. In Sec.VI, we discuss implications

for the dark matter direct detections. The final section is devoted to our conclusions and
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Electron wave function in the initial 
state e.g. the ground state.
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The probability of the excitation/ionization is given by



Disadvantage of the Migdal Approach

The nuclear scattering and the electron excitations/ionizations 
are treated separately.

Energy Momentum Conservation is not clear… 

Where does the electron get energy & momentum?

→ It is important to reformulate the Migdal effects in a more coherent way !

It is not clear whether the electron excitation energy can be larger 
than the recoil energy or not.



Reformulation of the Migdal Effect

Migdal’s approach

Initial state of the DM scattering :  (DM plane wave) x (Nucleus plane wave)
Final state of the DM scattering :    (DM plane wave) x (Nucleus plane wave)
Migdal Effect = Final state effects 

New approach

Initial state of the DM scattering :  (DM plane wave) x (Atomic plane wave)

Final state of the DM scattering :    (DM plane wave) x (Atomic plane wave)

The Migdal Effect is automatically taken into account !

The Migdal Effect is treated separately from the nuclear scattering

How do we construct the plane wave function of the atoms?



Construction of the atomic plane wave

discussion. In the appendixD, we also briefly discuss the Migdal e↵ect in the neutrino-

nucleus coherent scattering.

II. ENERGY EIGENSTATES OF ATOMIC SYSTEM

As we will discuss in the next section, the plane wave of a whole atomic system plays an

important role in treating the nuclear recoil and the Migdal e↵ect coherently. To construct

the plane wave of the atom, we first discuss the energy eigenstates of an atomic system

consisting of a nucleus and Ne electrons. In the following, we consider an isolated neutral

atomic system. It should be noted that the electrons are not necessarily bounded by the

nucleus, and hence, the energy eigenstates we construct here include the ionic states with

free electrons.

Since we are interested in nuclear recoil energy smaller than the keV range, the Hamil-

tonian of the system is well approximated by the non-relativistic one,

ĤA '
p̂2
N

2mN
+ Ĥec(x̂N) =

p̂2
N

2mN
+

NeX

i

p̂2
i

2me
+ V (x̂i � x̂N) . (3)

Here p̂N and x̂N denote the momentum and the position operators of the nucleus with a

mass mN , while p̂i and x̂i are those of the i-th electron. The Hamiltonian of the electron

cloud, Ĥec, depends on the position operator of the nucleus, x̂N , through the interaction

potential V̂ (x̂i � x̂N) (i = 1 · · ·Ne). The interaction potential also includes the interactions

between the electrons. In the following analysis, we take the coordinate representation where

the energy eigenequation is reduced to

✓
p̂2
N

2mN
+ Ĥec(xN)

◆
 E(xN , {x}) = EA E(xN , {x}) . (4)

The positions (including spinor indices) of the Ne electrons are represented by {x} collec-

tively.

A. Energy Eigenstates of an Atom at Rest

To solve Eq.(4), let us first consider the eigenstates of Ĥec(xN) for a given xN ,

Ĥec(xN)�ec({x}|xN) = Eec(xN)�ec({x}|xN) . (5)
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Hamiltonian of an isolated atomic system (neutral atom)
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Energy eigenstate of the total atomic system (EA : non-relativistic energy)

The Born-Oppenheimer approximation of the atom at rest.

Since the system is invariant under the spatial translations, the energy eigenvalues do not

depend on xN and the wave functions depend on xN only through {xi � xN};

Eec(xN) = Eec , (6)

�Eec({x}|xN) = �Eec({x� xN}) . (7)

The eigenstates, �Eec({x� xN}), provide a complete orthogonal basis of the electron cloud

for a given xN .

Now let us show that �Eec corresponds to an energy eigenfunction of the whole atomic

system at rest,

 (rest)
EA

(xN , {x}) ⌘ �Eec({x� xN}) . (8)

By substituting  (rest)
EA

to Eq. (4), the energy eigenequation leads to,

p̂2
N

2mN
 (rest)

EA
(xN , {x}) = (EA � Eec) 

(rest)
EA

(xN , {x}) . (9)

Since �Eec depends on xN only through {x�xN}, the momentum of the nucleus is balanced

with the electron momentums,

p̂N 
(rest)
EA

(xN , {x}) = �

NeX

i

p̂i 
(rest)
EA

(xN , {x}) . (10)

Thus, the left-hand side of Eq. (9) is expected to be highly suppressed, i.e.,
⌧

p̂2
N

2mN

�
⇠

me

mN
⇥ Eec , (11)

for  (rest)
EA

. Here we used the fact that the expectation values of the electron kinetic energy

is roughly given by,
⌧

p̂2
i

2me

�
⇠

Eec

Ne
. (12)

Therefore, we find that  (rest)
EA

provides an approximate energy eigenstate with EA ' Eec;

ĤA 
(rest)
EA

(xN , {x}) ' Eec 
(rest)
EA

(xN , {x}) . (13)

This is nothing but the Born-Oppenheimer approximation.

It should be also noted that the state  (rest)
EA

represents the atomic system at rest since

the total momentum of the nucleus and the electron cloud is vanishing,
 
p̂N +

NeX

i=1

p̂i

!
 (rest)

EA
(xN , {x}) = 0 . (14)
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Born-Oppenheimer approximation !

EA = Eec

Electron Cloud Energy Eigenstate for a “fixed” xN . 

Electron could system does not depend on where the Nucleus is.



Construction of the atomic plane wave
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Is the Born-Oppenheimer approximation OK ?

The eigenstates, �Eec({x� xN}), provide a complete orthogonal basis of the electron cloud

for a given xN .
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It should be noted that this is nothing but the Born-Oppenheimer approximation.3

3 In passing, Eq. (10) means that the state  (rest)
EA

is also an eigenstate of the total momentum of the atom,

i.e.
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Kinetic energy of the nucleus is negligible!
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mN
⇥ Eec , (11)

for  (rest)
EA

. Here, we used the fact that the expectation value of the electron kinetic energy

is roughly given by

⌧
p̂2
i

2me

�
⇠

Eec

Ne
. (12)

Therefore, we find that  (rest)
EA

provides an approximate energy eigenstate of the whole atomic

system with EA ' Eec;

ĤA 
(rest)
EA

(xN , {x}) ' Eec 
(rest)
EA

(xN , {x}) . (13)

It should be noted that this is nothing but the Born-Oppenheimer approximation.3

3 In passing, Eq. (10) means that the state  (rest)
EA

is also an eigenstate of the total momentum of the atom,

i.e.

 
p̂N +

NeX

i=1

p̂i

!
 (rest)

EA
(xN , {x}) = 0 . (14)

5

Total Energy Eigenstate in the Born-Oppenheimer approximation of  
the total Atom at rest

p̂NΦEc
ptx ´ xNuq “ ´

ÿ

i

p̂iΦEc
ptx ´ xNuq
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(                                                 )

The EC wave function can be obtained by e.g. Hartree-Fock approximation !



Construction of the atomic plane wave

(a) (b)

N N

1
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N

2mN
 (rest)

EA
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ĤA 
(rest)
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(xN , {x}) ' Eec 
(rest)
EA

(xN , {x}) . (13)

This is nothing but the Born-Oppenheimer approximation.

It should be also noted that the state  (rest)
EA

represents the atomic system at rest since

the total momentum of the nucleus and the electron cloud is vanishing,
 
p̂N +

NeX

i=1

p̂i

!
 (rest)

EA
(xN , {x}) = 0 . (14)

5

The electrons are not necessarily bounded by the nucleus coulomb force !

All the electrons are bounded by the 
Coulomb force of the nucleus.

Not all the electrons are bounded by 
the Coulomb force of the nucleus 
= Ionized atom



The energy eigenstate of the moving atom with a velocity v.

Atom wave function 
at rest

B. Energy Eigenstates of a Moving Atom

Once we construct the energy eigenstates of an atomic system at rest, the energy eigen-

states of an atomic system moving with a velocity v can be immediately obtained by the

Galilei transformation,

 EA(xN , {x}) ' U(v) (rest)
EA

(xN , {x}) . (15)

Here the unitary operator is given by,

U(v) = exp

"
imNv · xN + ime

NeX

i=1

v · xi

#
. (16)

Under the Galilei transformation, the momentum operators are shifted by

U(v)†p̂NU(v) = p̂N +mNv , (17)

U(v)†p̂iU(v) = p̂i +mev , (18)

and hence, the Hamiltonian is transformed into

U(v)†ĤAU(v) = ĤA + v ·

 
p̂N +

NeX

i=1

p̂i

!
+

1

2
mAv

2 . (19)

Here we define the nominal mass of the atom by

mA = mN +Neme . (20)

By using Eqs. (13), (14), and (19), we find that the boosted wave function  EA satisfies,

ĤA EA(xN , {x}) '

✓
Eec +

1

2
mAv

2

◆
 EA(xN , {x}) . (21)

Therefore, the boosted wave function  EA provides the approximate energy eigenstate with

EA ' Eec +
1

2
mAv

2 . (22)

In summary, the eigenstate of the atomic system is approximated by

 EA(xN , {x}) ' eipN ·xN ei
PNe

i=1 qe·xi (rest)
EA

(xN , {x}) , (23)

pN = mNv , (24)

qe = mev , (25)
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p̂N +

NeX

i=1

p̂i

!
+

1

2
mAv

2 . (19)

Here we define the nominal mass of the atom by

mA = mN +Neme . (20)

By using Eqs. (13), (14), and (19), we find that the boosted wave function  EA satisfies,
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p̂N +

NeX

i=1

p̂i

!
+

1

2
mAv

2 . (19)

Here we define the nominal mass of the atom by

mA = mN +Neme . (20)

By using Eqs. (13), (14), and (19), we find that the boosted wave function  EA satisfies,
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(Galilei Transformation of the Rest Frame Solution)

(ΨEA is not the eigenstates of the momentums of the nucleus and the electrons 
separately !)

