43rd Johns Hopkins Workshop Kavli IPMU, 4 June 2019

Understanding halo substructure for indirect dark matter searches

Shin'ichiro Ando

U. Amsterdam / U. Tokyo

Indirect dark matter searches

Particle physics

Astrophysics

$$I_{\gamma}(E_{\gamma},\psi) = \frac{1}{2} \frac{\langle \sigma v \rangle}{m_{\chi}^2} \frac{dN_{\gamma,\mathrm{ann}}}{dE_{\gamma}} \frac{1}{4\pi} \int d\ell \ \rho_{\chi}^2(r[\ell,\psi])$$

Density profiles of dark matter halos

 Numerical simulations find that density profiles are well fitted with Navarro-Frenk-White (NFW) profile:

$$\rho(r) = \frac{\rho_s}{(r/r_s)(r/r_s+1)^2}$$

- There are two parameters: r_s and ρ_s, both of which are functions of halo mass
- This is also supported by various observations (lensing measurements of galaxy clusters, etc.)

The Galaxy

The Universe

25 Mpc

5 Mpc/h

Galactic substructure from Via Lactea II Diemand et al., *Nature* **454**, 735 (2008)

Millennium Run 10.077.696.000 particles

k Institut fur physik

GeV excess: Signals of dark matter annihilation?

Calore et al., *Phys. Rev. D* **91**, 063003 (2015)

- Gamma-ray excess in GeV regime from the Galactic centre (many sigma) of unknown origin
- Brightness profile is consistent with NFW² (with inner slope of –1.26)
- Spectral shape is also consistent with expectation from annihilation
 - mass: ~50 GeV
 - cross section: ~2×10⁻²⁶ cm³ s⁻¹

GeV excess: Evidence for astrophysical point sources?

DM constraints from dwarf spheroidal galaxies

- Highly DM dominated system → suitable environment to test DM annihilation
 - Most robust constraints
- The latest results with PASS 8 data are pretty stringent
- They exclude the canonical cross section for WIMPs lighter than several tens of GeV
 - Nominal sample: 41 dwarfs
 - Ackermann et al. (2015): 15 dwarfs

Unresolved gamma-ray background

Cuoco et al., Astrophys. J. Suppl. Ser. 232, 10 (2017)

Ajello et al., Astrophys. J. 800, L27 (2015)

Dark matter subhalos

http://wwwmpa.mpa-garching.mpg.de/aquarius/

Why subhalos?

• Dwarf galaxies from in subhalos

- Dark matter halos contain lots of subhalos (as CDM predicts), so *all* the extragalactic halos are subject to the substructure boost of dark matter annihilation
- Hence subhalos are relevant for all the indirect DM searches except for Galactic center region
- Subhalo statistics is important discriminant of different dark matter candidates (cold, warm, self-interacting?)

Annihilation boost

$L(M) = [1 + B_{\rm sh}(M)]L_{\rm host}(M)$

$B_{\rm sh}(M) = \frac{1}{L_{\rm host}(M)} \int dm \frac{dN}{dm} L_{\rm sh}(m) [1 + B_{\rm ssh}(m)]$

http://wwwmpa.mpa-garching.mpg.de/aquarius/

Motivation for physics

- Help increase the rate of dark matter annihilation
- Mass of smallest halos is determined by scattering between dark matter and SM particles (kinetic decoupling + free-streaming)
- Boost factor depends on primordial power spectrum at small scales

Impact of the smallest structure

Diamanti, Cabrera-Catalan, Ando, Phys. Rev. D 92, 065029 (2015)

 MCMC parameter scan for 9-parameter MSSM **Typical smallest halo mass:** $10^{-12} - 10^{-4} M_{\odot}$

How uncertain is the boost?

Gao et al., Mon. Not. R. Astron. Soc. 419, 1721 (2012)

Moliné et al., Mon. Not. R. Astron. Soc. 466, 4974 (2017)

- Very uncertain, of which we don't even have good sense
- No way that it can be solved with numerical simulations

Analytic models of subhalo evolution

- Complementary to numerical simulations
- Light, flexible, and versatile
- Can cover large range for halo masses (micro-halos to clusters) and redshifts (z ~ 10 to 0)
- Physics-based extrapolation
- Reliable if it is calibrated with simulations at resolved scales

Content

- Model description and test against numerical simulations
- Application to indirect dark matter searches
 - Annihilation boost factor 1803.07691 1903.11427

1803.07691

1903.11427

- Satellite prior for dwarf J-factor estimates In progress
- Prospects for LSST dwarfs 1905.07128
- Gaia searches for subhalo counterparts in Fermi unassociated sources
 1805.02588

Collaborators

Nagisa Hiroshima (RIKEN)

Tomoaki Ishiyama (Chiba U)

Alex Geringer-Sameth (Imperial College) Ioana Ciucă, Daisuke Kawata, Francesca Calore, Justin Read, Cecilia Mateu

