Perspective to search for dark components in the Universe with coherent photon collisions

> Kensuke Homma Hiroshima University On behalf of the SAPPHIRES collaboration

- 1. Challenge to direct detection of gravitationally coupling pseudo Nambu-Goldstone NGB (pNGB), dilaton
- 2. Two key enhancement factors in stimulated resonant scattering
- 3. Probing sub-eV pNGBs
- 4. Potential to probe 0.1 eV 10 keV pNGBs
- 5. Summary

pNGBs can be dark components of the Universe

Y. Fujii

2019/06/05

Present upper bounds

Photon-photon interaction in sub-eV – MeV

2019/06/05

Complementarity to WIMP searches

Enhanced rate by inducing laser field - stimulated scattering in bkg laser field-

2019/06/05

K. Homma@43rdJohnHopkinsWorkshop

Y. Fujii and K.Homma Prog. Theor. Phys., 2011

Comparison with charged particle colliders

s-channel propagator cannot be implemented - creation and decay points are spatially apart -

CAST, Theopisti Dafni, 7th Patras Workshop, Mykonos 2011

2019/06/05

Okun 1982, Skivie 1983, Ansel'm 1985, Van Bibber et al. 1987

s-channel scattering contains resonance

2019/06/05

Photon-photon collision systems

QPS for low-mass pNGB

PTEP

The first search for sub-eV scalar fields via four-wave mixing at a quasi-parallel laser collider

Kensuke Homma^{1,2,*}, Takashi Hasebe¹, and Kazuki Kume¹

¹Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
²International Center for Zetta-Exawatt Science and Technology, Ecole Polytechnique, Route de Saclay, Palaiseau, F-91128, France
*E-mail: homma@hepl.hiroshima-u.ac.jp

Received August 19, 2013; Revised April 30, 2014; Accepted May 16, 2014; Published August 7, 2014

A search for sub-eV scalar fields coupling to two photons has been performed via four-wave mixing at a quasi-parallel laser collider for the first time. The experiment demonstrates the novel approach of searching for resonantly produced sub-eV scalar fields by combining two-color laser fields in the vacuum. The aim of this paper is to provide the concrete experimental setup and the analysis method based on specific combinations of polarization states between incoming and outgoing photons, which is extendable to higher-intensity laser systems operated at high repetition rates. No significant signal of four-wave mixing was observed by combining a $0.2 \,\mu$ J/0.75 ns pulse laser and a 2 mW CW laser on the same optical axis. Based on the prescription developed for this particular experimental approach, we obtained the upper limit at a confidence level of 95% on the coupling–mass relation.

Pulse + CW lasers exp. @ Hiroshima Univ.

2019/06/05

Pulse + Pulse exp. Run I @ ICR, Kyoto Univ.

with atomic four-wave mixing

Time structures of the number of FWM photons

Four-Wave-Mixing in matter and vacuum

Pressure dependence of atomic FWM (corrected)

Quadratic pressure dependence is consistent with Chi³ process

PTEP

Search for sub-eV scalar and pseudoscalar resonances via four-wave mixing with a laser collider

Takashi Hasebe¹, Kensuke Homma^{1,2,*}, Yoshihide Nakamiya³, Kayo Matsuura¹, Kazuto Otani⁴, Masaki Hashida^{3,5}, Shunsuke Inoue^{3,5}, and Shuji Sakabe^{3,5}

Higher intensity exp. Run II @ ICR, Kyoto

Extreme-Light-Infrastructure (ELI)

ELI-NP facility (280M€) Comm. starts from 2019 2 x 10PW 2 x 1 PW 2 x 0.1 PW

0.2-19.5 MeV gamma beam produced by ~700 MeV e- + laser

20

ELI-NP as of June, 2017

ELI-NP declared achievement of 10 PW on 13 Mar, 2019

10PW (10²²⁻²⁴W/cm²) x 2 @ 1 shot / min

ELI-NP RA5 proposal for dark field search HIGHLIGHTS OF RA5: COMBINED LASER – GAMMA EXPERIMENTS

Romanian Reports in Physics, Vol. 68, Supplement, P. S233–S274, 2016

K. HOMMA^{1,2}, O. TESILEANU³, L. D'ALESSI³, T. HASEBE¹, A. ILDERTON⁴, T. MORITAKA⁵, Y. NAKAMIYA⁶, K. SETO³, H. UTSUNOMIYA⁷

ICAN: 50J/100fs @ 10kHz

The IZEST digest

Summer 2013

100-GeV Report: Making the Ascent

There has been great progress on laser-driven plasmabased accelerators where electron beams can be accelerated to multi-GeV energy in centimeter-scale plasma driven by a 100-TW class ultrashort laser pulses thanks to the "laser wakefield accelerator" concept, a plasma accelerator consisting of injector and tens of pioneered by Tajima and Dawson in 1979. While to

date, worldwide research on laser-plasma accelerators is focused on the creation of compact particle and radiation sources for a wide range of applications in areas such as basic and medical sciences, the network of IZEST associate labs are undertaking to initiate the

Dark Fields Report: Something from Nothing

Probing the nature of the quantum vacuum is indispensable in resolving the crucial problems in contemporary physics such as dark matter and dark energy in the universe.

To date, probing the vacuum has been limited to either the macroscopic space-time via astronomical observations or microscopic space-time points at highenergy particle collisions. With high-intensity lasers. however, we anticipate to be able to unveil the different aspects of the quantum vacuum at different space-time scales. With this in mind we launched the Dark Field working group within IZEST. The word "Dark" includes a broad sense: something undetected by conventional experimental approaches to date. Therefore, fundamental physics to be discussed within this working group covers weakly interacting phenomena such as Dark Matter/Dark Energy, nonlinear QED effects, and something which utilizes unique characters of the highintensity as well as high-energy laser fields.