ΨEA is the eigenstate of the energy and the total atomic momentum !

with the eigenenergy labeled by the energy of the electron cloud and the velocity of the

atom,

EA ' Eec +
1

2
mAv

2 . (26)

It should be noted that  EA(xN , {x}) is not the eigenstate of the nucleus momentum p̂N ,

but the eigenstate of the momentum of the whole atom;

 
p̂N +

NeX

i

p̂i

!
 EA(xN , {x}) = (mAv)⇥ EA(xN , {x}) . (27)

Thus, pN in Eq. (23) parametrizes not the nucleus momentum but the total momentum

pA = mAv, although they are very close to each other in practice. It should be also noted

that the energy eigenstate in Eq. (23) is no more in the realm of the Born-Oppenheimer

approximation for v 6= 0 since they are not the eigenfunctions of Ĥec for a given xN .

III. MIGDAL EFFECT : FROM NUCLEAR RECOIL TO ATOMIC RECOIL

In this section, we derive the recoil cross section of the atomic system, taking into account

the final state ionizations/excitations.

A. Isolated Nuclear Recoil

Before proceeding further, let us first translate the dark matter-nucleus interaction in field

theory to an interaction potential, which will be useful in the later analysis. For now, let us

forget the electron cloud and take the nucleus as a free separated particle. In a relativistic

field theoretical approach, the T -matrix and the invariant amplitude of the process are given

by

TFI = hpF
Np

F
DM |pI

Np
I
DMi = M⇥ i(2⇡)4�4(pFN + pFDM � pIN � pIDM) . (28)

Here the plane waves are normalized by,

hp|p0
i = (2⇡)32p0�3(p0

� p) , (29)

with p0 being the relativistic energy of the particle.

7

Construction of the atomic plane wave

ΨEA describes the place wave of the atom ! (  ∂xN ψEA(rest) = - Σ ∂xi ψEA(rest)  ) 

ONCE WE OBTAIN ELECTRON CLOUD WAVE FUNCTION OF THE NUCLEUS AT REST , 
WE OBTAIN ANY WAVE FUNCTIONS OF THE ATOMIC SYSTEM !



“Atomic” Recoil Cross Section

For example, a contact spin-independent interaction between a Dirac dark matter and

the nucleon is given by,

L =
X

i=p,n

gi
M2

⇤
 ̄i i ̄DM DM , (30)

where M⇤ denotes a mass parameter and gp,n are dimensionless coupling constants. In this

case, the squared coherent invariant amplitude for the nucleus is given by,

|M|
2 = 16

m2
Nm

2
DM

M4
⇤

(gpZ + gn(A� Z))2 , (31)

where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.

The corresponding cross section is given by,

�̄N '
1

16⇡

|M|
2

(mN +mDM)2
, (32)

'
1

⇡

µ2
N

M4
⇤
(gpZ + gn(A� Z))2 , (33)

where µN is the reduced mass,

µN =
mNmDM

mN +mDM
. (34)

Quantum mechanically, the above invariant matrix element can be reproduced by an

interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
+ V̂int , (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

in the coordinate representation. In fact, by taking the initial and the final states in the

coordinate representation,

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM , (39)

we obtain

TFI = M⇥ i(2⇡)4�(EF
N + EF

DM � EI
N � EI

DM)�3(pF
N + pF

DM � pI
N � pI

DM) . (40)

Here we normalize the initial and the final states in conforming with the one in Eq. (29)

with the relativistic energies approximated by their masses.

8

Nuclear Scattering is reproduced by the point-like interaction potential in QM.

Contact interaction :

Invariant amplitude2 : 

Cross section : 

DM-Nuclear Scattering without scattering in a field theoretical treatment.
where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.

The corresponding cross section is given by

�̄N '
1

16⇡

|M|
2

(mN +mDM)2
, (32)

'
1

⇡

µ2
N

M4
⇤
(gpZ + gn(A� Z))2 , (33)

where µN is the reduced mass,

µN =
mNmDM

mN +mDM
. (34)

In the coordinate representation of quantum mechanics, the above invariant matrix ele-

ment in Eq. (28) is reproduced by an interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
, (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

with the initial and the final states

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM . (39)

Here, we normalize the initial and the final wavefunctions in conforming with the one in

Eq. (29) with the relativistic energies approximated by their masses.

As another example, we may also consider a dark matter interaction with nucleons

through an exchange of a light scalar particle, �, with mass m�,

L = �

X

i=p,n

yi�  ̄i i � yDM�  ̄DM DM , (40)

where yp,n,DM are Yukawa coupling constants. The invariant amplitude of the isolated

nuclear scattering for each spin is given by

M(q2N) ' yDM (ypZ + yn(A� Z))
4mDMmN

m2
� � t

, (41)

t ' �q2N = �(pF
N � pI

N)
2 , (42)

in the non-relativistic limit. In the coordinate representation of quantum mechanics, the

invariant amplitude is reproduced by adding a potential term

V̂int(xN � xDM) = �

Z
d3q

(2⇡)3
eiq·(xN�xDM ) M(q2)

4mDMmN
, (43)

8

Wave Function : [Nuclear Plane Wave] x [DM Plane Wave] 
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→

(with the asymptotic Nucleus plane waves)

Contact interaction :

Invariant amplitude2 : 

Cross section : 

DM-Nuclear Scattering without scattering in a field theoretical treatment.

Born Approximation



Atomic Scattering via the contact DM-nuclear interaction term :

In passing, let us remind ourselves that the nuclear form factor becomes relevant for a

momentum transfer qA in the tens to hundreds MeV. By taking the form factor into account,

the di↵erential cross section with respect to the nuclear recoil energy in the laboratory frame

is given by2

d�N

dER
'

1

32⇡

mN

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
, (42)

'
1

2

mN

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N . (43)

The final expression of Eq. (43) is valid only when M is independent of the momentum

transfer as in Eq. (32).

B. Invariant Amplitudes with Electron Cloud

Now, let us calculate the cross section of the nuclear recoil in the presence of the electron

cloud. For this purpose, we consider

Ĥtot = ĤA +
p̂2
DM

2mDM
+ V̂int , (44)

in the coordinate representation where ĤA is given in Eq. (3) and V̂int in Eq. (37). In subsec-

tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
(xN , {x})⇥

p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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momentum transfer qA in the tens to hundreds MeV. By taking the form factor into account,

the di↵erential cross section with respect to the nuclear recoil energy in the laboratory frame

is given by2

d�N

dER
'

1

32⇡

mN

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
, (42)

'
1

2

mN

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N . (43)

The final expression of Eq. (43) is valid only when M is independent of the momentum

transfer as in Eq. (32).

B. Invariant Amplitudes with Electron Cloud

Now, let us calculate the cross section of the nuclear recoil in the presence of the electron

cloud. For this purpose, we consider

Ĥtot = ĤA +
p̂2
DM

2mDM
+ V̂int , (44)

in the coordinate representation where ĤA is given in Eq. (3) and V̂int in Eq. (37). In subsec-

tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
(xN , {x})⇥

p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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For example, a contact spin-independent interaction between a Dirac dark matter and

the nucleon is given by,

L =
X

i=p,n

gi
M2

⇤
 ̄i i ̄DM DM , (30)

where M⇤ denotes a mass parameter and gp,n are dimensionless coupling constants. In this

case, the squared coherent invariant amplitude for the nucleus is given by,

|M|
2 = 16

m2
Nm

2
DM

M4
⇤

(gpZ + gn(A� Z))2 , (31)

where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.

The corresponding cross section is given by,

�̄N '
1

16⇡

|M|
2

(mN +mDM)2
, (32)

'
1

⇡

µ2
N

M4
⇤
(gpZ + gn(A� Z))2 , (33)

where µN is the reduced mass,

µN =
mNmDM

mN +mDM
. (34)

Quantum mechanically, the above invariant matrix element can be reproduced by an

interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
+ V̂int , (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

in the coordinate representation. In fact, by taking the initial and the final states in the

coordinate representation,

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM , (39)

we obtain

TFI = M⇥ i(2⇡)4�(EF
N + EF

DM � EI
N � EI

DM)�3(pF
N + pF

DM � pI
N � pI

DM) . (40)

Here we normalize the initial and the final states in conforming with the one in Eq. (29)

with the relativistic energies approximated by their masses.
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Initial:

Final:

(Atomic plane wave)

We assume that initial sate atom is at rest : pIA = 0.

In passing, let us remind ourselves that the nuclear form factor becomes relevant for a

momentum transfer qA in the tens to hundreds MeV. By taking the form factor into account,

the di↵erential cross section with respect to the nuclear recoil energy in the laboratory frame

is given by2

d�N

dER
'

1

32⇡

mN

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
, (42)

'
1

2

mN

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N . (43)

The final expression of Eq. (43) is valid only when M is independent of the momentum

transfer as in Eq. (32).

