

KMiIMXKMI

Latest Results from the XENON1T Dark Matter Project

Shingo Kazama (Nagoya University, KMI)

on behalf of the XENON collaboration @43rd Johns Hopkins Workshop, June 4th 2019

Xenon-Based Dual-Phase TPC

Xenon-Based Dual-Phase TPC

XENON1T at LNGS

Water tank

- 700 t of pure water

Cherenkov Muon Veto

- 84 8-inch PMTs (R5912)

External calibration

- ²⁴¹AmBe
- Neutron generator

Cryostat and support structure for TPC

TPC

- 248 3-inch PMTs
 (R11410-21,QE34%@178nm)
- Diameter ~1m, height ~1m
- Fully covered by high reflective PTFE
- LXe mass: 3.2 t(total),
 2.0t (active)

Cryogenics, and purification

Internal calibration - ^{83m}Kr, ²²⁰Rn

DAQ and slow control

Xenon storage, handling and Kr distillation

EPJ-C 77 (2017) 12

Electronic Recoil Backgrounds

- Material background
 - Suppressed by careful material selections and fiducialization.
- ^{nat}Kr/Xe: (0.66 ± 0.11) ppt
 - Initially BG was ⁸⁵Kr dominated —> negligible due to online distillation column
- 222 Rn: ~10 μ Bq/kg (—> reduced to ~4 μ Bq/kg due to purification upgrade & online distillation)
 - Careful surface emanation control and further reduction by online distillation column

- ER rate: (82±5) events/(keV t y), in 1.3 t and below 25 keVee
 - In the dark matter search region, ~0.2 events/(keV t y)
- Lowest background ever achieved in a dark matter detector

Nuclear Recoil Backgrounds

- Muon-induced neutrons: reduced by overburden and veto
- CE ν NS from ⁸B neutrinos: irreducible background < 1 keV
- Radiogenic neutrons from (α ,n) and spontaneous fission from ²³⁸U and ²³²Th: reduced via material selection, multiplicity and fiducialization (+ a dedicated neutron veto for XENONNT)
- MC-based predictions from measured contaminations, validated with multi-scatter events.

Expectation in Iton FV, 4-50 keVnr window		
Source	Rate [t ⁻¹ y ⁻¹]	Fraction [%]
Radiogenic	0.6±0.1	96.5
$CE \nu NS$	0.012	2.0
Cosmogenic	<0.01	<2.0
		JCAP04 (2016) 027

ER/NR Calibrations

Blue: ER, Red: NR; — : median, … : $\pm 2\sigma$

Interpreting DM Search Data

- Results interpreted with unbinned profile likelihood analysis in s1, s2, R, z
 (all model uncertainties included in the likelihood as nuisance parameters)
- ▶ Piecharts: relative PDF from the best fit of 200 GeV WIMPs with 4.7x10⁻⁴⁷ cm²
- Core volume: to distinguish WIMPs over neutron background

Spin-Independent WIMP Search

- Strongest upper limit (at 90% CL) on SI WIMP-nucleon cross sections > 6 GeV
- Median sensitivity: factor 7 higher than for previous experiments (LUX, PandaX-II)
- > $1-\sigma$ fluctuation at higher WIMP masses could be due to background or signal

- Limits on WIMP interactions with ¹²⁹Xe (1/2) and ¹³¹Xe (3/2) (isotopes of xenon with nonzero nuclear spin)
- Most of the spin in xenon is carried by neutrons, so WIMPneutron scattering dominates.
- Constrain a new region in WIMP mass-mediator mass space Assumption: Dirac fermion and an s-channel interaction with quarks, mediated by a spin-1 particle of mass m_{med} with an axial-vector coupling to both the WIMP and the quarks (mediator couples equally to all quark flavors)

WIMP-Pion Interaction Search

- WIMP could couple to a virtual pion exchanged between the nucleons in a nucleus
- These pion-exchange currents can be coherently enhanced by the total number of nucleons.

may dominate in scenarios where spin-independent WIMP–nucleon interactions are suppressed

Phys. Rev. Lett. 122, 071301

Double Electron Capture in 124Xe

Electron capture Neutrino emission KLMN K L M N **/|***||||* Atomic relaxation 131mXe 214 Ph 2vECEC Materials Solar v Blinded region Interpolation 125 εsKr 136Xe Fit Blinded until BG model 103 was fixed Rate [keV⁻¹t⁻¹y⁻¹] 102 10^{1} 100 Residual

25

75

100

Energy [keV]

125

50

175

200

150

Nature 568, p.532-535, 2019 ¹²

- Two-neutrino double electron capture (2 ν ECEC)
 - second-order weak-interaction process
 - half-life >> the age of the Universe (~10¹² times larger)
- Two protons are converted into neutrons by the absorption of two electrons and the emission of two ν_e
 - filling of vacancies generate X-rays and Auger electrons

A good reference for nuclear matrix element calculation, and meaningful step in the search for neutrinoless double electron capture, a lepton number violation process

¹²⁴**Xe** \longrightarrow ¹²⁴Te + ν_e + ν_e

- 1 kg ¹²⁴Xe per tonne of liquid Xe
- ¹²⁴Xe undergoes 2ν ECEC to ¹²⁴Te with Q = 2857 keV
- Observable: peaks at 64.3±0.6 keV (double K-shell electron-capture)
- Total fiducial mass (1502 ± 9_{stat}) kg

Double Electron Capture in 124Xe

- Modeled nearby background ¹²⁵I (at 67.3 keV) from activation from neutron calibration
- Fit results: $\mu = (64.2 \pm 0.5) \text{ keV}$, $\sigma = (2.6 \pm 0.3) \text{ keV}$
- Half-life of (1.8 ± 0.5_{stat} ± 0.1_{sys}) x 10²² years, longest directly measured half-life to date
- significance $4.4 \sigma!$ (N_{signal} = 126 ± 29)

Summary and Outlook

- The first multi-ton scale LXe-TPC was operated > 1 y
- Achieved the lowest background in a dark matter detector
- Result from an analysis of 1 tonne year exposure: the strongest upper limit on SI WIMPnucleon cross sections for masses > 6 GeV, with 4.1×10⁻⁴⁷ cm² at 30 GeV
- First detection of two neutrino double electron capture in ¹²⁴Xe
- Many analyses in the pipeline (Migdal effect, S2-only, 0vββ-decay of ¹³⁶Xe, annual modulation, ALPs, Dark-Photons, etc)