Sebastian Hoof, Roberto Trotta, Matt Walker

Bachelor students in Amsterdam

Tiago Alves, Siebren Broersen, Stijn Delnoij, Thomas Goldman, Jim Groefsema, Jorinde Kleverlaan, Jaïr Lenssen, Toon Muskens, Liam X. Palma Visser, Ebo Peerbooms, Bram van der Linden, Sill Verberne

Analytic modeling

Formulation

$$L_{\rm sh}^{\rm total}(M,z) = \int dm \frac{dN_{\rm sh}}{dm} L_{\rm sh}(m)$$

Conventional formula

Formulation

Halo formation and accretion history

 Based on spherical collapse model and extended Press-Schechter formalism (Yang et al. 2011)

$$\frac{d^2 N_{\rm sh}}{dm_{\rm acc} dz_{\rm acc}} \propto \frac{1}{\sqrt{2\pi}} \frac{\delta(z_{\rm acc}) - \delta_M}{(\sigma^2(m_{\rm acc}) - \sigma_M^2)^{3/2}} \exp\left[-\frac{(\delta(z_{\rm acc}) - \delta_M)^2}{2(\sigma^2(m_{\rm acc}) - \sigma_M^2)}\right]$$

 Primordial power spectrum + cutoff scale will change rms over-density σ(M)

Subhalo accretion rate

Yang et al., Astrophys. J. 741, 13, (2011)

Infall distribution of subhalos: Extended Press-Schechter formalism

 $\frac{d^2N}{d\ln m_a d\ln(1+z_a)}$

Formulation

$$L_{\rm sh}^{\rm total}(M,z) = \int dm_{\rm acc} \int dz_{\rm acc} \frac{d^2 N_{\rm sh}}{dm_{\rm acc} dz_{\rm acc}} L_{\rm sh}(z \mid m_{\rm acc}, z_{\rm acc})$$
Number of subhalos accreted
at $z_{\rm acc}$ with mass $m_{\rm acc}$
Luminosity of
the subhalo at z

$$L_{\rm sh}(z \mid m_{\rm acc}, z_{\rm acc}) \propto \rho_s^2(z \mid m_{\rm acc}, z_{\rm acc}) r_s^3(z \mid m_{\rm acc}, z_{\rm acc}) \left\{ 1 - \frac{1}{[1 + r_t(z \mid m_{\rm acc}, z_{\rm acc})/r_s(z \mid m_{\rm acc}, z_{\rm acc})]^3} \right\}$$

Parameters subhalo density profile after tidal mass loss

Subhalo mass loss

- Monte Carlo approach following Jiang & van den Bosch (2016)
 - Determine orbital energy and angular momentum
 - Assume the subhalo loses all the masses outside of its tidal radius instantaneously at its peri-center passage
- Mass-loss rate follows power law for wide range of *m/M*

Subhalo density profile after mass loss

Penarrubia et al., Mon. Not. R. Astron. Soc. 406, 1290, (2010)

- Procedure
 - 1. Solve the differential equation from z_{acc} to z to get m
 - Calculate p_s and r_s following Penarrubia et al. (2010)
 - 3. Obtain truncation radius r_t by solving

$$m = \int_0^{r_t} dr \ 4\pi r^2 \rho(r)$$

Results Subhalo mass function and annihilation boosts

Comparison with simulations

Name		N	L	Softening	$m_{ m p}~({ m M}_{\odot})$	Reference
ν^2 GC-S	Cluster	2048^{3}	411.8 Mpc	6.28 kpc	$3.2 imes 10^8$	[38, 44]
ν^2 GC-H2	Galaxy	2048^{3}	$102.9~{\rm Mpc}$	$1.57 \ \mathrm{kpc}$	5.1×10^6	[38, 44]
Phi-1	Dwarf	2048^{3}	47.1 Mpc	706 pc	$4.8 imes 10^5$	Ishiyama et al. (in prep)
Phi-2	Dwarf	2048^{3}	$1.47 \mathrm{Mpc}$	11 pc	14.7	Ishiyama et al. (in prep)
A_N8192L8	800 <i>Micro</i>	8192^{3}	$800.0 \ \mathrm{pc}$	$2.0 \times 10^{-4} \text{ pc}$	3.7×10^{-11}	Ishiyama et al. (in prep)

[38] Ishiyama et al., *Pulb. Astron. Soc. Jap.* **67**, 61 (2015)[44] Makiya et al., *Pulb. Astron. Soc. Jap.* **68**, 25 (2016)

Subhalo mass function: Clusters and galaxies

Subhalo mass function: Galaxies at z=2,4

Subhalo mass function: Dwarfs at z=5

Subhalo mass function: Mass fraction in the subhalos

Annihilation boost

Hiroshima, Ando, Ishiyama, *Phys. Rev. D* **97**, 123002 (2018) Ando, Ishiyama, Hiroshima, arXiv:1903.11427 [astro-ph.CO]

- Include effect of subⁿsubhalos iteratively
- They are assumed to be distributed following

 $\propto [1 + (r/r_s)^2]^{-3/2}$

- All the sub-subhalos outside of the tidal radius is assumed lost
- Important to include up to sub-substructures
- Boost can be as large as ~1 (3) for galaxies (clusters)