B. Invariant Amplitudes with Electron Cloud

Now, let us calculate the cross section of the nuclear recoil in the presence of the electron

cloud. For this purpose, we consider

Ĥtot = ĤA +
p̂2
DM

2mDM
+ V̂int , (44)

in the coordinate representation where ĤA is given in Eq. (3) and V̂int in Eq. (37). In subsec-

tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
(xN , {x})⇥

p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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Initial:

Final:

“Atomic” Recoil Cross Section

( The normalization is to conform with  < p’ | p > = (2E)1/2 (2π)3/2 δ3(p’-p) )



where EI,F
ec are the energy eigenvalues of the initial and the final electron clouds in the rest

frame, respectively. By using the energy eigenfunctions in Eq. (23), the T -matrix of this

process is given by,

TFI = M⇥ i(2⇡)�(EF � EI)

Z
d3xNd

3xDM

Y

i

d3xi �
3(xN � xDM)

⇥�⇤
EF

ec
({x� xN})e

�i
P

i qe·xie�ipF
N ·xN�EI

ec
({x� xN})e

�i(pF
DM�pI

DM )·xDM , (49)

= M⇥ i(2⇡)4�(EF � EI)�
3(mAvF + pF

DM � pI
DM)

⇥

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) . (50)

In the second equality, we shifted the integration variable xi by xN .

As a result, we obtain the matrix element

TFI ' M⇥ ZFI(qe)⇥ i(2⇡)4�4(pF � pI) , (51)

where

�4(pF � pI) = � (EF � EI)⇥ �3(mAvF + pF
DM � pI

DM) , (52)

ZFI(qe) =

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) , (53)

qe = mevF , (54)

for vI = 0. The term proportional to M denotes the nuclear recoil and the factor ZFI(qe)

denotes the transition of the electron cloud. It should be emphasized that our approach

treats the nucleus and the electron cloud coherently, which enables us to derive the invariant

amplitude with manifest energy-momentum conservation.3

C. Phase Space Integration

By noting the normalizations in Eqs. (23), (29), (see also (A1)), the di↵erential cross

section is given by,4

d� '

X

EF
ec

d3pF
A

(2⇡)32pFA
0

d3pF
DM

(2⇡)32pFDM
0

|M|
2
⇥ |ZFI(qe)|2

4
p
(pIA · pIDM)2 �m2

Am
2
DM

⇥(2⇡)4�4(pFA + pFDM � pIA � pIDM) , (55)

3 The Fermi’s golden rule is justified by taking the timescale much loner than (EF
ec �EI

ec)
�1, which is also

much longer than the timescale of the Migdal e↵ect, i.e. the Bohr radius divided by the speed of light.
4 The factor |ZFI |

2 is missing in the cross section in [14] although the energy-momentum conservation are

taken into account correctly.
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ec are the energy eigenvalues of the initial and the final electron clouds in the rest
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for vI = 0. The term proportional to M denotes the nuclear recoil and the factor ZFI(qe)

denotes the transition of the electron cloud. It should be emphasized that our approach

treats the nucleus and the electron cloud coherently, which enables us to derive the invariant

amplitude with manifest energy-momentum conservation.3

C. Phase Space Integration

By noting the normalizations in Eqs. (23), (29), (see also (A1)), the di↵erential cross

section is given by,4
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much longer than the timescale of the Migdal e↵ect, i.e. the Bohr radius divided by the speed of light.
4 The factor |ZFI |
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(correct energy momentum  
conservation)

Migdal factor !

By taking the asymptotic states consist of the atomic plane waves, 
the Migdal factor appears automatically. 
The total energy momentum conservation is manifest !

“Atomic” Recoil Cross Section

Atomic Scattering via the contact DM-nuclear interaction term :

In passing, let us remind ourselves that the nuclear form factor becomes relevant for a

momentum transfer qA in the tens to hundreds MeV. By taking the form factor into account,

the di↵erential cross section with respect to the nuclear recoil energy in the laboratory frame

is given by2

d�N

dER
'

1

32⇡

mN

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
, (42)

'
1

2

mN

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N . (43)

The final expression of Eq. (43) is valid only when M is independent of the momentum

transfer as in Eq. (32).

B. Invariant Amplitudes with Electron Cloud

Now, let us calculate the cross section of the nuclear recoil in the presence of the electron

cloud. For this purpose, we consider

Ĥtot = ĤA +
p̂2
DM

2mDM
+ V̂int , (44)

in the coordinate representation where ĤA is given in Eq. (3) and V̂int in Eq. (37). In subsec-

tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
(xN , {x})⇥

p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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For example, a contact spin-independent interaction between a Dirac dark matter and

the nucleon is given by,

L =
X

i=p,n

gi
M2

⇤
 ̄i i ̄DM DM , (30)

where M⇤ denotes a mass parameter and gp,n are dimensionless coupling constants. In this

case, the squared coherent invariant amplitude for the nucleus is given by,

|M|
2 = 16

m2
Nm

2
DM

M4
⇤

(gpZ + gn(A� Z))2 , (31)

where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.

The corresponding cross section is given by,

�̄N '
1

16⇡

|M|
2

(mN +mDM)2
, (32)

'
1

⇡

µ2
N

M4
⇤
(gpZ + gn(A� Z))2 , (33)

where µN is the reduced mass,

µN =
mNmDM

mN +mDM
. (34)

Quantum mechanically, the above invariant matrix element can be reproduced by an

interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
+ V̂int , (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

in the coordinate representation. In fact, by taking the initial and the final states in the

coordinate representation,

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM , (39)

we obtain

TFI = M⇥ i(2⇡)4�(EF
N + EF

DM � EI
N � EI

DM)�3(pF
N + pF

DM � pI
N � pI

DM) . (40)

Here we normalize the initial and the final states in conforming with the one in Eq. (29)

with the relativistic energies approximated by their masses.
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After phase space integration (center of mass frame): 

“Atomic” Recoil Cross Section

In addition to the total momenta of the initial/final states, we need to 
specify the states of the electron clouds in the initial/finial states.

Initial state : DM = plane wave,  atom = at rest,  
                             EC = Ground State 

Final state : DM = plane wave,  atom = moving,  
                            EC = Ground/Excited/Ionized State

where EI,F
ec are the energy eigenvalues of the initial and the final electron clouds in the rest

frame, respectively. By using the energy eigenfunctions in Eq. (23), the T -matrix of this

process is given by,

TFI = M⇥ i(2⇡)�(EF � EI)

Z
d3xNd

3xDM

Y

i

d3xi �
3(xN � xDM)

⇥�⇤
EF

ec
({x� xN})e

�i
P

i qe·xie�ipF
N ·xN�EI

ec
({x� xN})e

�i(pF
DM�pI

DM )·xDM , (49)

= M⇥ i(2⇡)4�(EF � EI)�
3(mAvF + pF

DM � pI
DM)

⇥

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) . (50)

In the second equality, we shifted the integration variable xi by xN .

As a result, we obtain the matrix element

TFI ' M⇥ ZFI(qe)⇥ i(2⇡)4�4(pF � pI) , (51)

where

�4(pF � pI) = � (EF � EI)⇥ �3(mAvF + pF
DM � pI

DM) , (52)

ZFI(qe) =

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) , (53)

qe = mevF , (54)

for vI = 0. The term proportional to M denotes the nuclear recoil and the factor ZFI(qe)

denotes the transition of the electron cloud. It should be emphasized that our approach

treats the nucleus and the electron cloud coherently, which enables us to derive the invariant

amplitude with manifest energy-momentum conservation.3

C. Phase Space Integration

By noting the normalizations in Eqs. (23), (29), (see also (A1)), the di↵erential cross

section is given by,4

d� '

X

EF
ec

d3pF
A

(2⇡)32pFA
0

d3pF
DM

(2⇡)32pFDM
0

|M|
2
⇥ |ZFI(qe)|2

4
p
(pIA · pIDM)2 �m2

Am
2
DM

⇥(2⇡)4�4(pFA + pFDM � pIA � pIDM) , (55)

3 The Fermi’s golden rule is justified by taking the timescale much loner than (EF
ec �EI

ec)
�1, which is also

much longer than the timescale of the Migdal e↵ect, i.e. the Bohr radius divided by the speed of light.
4 The factor |ZFI |

2 is missing in the cross section in [14] although the energy-momentum conservation are

taken into account correctly.
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(pAI 0 = mA, pDMI 0 = mDM)

where we have approximated by pIA
0
' pFA

0
' mN in the overall normalization since we

are interested in non-relativistic scattering. Here we define the physical mass of the atomic

system, mA by

mA = mA + Eec , (56)

in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by,

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F . (57)

For the phase space integration, it is useful to take the quantization axis of the angular

momentum along the direction of qe, with which the factor |ZFI(qe)|2 depends only on the

size of qe. In the center of the mass frame, the integration over pF
A can be performed trivially,

which leads to pF
DM = �pF

A = pF . The remaining delta function is also eliminated by the

integration over pF
DM , which leads to

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|M|

2
|ZFI(qe)|

2 . (58)

Here we performed the integration over the azimuthal angle in the center of the mass frame.

