

Direct Detection of Dark Matter and XENONnT

Kai Martens Kavli IPMU, The University of Tokyo at the John Hopkins Workshop 2019

Overview

- What is Dark Matter (DM)?
- What is DM Direct Detection?
- How to directly detect DM?
- The XENON way of detecting DM
- Upgrading XENON1T to XENONnT
- Beyond XENONnT: Completing the XMASS physics program

What is Dark Matter

Dark Matter is what:

- holds galaxy clusters together
- holds galaxies together
- shaped the Universe: BAO
- bred the fuel for stars: BBN
- explains the CMB measurements
 - keeps theorists puzzled
 - keeps experimentalists busy: LHC, (in-)direct detection

What we know:

Dark Matter (DM) gravitates, and is:

long lived: still around, since the Big Bang

neutral: dark

- collisionless: bullet cluster
- non-relativistic: heavy and cold (freeze out) light and axionic (misalignment)

What we hope for:

... that it also *interacts* with OUR baryonic world in some way OTHER than gravitationally ...

If – and only if – it does can we *maybe* "see" or even probe Dark Matter.

Theoretical """"Guidance?

2019.06.04

6

DM Direct Detection Signals?

Most persistent: DAMA/Libra annual modulation (1805.10486: 12.9o)

2-6 keV

worldwide NaI(TI) verification efforts:

- ANAIS (Canfranc, Spain)
- Cosine (Yangyang, Korea)
- DM-Ice (Antarctica)
- Sabre (LNGS, Italy)

Kai Martens, Kavli IPMU, @JHW2019

Direct Detection Technologies

Why (Liquid) Xenon?

- high mass number
- no long-lived radioactive isotope
- high density (liquid): 3g/cm³
- 48% odd isotopes (natural)
- ββ candidate
- good scintillation yield

SI cross-section:

coherent on whole nucleus $\propto A^2$ but: suppressed by form factor \rightarrow advantage diminishes with momentum transfer...

- → high SI cross section
- → <u>no intrinsic background</u>
- → self-shielding
- → SD cross section
- $^{136}Xe \rightarrow ^{136}Ba+2e^{-}+2.48MeV$
- ~ 46ph/keV

The XENON Collaboration

XENON

The next step in the **XENON program**:

dual phase liquid xenon detectors for

- the discovery of dark matter particle interactions
- a precision measurement of pp-solar neutrinos
- the observation of SN explosions through coherent scattering
- the search for double beta decay (¹³⁶Xe)

 \rightarrow the goals are the same as they were for single phase XMASS!

XENON timeline: (3rd line: total Xe / length of drift)

pictures above of XENON1T: \rightarrow proven infrastructure in place \rightarrow upgrade !!!

2019.06.04

Kai Martens, Kavli IPMU, @JHW2019

Muon

 10^{-}

 10^{-1}

SNOlab

5

Equivalent depth under flat surface [km w.e.]

714

Hall B: XENON1T → XENONnT

L'AQUILA

XENON1T:

(current holder of heavy WIMP world bragging rights)

infrastructure and sub-systems proven in action !!! → ready, <u>upgrade</u>, go...

CERN

New: Liquid Phase Purification

electronegative contaminants:

- limit the electron lifetime \rightarrow limit S2 for long drift
- continually re-supplied from detector materials...
 - \rightarrow <u>need to be removed continually!</u>

1.5 m drift, ~10⁻⁴⁸ cm² \rightarrow > <u>1 ms required</u> !

XENON up to 1T, XMASS, ... so far all used hot zirconium getters

XnT Neutron Veto: à la Japonaise

Neutron Veto for XENONnT

XENONnT Sensitivity Projection

a discovery experiment is being built at LNGS:

- using the cumulative experience of:
 - many individual people !!!
 - three successful generations of XENON detectors !!!
 - ► XMASS
 - Kamioka Gd efforts
 EGADS and SK-Gd
 - Iab staff at LNGS and Kamioka
- setting out to detect dark matter:
 - heavy WIMPs
 - nimble Axions
 - YOUR favorite ?
 - anything that leaves a discernible trace...

Hisano 2015: example of a next-to-leading order QCD cross-section calculation for wino-DM

Please see Shingo Kazama's talk on XENON1T results later today!

After XENONnT, LZ, PandaX-4T

30 tonnes fiducial volume means 50 tonnes of Xe ~ yearly world production \rightarrow 40 tonnes in TPC, 200 tonne*year exposure

G3 LXe Experiment: The Vision

still pushing the WIMP DM boundary - or measuring WIMP DM spectrum?

solar neutrinos:

- measure ER spectrum of pp- and ⁷Be neutrinos
- **CEvNS** for ⁸B neutrinos (+ direct SN neutrinos...) \leftarrow <u>ER suppression</u>
 - Q: ¹³⁶Xe enrichment ($\rightarrow \beta\beta$ ER background...) ??? (heard of someone dreaming of a 1km high distillation column...) 40 tonnes natural Xe = 4.4 tonnes of ¹³⁶Xe

case study (for live development project): DARWIN \rightarrow JCAP 11, 017 (2016)

0vββ with 30 tonne LXe Detector

HK starts 20XY \rightarrow water shielded high pressure Xe TPC inside SK tank $\ref{eq:starts}$

Outlook

- we, the Japanese groups, are playing an important role, and contribute important knowledge and technology in XENONnT
- **XENONNT** and its competitors are built as <u>discovery machine</u>s: push deep into the 10⁻⁴⁸ cm² scale for WIMP SI interactions
- this physics program of both XENON and XMASS will be realized by one world-wide G3 liquid xenon detector consortium
- personal remark:

Hall-C (ICRR) and Lab-1 (Kavli-IPMU) are a unique asset:

- underground cleanroom environment with screening facilities
- operational 800 ton water shield and up to X 1ns FADC ch.

- timely: national:

worldwide:

G3C (G3 consortium) Kamioka Observatory: effort to "internationalize" LXe effort needs testbed

what do YOU see:

mere coincidence, or a chance to take a central role and leadership ?!?