Annihilation boost

Hiroshima, Ando, Ishiyama, *Phys. Rev. D* **97**, 123002 (2018) Ando, Ishiyama, Hiroshima, arXiv:1903.11427 [astro-ph.CO]

w/ up to sub³-subhalos

- Boost factors are higher at larger redshifts, but saturates after z = 1
- For one combination of host mass and redshifts (*M*, *z*), the code takes only ~O(1) min to calculate the boost on a laptop computer

Application: IGRB

Implications for dwarf J factors

Dwarf J factors

$$J = \int d\Omega \int d\ell \rho^2(r(\ell, \Omega))$$

- Estimates of density profiles and hence J factors of dwarf galaxies are based on stellar kinematics data
- J factors of promising dwarfs are ~10¹⁹ GeV²/cm⁵ or larger
- But *ultrafaint* dwarfs do not host many stars

Dwarf J factors

Hayashi et al., Mon. Not. R. Astron. Soc. 461, 2914 (2016)

Estimates of density profiles

• Estimates of r_s and ρ_s usually rely on Bayesian statistics:

$$P(r_s, \rho_s | \mathbf{d}) \propto P(r_s, \rho_s) \mathscr{L}(\mathbf{d} | r_s, \rho_s)$$

- If data are not constraining, the posterior depends on prior choices
- Usually **log-uniform priors** are chosen for both r_s and ρ_s
- Doing frequentist way is very challenging, which is done only for *classical* dwarfs (Chiappo et al. 2016, 2018)

Three slides skipped in this uploaded version as they contain preliminary results...

Prospects for LSST

Ando et al., arXiv:1905.07128 [astro-ph.CO]

- LSST will cover nearly half the sky and expected to discover many dwarf galaxies
- Our subhalo models with simple phenomenological prescription of forming satellites predict several tens to hundred dwarfs to be discovered with LSST
- High-J tail is dominated by Poisson uncertainty, making other uncertainties (e.g., MW mass measurements) less of an issue
- LSST wouldn't dramatically increase the number of dwarfs with very high *J* factors

Prospects for LSST

Ando et al., arXiv:1905.07128 [astro-ph.CO]

- LSST will cover nearly half the sky and expected to discover many dwarf galaxies
- Our subhalo models with simple phenomenological prescription of forming satellites predict several tens to hundred dwarfs to be discovered with LSST
- High-J tail is dominated by Poisson uncertainty, making other uncertainties (e.g., MW mass measurements) less of an issue
- LSST wouldn't dramatically increase the number of dwarfs with very high *J* factors

Implication for Fermi unassociated sources

Fermi unassociated sources

Bertoni et al., *JCAP* **1605**, 049 (2016)

- There are several *extended* unassociated sources that might be compatible with dark matter annihilation from subhalos
- E.g., 3FGL J2212.5+0703 (Bertoni et al. 2016); 3FGL J1924+1034 (Xia et al. 2017)

Gaia DR2 search for subhalos

Ciuca, Kawata, Ando, Calore, Read, Mateu, Mon. Not. R. Astron. Soc. 480, 2284 (2018)

- No detection of dwarfs (subhalos) towards any of the 8 unassociated sources
- Gaia DR2 should be sensitive to subhalos with pre-infall mass of $>\!10^9\,M_{sun}$ within 20 kpc

Implication of Gaia non-detection

Ciuca, Kawata, Ando, Calore, Read, Mateu, *Mon. Not. R. Astron. Soc.* **480**, 2284 (2018)

3FGL J2212.5+0703 (star), 3FGL J1924.8–1034 (circle), FHES J1501.0–6310 (pentagon), FHES J1723.5–0501 (diamond), FHES J1741.6–3917 (square), FHES J2129.9+5833 (cross), FHES J2208.4+6443 (plus), FHES J2304.0+5406 (square) Analytic subhalo model enables to compute PDF of source extension and gamma-ray flux (for a fixed distance)

> $\langle \sigma v \rangle = 2 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ $m_{\chi} = 25 \text{ GeV}$

- Only they can be dark matter annihilation for $10^9 M_{sun}$ at d = 3 kpc
- This is unlikely because (1) probability is very small and (2) it will be depleted by the disk
- Conclusion: no Fermi unassociated sources are subhalos

Conclusions

- Combining the distribution of subhalo accretion with the evolution afterwards, we can analytically model various subhalo quantities such as mass function and annihilation boost factor
- The subhalo mass function appears to be in good agreement with results of numerical simulations for wide range of masses and redshifts
- The annihilation boost factors are predicted to be ~1 (3) for galaxy (cluster) halos
- The models enable to compute first realistic prior distribution for the dwarf J estimates, which we find smaller than previously thought for the most promising ultrafaint dwarf galaxies
- LSST will find tens to hundred new dwarfs, but cross section limits are unlikely improved in a drastic manner
- The model can be used to reject the possibility of dark matter annihilation for Fermi unassociated sources