The initial momentum in the center of the mass frame pI is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (59)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (60)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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Here, we defined the physical mass of the atomic system, mA by

mA = mA + Eec . (60)

By boosting four momentum (mA, 0, 0, 0), we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F , (61)

in the laboratory frame.

When the magnetic quantum numbers of the electrons in the initial/final states are

averaged/summed, the factor |ZFI(qe)|2 depends only on the size of qe. In this case, the

di↵erential cross section is given by

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|FA(q

2
A)|

2
|M(q2A)|

2
|ZFI(qe)|

2 . (62)

Here, pI,F denotes the initial and the final state momenta in the center of the mass frame.

By using the dark matter velocity in the laboratory frame, vI
DM , the initial momentum

in the center of the mass frame, pI , is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (63)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |;

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (64)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (65)

with which |pF | is rewritten by

|pF | = µN

q
v2DM � v(th) 2DM . (66)
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After phase space integration (center of mass frame): 

The process is not elastic for EecF  ≠  EecI  !

where we have approximated by pIA
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are interested in non-relativistic scattering. Here we define the physical mass of the atomic

system, mA by
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in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic
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ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (60)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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where we have approximated by pIA
0
' pFA

0
' mN in the overall normalization since we

are interested in non-relativistic scattering. Here we define the physical mass of the atomic

system, mA by

mA = mA + Eec , (56)

in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by,

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F . (57)

For the phase space integration, it is useful to take the quantization axis of the angular

momentum along the direction of qe, with which the factor |ZFI(qe)|2 depends only on the

size of qe. In the center of the mass frame, the integration over pF
A can be performed trivially,

which leads to pF
DM = �pF

A = pF . The remaining delta function is also eliminated by the

integration over pF
DM , which leads to

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|M|

2
|ZFI(qe)|
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ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,
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To satisfy |pF | > 0, there is a threshold velocity,
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s
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with which |pF | is rewritten by,
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q
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In CM :

where EI,F
ec are the energy eigenvalues of the initial and the final electron clouds in the rest

frame, respectively. By using the energy eigenfunctions in Eq. (23), the T -matrix of this

process is given by,

TFI = M⇥ i(2⇡)�(EF � EI)

Z
d3xNd

3xDM

Y

i

d3xi �
3(xN � xDM)

⇥�⇤
EF

ec
({x� xN})e

�i
P

i qe·xie�ipF
N ·xN�EI

ec
({x� xN})e

�i(pF
DM�pI

DM )·xDM , (49)

= M⇥ i(2⇡)4�(EF � EI)�
3(mAvF + pF

DM � pI
DM)

⇥

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) . (50)

In the second equality, we shifted the integration variable xi by xN .

As a result, we obtain the matrix element

TFI ' M⇥ ZFI(qe)⇥ i(2⇡)4�4(pF � pI) , (51)

where

�4(pF � pI) = � (EF � EI)⇥ �3(mAvF + pF
DM � pI

DM) , (52)

ZFI(qe) =

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) , (53)

qe = mevF , (54)

for vI = 0. The term proportional to M denotes the nuclear recoil and the factor ZFI(qe)

denotes the transition of the electron cloud. It should be emphasized that our approach

treats the nucleus and the electron cloud coherently, which enables us to derive the invariant

amplitude with manifest energy-momentum conservation.3

C. Phase Space Integration

By noting the normalizations in Eqs. (23), (29), (see also (A1)), the di↵erential cross

section is given by,4

d� '

X

EF
ec

d3pF
A

(2⇡)32pFA
0

d3pF
DM

(2⇡)32pFDM
0

|M|
2
⇥ |ZFI(qe)|2

4
p
(pIA · pIDM)2 �m2

Am
2
DM

⇥(2⇡)4�4(pFA + pFDM � pIA � pIDM) , (55)

3 The Fermi’s golden rule is justified by taking the timescale much loner than (EF
ec �EI

ec)
�1, which is also

much longer than the timescale of the Migdal e↵ect, i.e. the Bohr radius divided by the speed of light.
4 The factor |ZFI |

2 is missing in the cross section in [14] although the energy-momentum conservation are

taken into account correctly.
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mA = mA + Eec , (56)

in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic
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DM , which leads to

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|M|

2
|ZFI(qe)|

2 . (58)

Here we performed the integration over the azimuthal angle in the center of the mass frame.

The initial momentum in the center of the mass frame pI is given by
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A = pI ' µNv
I
DM . (59)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,
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To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =
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2(EF
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µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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Here, we defined the physical mass of the atomic system, mA by

mA = mA + Eec . (60)

By boosting four momentum (mA, 0, 0, 0), we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F , (61)

in the laboratory frame.

When the magnetic quantum numbers of the electrons in the initial/final states are

averaged/summed, the factor |ZFI(qe)|2 depends only on the size of qe. In this case, the

di↵erential cross section is given by
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d cos ✓CM
'
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32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|FA(q

2
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2
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2
|ZFI(qe)|

2 . (62)

Here, pI,F denotes the initial and the final state momenta in the center of the mass frame.

By using the dark matter velocity in the laboratory frame, vI
DM , the initial momentum

in the center of the mass frame, pI , is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (63)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI
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the final state momentum in the center of the mass frame becomes smaller than |pI |;
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To satisfy |pF | > 0, there is a threshold velocity,
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, (65)
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q
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At this order, transitions take place when the orbital angular momentums of o0k and ok di↵er

only by one, i.e. |`0k�`k| = 1. By further approximating that the electron orbitals experience

an e↵ective central potential, the transition amplitude can be further reduced to,12

zqe(E
0
k,

0
k,m

0
k|Ek,k,mk) = �iqe

Z
dr r ⇥

⇥
PE0

k
(r)PEk

(r) +QE0
k
(r)QEk

(r)
⇤

⇥h0m0
| cos ✓|mi , (83)

h0m0
| cos ✓|mi =

Z
d⌦⌦†

0,m0(✓,') cos ✓⌦†
,m(✓,') . (84)

In the following discussion, we only require an accuracy of several tens of percent for the

electron binding energies. For this accuracy, the bound state energies for the same principal

numbers and the same orbital angular momentums are not distinguishable, and hence, we

label the bound states by (n, `). Then, the transition rates at the leading order can be

expressed by

X

F

|ZFI |
2 = |ZII |

2 +
X

n,`,n0,`0

pdqe(n` ! n0`0) +
X

n,`

Z
dEe

2⇡

d

dEe
pcqe(n` ! Ee) . (85)

Here, |ZII |
2
' 1 + O(q2e hri

2) is the probability for the electrons una↵ected by the nuclear

recoil (see also the appendixB). The excitation and the ionization probabilities, pd,cqe , are

defined by

pdqe(n` ! n0`0) =
!max
`0 � !n0,`0

!max
`0

!n,`

!max
`

X

,0,m,m0

�`,|+1/2|�1/2�`0,|0+1/2|�1/2

⇥ |zqe(En00 ,0,m0
|En,,m)|2 , (86)

pcqe(n` ! Ee) =
!n,`

!max
`

X

,0,m,m0

�`,|+1/2|�1/2 |zqe(Ee,
0,m0

|En,,m)|2 , (87)

where En is the binding energy for the bounded electron labeled by (n,), !n` is the

occupation number of the subshell (see Tab. I), and !max
` = 2(2`+1). The final state orbital

angular momentum, i.e. `0 = `± 1, is summed implicitly in Eq. (87).

12 Here h�0m0
| cos ✓|� mi = h0m0

| cos ✓|mi.
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where EI,F
ec are the energy eigenvalues of the initial and the final electron clouds in the rest

frame, respectively. By using the energy eigenfunctions in Eq. (23), the T -matrix of this

process is given by,

TFI = M⇥ i(2⇡)�(EF � EI)

Z
d3xNd

3xDM

Y

i

d3xi �
3(xN � xDM)

⇥�⇤
EF
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({x� xN})e

�i
P

i qe·xie�ipF
N ·xN�EI

ec
({x� xN})e

�i(pF
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DM )·xDM , (49)

= M⇥ i(2⇡)4�(EF � EI)�
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DM)

⇥

Z Y

i

d3xi �
⇤
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({x})e�i

P
i qe·xi�EI

ec
({x}) . (50)

In the second equality, we shifted the integration variable xi by xN .