Among possible subjects, we are currently focusing on the search for weakly interacting low-mass bosons as a candidate of dark fields via quantum optical observables such as four-wave mixing where the nonlinear atomic process in matter is replaced by the nonlinearity caused

experimental research on large-scale laser-plasma accelerators with an aim at an ascent of electron beams energies toward 100-GeV. Experiments will be implemented by employing a multi-PW laser beam with meter-scale plasma waveguide. All of which will be inserted inside the Laser-Mega-Joule target chamber at CEA Bordeaux, inplementing the PETAL beam which can deliver 3.5 kJ 500 fs pulses. Designs and implementation plans to accomplish 100 GeV acceleration within the framework of PETAL and LMJ are already underway. The first phase will be carried out in a 15-m beamline, followed in the second phase using a 30-m beamline for further high-energy acceleration with PETAL at full-power capability.

Recently, for preparation and execution of the project, the international team has been organized under 6 working packages: Managing & Design, Injector, Plasma Waveguide, Diagnostics, Integration & Interaction, and Implementation. We also push forward 100 GeV ascent project in close collaboration with associate experiments for 10-GeV level energies at

Strathclyde University, APRI, SIOM, and GSI with PW-class laser facilities. - K. Nakaiima

by a resonantly exchanged light boson in the vacuum (see image above).

Preliminary experimental trials to search for the fourwave mixing process are already on-going at Kyoto University in Japan and also the further test is planned at INRS in Canada under the association of IZEST.

nage (

A workshop around these themes has been held at the University of Düsseldorf (Germany) from March 21 to March 22, 2013, with emphasis on "Manipulation and Amplification of short laser pulses on the road to Exa-Zettawatt Beam". This workshop gathered 42 participants from 9 countries and advances on all topics covered by C3 were presented, including progress on the realization of future major laser facilities like PETAL (France) where the C3 technology is aimed to be ultimately deployed.

A summary of C3 methods, techniques and goals is being prepared to be written as part of the IZEST scientific case shaped in the form of a special issue of the European Journal of Physics (as offered by the editor). Several short (4 page) sections will detail the

KHz bandwidth. The possibility to accelerate over short distances particles to high energy(GeV-TeV) with high efficiency, represents a watershed in science and societal applications with direct relevance to: Proton Colliders (Tevatron, LHC), Neutron sources (SNS, ESS), Neutrino Sources(SNS, ESS), Radioactive Ion Beam (FRIB, Eurisol), Accelerator Driven Systems(Ch-ADS,MYRRHA), Electron linear collider, Muon collider, andFree Electron laser at 10kHz.

- G. Mourou

C3 Report: Damageless Optics

The C3 pillar of IZEST is concerned with advancing the production of ultra-high laser pulses through the use of

DamageLess (i.e. plasma based) Optics (DLO). The partners of C3 have been advancing the use of such DLO for direct amplification of short laser pulses, either through Raman or Brillouin techniques, in experiments using the varied IZEST associated laboratories (Strathclyde, RAL, LULI, Jena, GSI, CEA-Saclay), and theoretical work has been pursued in parallel at Strathclyde, LULI, Düsseldorf, CELIA.

main components of the C3 pilar: Raman and Brillouin amplification of ultra-intense light pulses. DLO for focusing such pulses, the intermediate laser facilities where C3 technology will be ramped up, and the large-

scale future facilities where the production of the highest power pulses will ultimately be performed. Contributors will be solicited on these various topics for papers to be ready by September 2013.

-J. Fuchs

The IZEST digest **ICAN Report:**

medicine and energy.

30%

Can the future of accelerators be fibers?

Lasers are notorious for their poor efficiency. This is

especially true for high peak power laser systems

exhibiting wall-plug efficiency in the range of 1% at best.

For many utilizations requesting average power in the

range of kW to 10 MW, like particle acceleration, this

situation is economically unacceptable - even for

research infrastructures - and seriously impairs the spread of important scientific and societal laser

applications in science material science, environment,

To solve this problem, the consortium ICAN

(International Coherent Amplifying Network) has

proposed to study a novel laser architecture known as

CAN, (Coherent Amplification Network) that would

guaranty, high peak (PW), high average (MW) powers

while exhibiting a high wall plug efficiency, greater than

The CAN concept is based on the massive phasing of

tens of thousands of diode pumped single mode lasers.

Fiber amplifiers can produce very high average power,

i.e. 10kW/fiber with excellent efficiency, i.e. 30%. In

addition, because we can actuate individually each fiber

we can have an handle on the phase and amplitude of

each fiber output. As a consequence we can change the

wavefront in phase and amplitude as necessary with

Summer 2013

Sensitivity below sub-eV mass domain in Quasi-Parallel-Collision

Inflaton (ALP) mass and coupling to photons

Extension to higher mass domains

Sensitivity in sub-eV–10 keV mass domain in Asymmetric Head-on Collision

Summary

Charged particle colliders discovered many SM resonance states in extremely strong coupling domains within only four orders of magnitude in CMS energy.

Stimulated resonance scattering can provide proper windows for pNGB searches over 10⁻⁷ – 10³ eV in CMS energy. We have the ways to access gravitational coupling in scattering !

K. Homma@43rdJohnHopkinsWorkshop

深海とは一般的に植物プランクトンが光合成できる限界とされている 水深 200mより深いところのことで、海の 95%を占めています。

2019/06/05