As a result, we obtain the matrix element

TFI ' M⇥ ZFI(qe)⇥ i(2⇡)4�4(pF � pI) , (51)

where

�4(pF � pI) = � (EF � EI)⇥ �3(mAvF + pF
DM � pI

DM) , (52)

ZFI(qe) =

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) , (53)

qe = mevF , (54)

for vI = 0. The term proportional to M denotes the nuclear recoil and the factor ZFI(qe)

denotes the transition of the electron cloud. It should be emphasized that our approach

treats the nucleus and the electron cloud coherently, which enables us to derive the invariant

amplitude with manifest energy-momentum conservation.3

C. Phase Space Integration

By noting the normalizations in Eqs. (23), (29), (see also (A1)), the di↵erential cross

section is given by,4

d� '

X

EF
ec

d3pF
A

(2⇡)32pFA
0

d3pF
DM

(2⇡)32pFDM
0

|M|
2
⇥ |ZFI(qe)|2

4
p
(pIA · pIDM)2 �m2

Am
2
DM

⇥(2⇡)4�4(pFA + pFDM � pIA � pIDM) , (55)

3 The Fermi’s golden rule is justified by taking the timescale much loner than (EF
ec �EI

ec)
�1, which is also

much longer than the timescale of the Migdal e↵ect, i.e. the Bohr radius divided by the speed of light.
4 The factor |ZFI |

2 is missing in the cross section in [14] although the energy-momentum conservation are

taken into account correctly.
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B. Energy Eigenstates of a Moving Atom

Once we construct the energy eigenstates of an atomic system at rest, the energy eigen-

states of an atomic system moving with a velocity v can be immediately obtained by the

Galilei transformation,

 EA(xN , {x}) ' U(v) (rest)
EA

(xN , {x}) . (15)

Here the unitary operator is given by,

U(v) = exp

"
imNv · xN + ime

NeX

i=1

v · xi

#
. (16)

Under the Galilei transformation, the momentum operators are shifted by

U(v)†p̂NU(v) = p̂N +mNv , (17)

U(v)†p̂iU(v) = p̂i +mev , (18)

and hence, the Hamiltonian is transformed into

U(v)†ĤAU(v) = ĤA + v ·

 
p̂N +

NeX

i=1

p̂i

!
+

1

2
mAv

2 . (19)

Here we define the nominal mass of the atom by

mA = mN +Neme . (20)

By using Eqs. (13), (14), and (19), we find that the boosted wave function  EA satisfies,

ĤA EA(xN , {x}) '

✓
Eec +

1

2
mAv

2

◆
 EA(xN , {x}) . (21)

Therefore, the boosted wave function  EA provides the approximate energy eigenstate with

EA ' Eec +
1

2
mAv

2 . (22)

In summary, the eigenstate of the atomic system is approximated by

 EA(xN , {x}) ' eipN ·xN ei
PNe

i=1 qe·xi (rest)
EA

(xN , {x}) , (23)

pN = mNv , (24)

qe = mev , (25)

6

“ me{mAq „ µAme{mAvDM



Numerical Transition Rate (by using Flexible Atomic Code)

TABLE II. The excitation probabilities into unoccupied states for a given initial state orbital (n, `).

Here P!n0`0 is defined by P!n0`0 ⌘ pdqe(n` ! n0`0). The probabilities not shown in this table are

forbidden or negligibly small.

Ar (qe = me ⇥ 10�3)

(n, `) P!3d P!4s P!4p P!4d P!5s P!5p En` [eV] 1
2⇡

R
dEe

dpc

dEe

1s – – 1.3⇥ 10�7 – – 4.3⇥ 10�8 3.2⇥ 103 7.2⇥ 10�5

2s – – 5.3⇥ 10�6 – – 1.8⇥ 10�6 3.0⇥ 102 4.1⇥ 10�4

2p 4.3⇥ 10�6 5.0⇥ 10�6 – 3.0⇥ 10�6 1.3⇥ 10�6 – 2.4⇥ 102 4.2⇥ 10�3

3s – – 5.3⇥ 10�7 – – 1.1⇥ 10�6 2.7⇥ 10 1.2⇥ 10�3

3p 7.9⇥ 10�3 8.5⇥ 10�3 – 4.0⇥ 10�3 1.2⇥ 10�3 – 1.3⇥ 10 7.4⇥ 10�2

(n, `) 3d 4s 4p 4d 5s 5p

En`[eV] 1.6 3.7 2.5 0.88 1.6 1.2

Xe (qe = me ⇥ 10�3)

(n, `) P!4f P!5d P!6s P!6p En` [eV] 1
2⇡

R
dEe

dpc

dEe

1s – – – 7.3⇥ 10�10 3.5⇥ 104 4.6⇥ 10�6

2s – – – 1.8⇥ 10�8 5.4⇥ 103 2.9⇥ 10�5

2p – 3.0⇥ 10�8 6.5⇥ 10�9 – 4.9⇥ 103 1.3⇥ 10�4

3s – – – 2.7⇥ 10�7 1.1⇥ 103 8.7⇥ 10�5

3p – 3.4⇥ 10�7 4.0⇥ 10�7 – 9.3⇥ 102 5.2⇥ 10�4

3d 2.3⇥ 10�9 – – 4.3⇥ 10�7 6.6⇥ 102 3.5⇥ 10�3

4s – – – 3.1⇥ 10�6 2.0⇥ 102 3.4⇥ 10�4

4p – 4.1⇥ 10�8 3.0⇥ 10�5 – 1.4⇥ 102 1.4⇥ 10�3

4d 7.0⇥ 10�7 – – 1.5⇥ 10�4 6.1⇥ 10 3.4⇥ 10�2

5s – – – 1.2⇥ 10�4 2.1⇥ 10 4.1⇥ 10�4

5p – 3.6⇥ 10�2 2.1⇥ 10�2 – 9.8 1.0⇥ 10�1

(n, `) 4f 5d 6s 6p

En`[eV] 0.85 1.6 3.3 2.2
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FIG. 3. The di↵erential ionization probabilities as a function of the emitted electron energy, Ee,

for isolated Ar, Xe, Ge, Na, and I. The contributions from di↵erent `’s are summed. We also

summed all the possible final states for a given n. The integrated probabilities are given in Tab. II.
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initial state

ionization spectrum

The ionization rate from n = 3 state can be of O(10-(3-2)). 
→ leading to O(1)keV electronic energy deposition !

The rates for the excitation to the higher shells are smaller. 

(transition is possible only for | Δℓ | = 1)

Hartree-Fock Approximation.    Leading O(qe2) approximation.

in the rest frame of the atomic system. Here r denotes the distance between the electron

and the nucleus. The one-electron states are normalized such that

4X

↵=1

Z
d3x�o(x)

↵⇤�↵
o0(x) =

8
><

>:

�nn0�0�mm0 (bounded)

(2⇡)�(E � E 0)�0�mm0 (unbounded)
. (77)

In the Dirac-Hartree-Fock approximation, the electron cloud transition factor obtained

in the previous section is rewritten by

ZFI(qe) =
X

�2SNe

sgn(�)
NeY

i=1

4X

↵i=1

Z
d3xi �

↵i⇤
oF�(i)

(xi)e
�iqe·xi�↵i

oIi
(xi) . (78)

Thus, the transition amplitude is given by the product of the transition amplitudes between

the electron orbitals.

B. Single Electron Excitation/Ionization

For the atomic recoil with the momentum transfer smaller than the hundreds MeV range,

the factor |qe ·xi| is expected to be small on an atomic scale.11 At the leading order of qe, only

one electron can be excited/ionized, and hence, the initial and the final state configurations

are given by,

ceI = {o1, · · · , ok, · · · oNe} , (79)

ceF = {o1, · · · , o
0
k, · · · oNe} , (80)

where

EF
ec � EI

ec ' E 0
k � Ek . (81)

Hereafter, we assume that the initial electron cloud stays in the ground state, where all the

electrons are bounded by the Coulomb potential of the nucleus. The final electron state, o0k,

can be either a bounded orbital or an unbounded orbital.

To the leading order of qe, the electron cloud transition amplitude is reduced to

ZFI(qe) = zqe(E
0
k,

0
k,m

0
k|Ek,k,mk) = �i

4X

↵k=1

Z
d3xk �

↵k⇤
o0k

(xk)(qe · xk)�
↵k
ok
(xk) . (82)

11 For vF ' 10�3, for example, qe ' 0.5 keV and hence |qe · xi| ⌧ 1 even for a Bohr radius.
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Numerical Transition Rate (by using Flexible Atomic Code)

TABLE II. The excitation probabilities into unoccupied states for a given initial state orbital (n, `).

Here P!n0`0 is defined by P!n0`0 ⌘ pdqe(n` ! n0`0). The probabilities not shown in this table are

forbidden or negligibly small.

Ar (qe = me ⇥ 10�3)

(n, `) P!3d P!4s P!4p P!4d P!5s P!5p En` [eV] 1
2⇡

R
dEe

dpc

dEe

1s – – 1.3⇥ 10�7 – – 4.3⇥ 10�8 3.2⇥ 103 7.2⇥ 10�5

2s – – 5.3⇥ 10�6 – – 1.8⇥ 10�6 3.0⇥ 102 4.1⇥ 10�4

2p 4.3⇥ 10�6 5.0⇥ 10�6 – 3.0⇥ 10�6 1.3⇥ 10�6 – 2.4⇥ 102 4.2⇥ 10�3

3s – – 5.3⇥ 10�7 – – 1.1⇥ 10�6 2.7⇥ 10 1.2⇥ 10�3

3p 7.9⇥ 10�3 8.5⇥ 10�3 – 4.0⇥ 10�3 1.2⇥ 10�3 – 1.3⇥ 10 7.4⇥ 10�2

(n, `) 3d 4s 4p 4d 5s 5p

En`[eV] 1.6 3.7 2.5 0.88 1.6 1.2

Xe (qe = me ⇥ 10�3)

(n, `) P!4f P!5d P!6s P!6p En` [eV] 1
2⇡

R
dEe

dpc

dEe

1s – – – 7.3⇥ 10�10 3.5⇥ 104 4.6⇥ 10�6

2s – – – 1.8⇥ 10�8 5.4⇥ 103 2.9⇥ 10�5

2p – 3.0⇥ 10�8 6.5⇥ 10�9 – 4.9⇥ 103 1.3⇥ 10�4

3s – – – 2.7⇥ 10�7 1.1⇥ 103 8.7⇥ 10�5

3p – 3.4⇥ 10�7 4.0⇥ 10�7 – 9.3⇥ 102 5.2⇥ 10�4

3d 2.3⇥ 10�9 – – 4.3⇥ 10�7 6.6⇥ 102 3.5⇥ 10�3

4s – – – 3.1⇥ 10�6 2.0⇥ 102 3.4⇥ 10�4

4p – 4.1⇥ 10�8 3.0⇥ 10�5 – 1.4⇥ 102 1.4⇥ 10�3

4d 7.0⇥ 10�7 – – 1.5⇥ 10�4 6.1⇥ 10 3.4⇥ 10�2

5s – – – 1.2⇥ 10�4 2.1⇥ 10 4.1⇥ 10�4

5p – 3.6⇥ 10�2 2.1⇥ 10�2 – 9.8 1.0⇥ 10�1

(n, `) 4f 5d 6s 6p

En`[eV] 0.85 1.6 3.3 2.2
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initial state

Ee spectrum is purely determined by the structure of the electron cloud ! 
Ee spectrum is independent of the dark matter velocity vDM and mDM .

(transition is possible only for | Δℓ | = 1)

Hartree-Fock Approximation.    Leading O(qe2) approximation.
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FIG. 3. The di↵erential ionization probabilities as a function of the emitted electron energy, Ee,

for isolated Ar, Xe, Ge, Na, and I. The contributions from di↵erent `’s are summed. We also

summed all the possible final states for a given n. The integrated probabilities are given in Tab. II.
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ionization spectrum

in the rest frame of the atomic system. Here r denotes the distance between the electron

and the nucleus. The one-electron states are normalized such that

4X

↵=1

Z
d3x�o(x)

↵⇤�↵
o0(x) =

8
><

>:

�nn0�0�mm0 (bounded)

(2⇡)�(E � E 0)�0�mm0 (unbounded)
. (77)

In the Dirac-Hartree-Fock approximation, the electron cloud transition factor obtained

in the previous section is rewritten by

ZFI(qe) =
X

�2SNe

sgn(�)
NeY

i=1

4X

↵i=1

Z
d3xi �

↵i⇤
oF�(i)

(xi)e
�iqe·xi�↵i

oIi
(xi) . (78)

Thus, the transition amplitude is given by the product of the transition amplitudes between

the electron orbitals.

B. Single Electron Excitation/Ionization

For the atomic recoil with the momentum transfer smaller than the hundreds MeV range,

the factor |qe ·xi| is expected to be small on an atomic scale.11 At the leading order of qe, only

one electron can be excited/ionized, and hence, the initial and the final state configurations

are given by,

ceI = {o1, · · · , ok, · · · oNe} , (79)

ceF = {o1, · · · , o
0
k, · · · oNe} , (80)

where

EF
ec � EI

ec ' E 0
k � Ek . (81)

Hereafter, we assume that the initial electron cloud stays in the ground state, where all the

electrons are bounded by the Coulomb potential of the nucleus. The final electron state, o0k,

can be either a bounded orbital or an unbounded orbital.

To the leading order of qe, the electron cloud transition amplitude is reduced to

ZFI(qe) = zqe(E
0
k,

0
k,m

0
k|Ek,k,mk) = �i

4X

↵k=1

Z
d3xk �

↵k⇤
o0k

(xk)(qe · xk)�
↵k
ok
(xk) . (82)

11 For vF ' 10�3, for example, qe ' 0.5 keV and hence |qe · xi| ⌧ 1 even for a Bohr radius.
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1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

Na 2 2 6 1 0 0 0 0 0 0 0 0

Ar 2 2 6 2 6 0 0 0 0 0 0 0

Ge 2 2 6 2 6 10 2 2 0 0 0 0

I 2 2 6 2 6 10 2 6 10 0 2 5

Xe 2 2 6 2 6 10 2 6 10 0 2 6

TABLE I. The number of electrons in a shell for the ground state configurations.

C. Ionization Spectrum at the Leading Order

By combining Eqs. (71) and (85), we find that the continuous electron spectrum at the

ionization from an orbital ok associated with the atomic recoil is given by,

dR

dER dEe dvDM
'

dR0

dER dvDM
⇥

1

2⇡

X

n,`

d

dEe
pcqe(n` ! Ee) , (88)

dR0

dER dvDM
'

1

2

⇢DM

mDM

1

µ2
N

|FA(q
2
A)|

2�̄N ⇥
f̃(vDM)

vDM
, (89)

where

ER '
q2A
2mA

, qe '
me

mA
qA . (90)

It should be noted that the atomic recoil energy, ER, and the electron transition energy,

�E, are correlated through the energy-momentum conservation;

ER =
µ2
N

2mN
v2DM

0

@
 
1�

s

1�
2�E

µNv2DM

!2

+ 2(1� cos ✓CM)

s

1�
2�E

µNv2DM

1

A , (91)

where

�E = Ee + En` , (92)

En` =
1

2

X



�`,|+1/2|�1/2En . (93)

Accordingly, the minimum dark matter velocity for an atomic recoil with non-vanishing

electron ionization is given by

vDM,min '
mNER + µN�E

µN

p
2mNER

. (94)
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(Ee : free electron kinetic energy)

When the core-hole (the vacancy in the inner shell) is created by ionization,   
the states are de-excited immediately O(10)fs.

FIG. 1. The minimum dark matter velocity as a function of the atomic recoil energy ER for given

�E and mDM for Ar and Xe.

In Fig. 1, we show the minimum velocity as a function of the atomic recoil energy ER for

given �E and mDM . Here we take isolated Ar and Xe atoms as examples. The phase space

of ER is given by the intersection between an envelope and the horizontal line for a given

vDM , �E, and mDM .

It should be also noted that there is a kinematical upper limit on the electron transition

energy �E for a given speed of dark matter, which is set by Eq. (61),

�EMAX =
1

2
µNv

2
DM . (95)

In Fig. 2, we show �EMAX as a function of vDM . The figure shows that �E in the keV

range is kinematically allowed for vDM
>
⇠ 10�3. It is also notable that, for �E = �EMAX,

the atomic recoil energy is given by,

ER =
µ2
N

2mN
v2DM =

µN

mN
⇥�EMAX . (96)

Thus the corresponding atomic recoil energy is smaller than �EMAX, which plays an impor-

tant role on the dark matter detections as discussed in the later section.

In addition to the electron emission due to the ionization, the core-hole created by the

ionization from an inner orbital also releases the electronic energy by the subsequent de-

excitation.13 The typical timescales of the de-excitation processes are of O(10) fs, and hence,

the energy of the electron emission and the de-excitation are measured simultaneously;

EEM = Ee + Edex , (97)

13 The de-excitation proceeds through the X-ray transition, the Auger transition, or the Coster-Kronig

transition (see [24, 25] for review, see also [26]). For a core-hole in n > 1 states the Coster-Kroning

transition dominates the de-excitation process.
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The electron energy and the de-excitation 
energy are measured simultaneously.

New J.Phys. 15 (2013) 083040

FIG. 2. The kinematical upper limits on the electron transition energy, �E, as a function of the

speed of dark matter for a given mDM . The gray shaded region corresponds to the velocity larger

than the Galactic escape velocity, vesc = 544km/s. (For the Burkert profile, the escape velocity is

estimated to be vesc = 576 ± 124 km/s [7].) It should be noted that vDM can be larger than vesc

due to the local circular motion of the Sun and the Earth.

where Edex is the energy released at the de-excitation.

Accordingly, the electromagnetic energy spectrum is given by,

dR

dER dEEM dvDM
'

dR0

dER dvDM
⇥

1

2⇡

X

n,`

d

dEe
pcqe(n` ! (EEM � En`)) . (98)

Hereafter, we simply assume that the ionization energy is de-excited completely and hence,

EEM = �E.14 It should be kept in mind, however, that EEM is not the energy of a single

electron/photon but the collection of the energies of the electrons and photons emitted at

the de-excitation and the ionization. Thus, the detector responses to EEM might be di↵erent

from those to a single electron/photon with the same energy, although we do not take such

e↵ects into account in the following discussion.

Similarly, the excited atoms also lead to electronic energy release by de-excitation. By

assuming the complete de-excitation again, we obtain the electromagnetic energy spectrum

as

dR

dER dEEM dvDM
'

dR0

dER dvDM
⇥

X

n,n0,`,`0

pdqe(n` ! n0`0)⇥ �(EEM ��En`!n0`0) . (99)

Here �En`!n0`0 is given by

�En`!n0`0 =
1

2

X



�`,|+1/2|�1/2En �
1

2

X

0

�`0,|0+1/2|�1/2En00 . (100)

14 If the atom is completely isolated, the ionization and the subsequent Auger and Coster-Kronig transitions

leave ionized atoms. In the medium, on the contrary, ionized atoms are also de-excited eventually.
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Ionization = free electron + ion with a core hole

Differential Event Rate for an Isolated Atom

» ∆E
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Differential Event Rate with respect to the measurable electric energy
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Nuclear Recoil

ΔE > Eion

Ionization rate from an outer orbit is higher !

Differential Event Rate for an Isolated Atom
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Nuclear Recoil
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The wave function of the valence (the outermost) electrons are affected by the 
electrons of the neighboring atoms.

In the detector, the atoms are not isolated .

e.g.) Typical separation in the liquid Xe ground state ~ 2 x 10-8 cm

3meV

Xe

2x10-8 cm ~ 4 x Bohr radius

Xe
R

R

van der Waals force  

= deformation of the electron cloud

V(R)

Ionization energies are slightly reduced by about O(1)eV
→ the transition rates from the valence electrons for the isolated atom 
are not reliable

→ the transition rate from the valence 
electrons for the isolated atom is not reliable

Implication on Dark Matter Direct Detection Experiments

potential of the valence quark

~ 2x10-8 cm 



Electron Orbits

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

Na 2 2 6 1 0 0 0 0 0 0 0 0

Ar 2 2 6 2 6 0 0 0 0 0 0 0

Ge 2 2 6 2 6 10 2 2 0 0 0 0

I 2 2 6 2 6 10 2 6 10 0 2 5

Xe 2 2 6 2 6 10 2 6 10 0 2 6

TABLE I. The number of electrons in a shell for the ground state configurations.

C. Ionization Spectrum at the Leading Order

By combining Eqs. (75) and (88), we find that the ionized electron spectrum from an

initial orbital ok associated is given by

dR

dER dEe dvDM
'

dR0

dER dvDM
⇥

1

2⇡

X

n,`

d

dEe
pcqe(n` ! Ee) , (91)

dR0

dER dvDM
'

1

2

⇢DM

mDM

1

µ2
N

�̃N(qA)⇥
f̃(vDM)

vDM
. (92)

Here,

ER '
q2A
2mA

, qe '
me

mA
qA . (93)

It should be noted that the atomic recoil energy, ER, and the electron transition energy,

�E, are correlated through the energy-momentum conservation;

ER =
µ2
N

2mN
v2DM

0

@
 
1�

s

1�
2�E

µNv2DM

!2

+ 2(1� cos ✓CM)

s

1�
2�E

µNv2DM

1

A , (94)

where

�E = Ee + En` , (95)

En` =
1

2

X



�`,|+1/2|�1/2En . (96)

From this expression, we find the minimum dark matter velocity for given ER and �E,

vDM,min '
mNER + µN�E

µN

p
2mNER

. (97)

In Fig. 1, we show the minimum velocity as a function of ER for isolated Ar and Xe atoms.

We also show the kinematically allowed region of ER and �E for Ar and Xe atoms for

vDM = 10�3 in Fig. 2.
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We also show the kinematically allowed region of ER and �E for Ar and Xe atoms for

vDM = 10�3 in Fig. 2.
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Implication on Dark Matter Direct Detection Experiments

We cannot use our results based on the isolated atoms for the valence 
electrons.

For the inner electrons, the effects from the environments are not significant. 
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FIG. 4. The di↵erential event rates expected at the single-phase experiments with the liquid Xe

target. The black lines show the conventional atomic recoil spectrum with the electron cloud

una↵ected, which are almost the same as the ones in the conventional analysis. The green, blue,

and pink lines show the rates with the ionization from n = 3, 4, and 5, respectively. Here, we do

not take the energy resolution into account. Since we apply the estimations for the isolated atoms,

the ionization spectrum from the valence electrons, i.e. n = 5, are not reliable.

The figures show that the electronic energy from the ionizations can be larger than the

maximum value of the (electron equivalent) nuclear recoil energy for a rather light dark

matter. As discussed in the previous section, the shape of the energy spectrum of the

electronic injections is not sensitive to the incident dark matter velocity as long as they are

kinematically allowed. The nuclear recoil energy, on the other hand, depends on the dark
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Migdal Effect single-phase Liquid Xe detectors 

A few events with Edet = O(1)keV are  expected for 105 kg days !

Edet  = (0.1-0.2) ER  + EEM EEM = Ee + Edex ~ Ee - En 

The atom recoil energy is lower than threshold  ER < MDM2 /MA  x vDM2   < O(1)keV

XM
A

SS threshold

Neutrino Background

Implication on Dark Matter Direct Detection Experiments
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FIG. 4. The di↵erential event rates expected at the single-phase experiments with the liquid Xe

target. The black lines show the conventional atomic recoil spectrum with the electron cloud

una↵ected, which are almost the same as the ones in the conventional analysis. The green, blue,

and pink lines show the rates with the ionization from n = 3, 4, and 5, respectively. Here, we do

not take the energy resolution into account. Since we apply the estimations for the isolated atoms,

the ionization spectrum from the valence electrons, i.e. n = 5, are not reliable.

The figures show that the electronic energy from the ionizations can be larger than the

maximum value of the (electron equivalent) nuclear recoil energy for a rather light dark

matter. As discussed in the previous section, the shape of the energy spectrum of the

electronic injections is not sensitive to the incident dark matter velocity as long as they are

kinematically allowed. The nuclear recoil energy, on the other hand, depends on the dark
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For heavier dark matter, the atom recoil energy is much lower than threshold   
                                                ER < MA2 x vDM2   = O(10-100)keV
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The  Migdal effect is submerged below the conventional nuclear recoil spectrum.

Edet  = (0.1-0.2) ER  + EEM EEM = Ee + Edex ~ Ee - En 

Implication on Dark Matter Direct Detection Experiments

Migdal Effect single-phase Liquid Xe detectors 



LUX result (1811.11241 LUX collaboration) 

LUX collaboration analyzed data by taking into account of the Migdal effects.

The result shows that the LXe can test the low mass dark matter region !

4

FIG. 2. Illustration of the DM-nucleus scattering event rate
from the Migdal e↵ect with a heavy scalar mediator (solid
black line) for mDM = 1 GeV/c2 with a cross section per
nucleus of 1⇥10�35 cm2. Also shown is the e�ciency from the
in situ tritium measurements performed by the LUX detector
(dashed teal line). The hatched blue area indicates the event
rate considered for this analysis with tritium e�ciency and a
1.24 keV energy threshold (dotted gray line) applied. Data
quality cuts are not included.

1
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FIG. 3. The expected signal from DM-nucleus interactions
through Migdal e↵ect with a cross section per nucleus of 1 ⇥
10�35 cm2 projected onto a two-dimensional space of log10S2
vs. S1. Assumptions are the same as in Fig. 2 with additional
data quality cuts applied.

tor instrumentation, and external environmental sources
as described in [22]. The background model used in this
work is identical to that used in [6].

Results.— The sub-GeV DM signal hypotheses are
tested with a two-sided profile likelihood ratio (PLR)
statistic. For each DM mass, a scan over spin-
independent DM-nucleon cross section is performed to
construct a 90% confidence interval, with the test statis-
tic distribution evaluated by Monte Carlo sampling using
the RooStats package [24]. Systematic uncertainties
in background rates are treated as nuisance parameters
with Gaussian constraints in the likelihood. Six nuisance

FIG. 4. Contours containing 95% of the expected DM sig-
nal from the Bremsstrahlung and Migdal e↵ects. Solid am-
ber contour indicates a Bremsstrahlung signal of mDM =
0.4 GeV/c2 assuming a heavy scalar mediator. The other two
contours are for the Migdal e↵ect: the dashed teal contour
is for mDM = 1 GeV/c2 assuming a heavy scalar mediator,
and the dash-dot light blue contour is for mDM = 5 GeV/c2

assuming a light vector mediator. The contours are over-
laid on 591 events observed in the region of interest from the
2013 LUX exposure of 95 live-days and 145 kg fiducial mass
(cf. Ref [6]). Points at radius < 18 cm are black; those at
18-20 cm are gray since they are more likely to be caused
by radio-contaminants near the detector walls. Distributions
of uniform-in-energy electron recoils (blue) and an example
signal from mDM = 150 GeV/c2 (red) are indicated by 50th

(solid), 10th, and 90th (dashed) percentiles of S2 at given S1.
Gray lines, with ER scale of keVee at the top and Lindhard-
model NR scale of keVnr at the bottom, are contours of the
linear-combined S1-and-S2 energy estimator [23].

parameters are included for low-z-origin �-rays, other �-
rays, � particles, 127Xe, 37Ar, and wall counts, as de-
scribed in [6] (cf. Table I). Systematic uncertainties from
light yield have been studied but were not included in
the final PLR statistic since their e↵ects were negligible.
This is expected as the error on light yield obtained from
the tritium measurements ranges from 10% at low en-
ergies to sub 1% at higher energies. Moreover, changing
the light yield slightly is not expected to change the limit
significantly since only a small fraction of events near the
applied energy threshold are a↵ected.
For an illustration of the expected location of the signal

in the S1-log10S2 detector space, contours for various
DM masses with di↵erent mediators are overlaid on the
observed events from WS2013 shown in Fig. 4.
Upper limits on cross section for DM masses from 0.4

to 5 GeV/c2 for both the Bremsstrahlung and Migdal
e↵ects assuming both a light and a heavy scalar medi-
ator are shown in Fig. 5. Upper limits for a light and
a heavy vector mediator for the Migdal e↵ect were also
calculated. The limits are scaled by Z2/A2 compared to
the scalar mediator case and can be found in [36]. The
observed events are consistent with the expectation from

5

FIG. 5. Upper limits on the spin-independent DM-
nucleon cross section at 90% C.L. as calculated using the
Bremsstrahlung and Migdal e↵ect signal models assuming a
scalar mediator (coupling proportional to A2). The 1- and
2-� ranges of background-only trials for this result are pre-
sented as green and yellow bands, respectively, with the me-
dian limit shown as a black dashed line. The top figure
presents the limit for a light mediator with qref = 1 MeV.
Also shown is a limit from PandaX-II [25] (pink). The bot-
tom figure shows limits for a heavy mediator along with
limits from the spin-independent analyses of LUX [1] (red),
PandaX-II [2] (gray), XENON1T [26] (orange), XENON100
S2-only [27] (pink), CDEX-10 [28] (purple), CDMSlite [29]
(teal), CRESST-II [30] (dark blue), CRESST-III [31] (light
blue), CRESST-surface [32] (cyan), DarkSide-50 [33] (green),
NEWS-G [34] (brown), and XMASS [35] (lavender).

background only.
Summary.—Contributions from the Bremsstrahlung

and Migdal e↵ects extend the reach of the LUX detector
to masses previously inaccessible via the standard NR
detection method. The Bremsstrahlung photon and the
electron from Migdal e↵ect emitted from the recoiling
atom boost the scattering signal for low mass DM par-
ticles since the energy transfer is larger in these atomic
inelastic scattering channels than in the standard elas-

tic channel and the ER e�ciency is significantly higher
at low energies. This analysis places limits on spin-
independent DM-nucleon cross sections to DM masses
down to 0.4 GeV/c2 from 5 GeV/c2 assuming both scalar
and vector, and light and heavy mediators. The result-
ing limits achieved using the Migdal e↵ect in particu-
lar create results competitive with detectors dedicated
to searches of light DM. Furthermore, this type of anal-
ysis will be useful to the next-generation DM detectors,
such as LZ [37] by extending their reach to sub-GeV DM
masses.
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Double Phase Experiment (detect scintillation photon and ionized electrons)

S1 ∝ Nscinchilation

S2 ∝ Nelectron at ionization
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FIG. 5: Comparison of the energy spectrum after all cuts for the blinded data set (black dots) with the background model
derived from the five-day non-blinded data set (black dashed line). Also shown are the spectra for three excluded WIMP signals.
The solid colored lines are the unsmeared WIMP spectra, while colored points are the spectra that incorporate resolution e↵ects
and all cuts. Left: Standard elastic nuclear recoil spectra that are excluded for WIMPs with masses of 0.7 GeV/c2 (red), 2
GeV/c2 (blue) and 10 GeV/c2 (green). Right: Inelastic Migdal spectra that are excluded for WIMPs with masses of 0.05
GeV/c2 (magenta), 0.1 GeV/c2 (cyan) and 1.0 GeV/c2 (yellow).

After the un-blinding, the numbers of counts in these
intervals were extracted from the data shown in Fig. 4.
In the left panel of Fig. 5, the derived 90% C.L. upper
limits of signals for WIMPs with masses of 0.7, 2 and
10 GeV/c2 are compared to the experimental data. The
background model, i.e. the average spectrum recorded in
the 5 non-blinded days, is also shown.

Finally, the spin-independent WIMP-nucleon cross
sections excluded at 90% C.L. as a function of the
WIMP mass are shown as the solid red curve in Fig. 6,
and compared with the other experimental results from
Refs. [6, 7, 16, 17, 36, 37, 47–51], and the so-called neu-
trino floor [52]. The EDELWEISS-Surf result is the most
stringent, nuclear recoil based, above-ground limit on
spin-independent interactions above 600 MeV/c2.

B. Strongly Interacting Dark Matter

Thanks to its above-ground operation, the present DM
search can probe SIMPs that would escape detection in
underground experiments as the DM particles would be
stopped in the rock overburden before reaching the de-
tectors. We therefore extend the data interpretation of
Sec. IVA to determine for each mass a range of excluded
cross sections that take into account the absorption of the
SIMP flux in the material above the detector. Overly
conservative SIMP limits can be obtained by including
in the analysis only those SIMPs that reach the detector
without scattering [55]. Here, more stringent limits are
obtained by fully taking into account the e↵ect of scatter-
ing on the velocity distribution of the SIMP flux reach-
ing the detector. This velocity distribution is calculated
using the publicly-available verne code [56], introduced

in Ref. [31]. It assumes continuous energy losses and
straight-line trajectories for SIMPs travelling through
the atmosphere, overburden and detector shielding [19].
Ref. [57] showed that this simplified formalism leads to
constraints similar to more complete but computationally
expensive Monte Carlo simulations (e.g. [53, 58–60]).

The SIMP flux calculation takes into account the vari-
ation of the direction of the mean DM flux [61] over
the course of the blinded EDELWEISS-Surf exposure (24
hours, starting 17h00 on 26th May 2018). It also ac-
counts for the atmospheric overburden above the detector
as well as shielding provided by the material in the build-
ing where the detector is located and the lead, steel and
copper components in its vicinity. The dominant sources
of stopping for downward-travelling particles are 20 cm
(40 cm) of concrete from the ceiling (walls) and 10 cm
of lead shielding which surrounds the detector in all di-
rections, apart from an opening of around 50� above the
detector. Upward-travelling particles are almost entirely
stopped by the Earth.

The escape velocity from the surface of the Earth is
around 11 km/s. For DM particles at such low speeds,
e↵ects such as gravitational capture [62, 63] and gravita-
tional focusing [64] may become important. These e↵ects
are not incorporated in the flux calculation. Instead, the
DM velocity distribution is conservatively set to zero be-
low vcut = 20 km/s when calculating SIMP bounds.

Because of the very large values of cross sections in-
volved and consequently large attenuation of the flux, the
simulation of the SIMP signals corresponding to the up-
per bound of the excluded cross section contour requires
samples many orders of magnitude larger than those re-
quired in the simple WIMP analysis of Sec. IVA. As
scaling up the simulated sample size from 106 to > 1010

The electron signal in the Migdal effects leads to a higher energy signal  
for a given size of the momentum transfer !

Again, the Migdal effects allow a search for a lighter WIMP !

Color solid line : raw prediction   
Color points : prediction after cut

EDELWEISS = Ge bolometer experiment : signal = deposited energy & ionization
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The EDELWEISS extended their reach to the sub-GeV dark matter !

EDELWEISS = Ge bolometer experiment : signal = deposited energy
10
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FIG. 6: The 90% C.L. limits on the cross section for spin-independent interaction between a DM particle and a nucleon as a
function of the particle mass obtained in the present work. The thick solid red line corresponds to the result from the standard
WIMP analysis. The associated red contour is obtained from the SIMP analysis, taking into account the slowing of the DM
particle flux through the material above the detector. The thick dashed line and its accompanying red contour is obtained in
the Migdal analysis. These results are compared to those of other experiments (see text). Other results using the Midgal e↵ect
are shown as dashed lines. The other shaded contours correspond to the SIMP analyses of the CRESST 2017 Surface Run
[30, 31, 49] (blue contour), the XQC rocket [51, 53] (grey contour with full line) and the CMB [54] (grey contour with dashed
line).

was not technically feasible for computational reasons,
we developed an analytic model for the detector response
based on the simulation of 107 events with input energies
ranging from 0 to 2.5 keV (see Appendix A). This model
describes the probability POF(Eout|Ein) of reconstructing
an energy Eout given an initial energy Ein when applying
the optimal filter algorithm of Sec. IIIA 3. The observed
spectrum of events dR

dEout
is thus given by:

dR

dEout

= ⌘(Eout)

Z 1

0

POF(Eout|Ein)
dR

dEin

dEin . (4)

The measured e�ciency as a function of output energy
is ⌘(Eout), as shown by the red curve in the right panel
of Fig. 3. The calculation of POF and the comparison of
the analytic detector response with results of the pulse
simulations is discussed in Appendix A.

Using the signal calculated in these simulations, the
same statistical procedure described in Sec. IVA is ap-
plied to derive the 90% C.L. upper bounds on the ex-
cluded cross section interval as a function of SIMP mass,

resulting in the red contours shown in Fig. 6. The upper
bound reported in this work improves upon the high-
cross section reach of the CRESST 2017 surface run [49]
(thin blue), as reported in Refs. [30, 31, 57]. This im-
provement is driven in part by the longer exposure of the
EDELWEISS-Surf run, which covers a full day. This in-
cludes periods when the mean direction of the DM flux
(set by the Sun’s velocity) is perpendicular to the Earth’s
surface, reducing the attenuation e↵ect of the Earth and
atmosphere.

C. Migdal Search

As discussed in Sec. II A, the detector acts as a true
calorimeter with equal sensitivity to the energy deposited
by nuclear and electronic recoils. In this section, we con-
sider the case where the WIMP or SIMP interaction with
the target atoms induces simultaneously a nuclear recoil
and the ionization of an electron. The final state com-



SUMMARY

In the conventional analysis of dark matter direct detection experiments 
through the nuclear scattering, the whole atom is assumed to be recoiled.

In reality, the electrons take some time to catch up with the recoiled nucleus 
leading to electronic energy injection in addition to the atomic recoil → Migdal Effect 

We reformulated the Migdal effect, where we can manifestly see the energy-
momentum conservation and the probability conservation. 

The emitted electronic energy can be in the keV range even for a rather light dark 
matter (MDM < 10GeV) where the atomic recoil energy is lower than energy 
threshold, i.e. O(1)keV.

Migdal Effects has advantageous to look for small “q” with a large cross section 
dark matter →  Lower Mass dark matter such as SIDM/Asymmeteric Dark matter

Can we use emulsion experiment to test the Migdal effects themselves ???


