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Higgs dynamics in the early Universe
Higgs mass is fixed today and measured at the LHC. 

Yet in the early Universe, Higgs mass (in general, SM 
parameters) is not necessarily fixed and could vary with 
time. 

How? 

Mass/Couplings depend on VEVs. 



In the early universe, various weakly-coupled scalar 
fields could have had large field range and the Higgs 
could couple to them. So effective mass of the Higgs 
could be different. 

Could have had unbroken electroweak symmetry or much 
more badly broken electroweak symmetry.

Even better, could have dynamics — oscillations between 
different electroweak phases.



Well motivated theories supply lots of good candidates of 
scalars with large field range: moduli, saxions, D-flat 
directions, radion…

Classic example in supersymmetric theories: modulus/
moduli 

A scalar with a flat potential; when the Hubble drops around 
its mass, it starts to oscillate coherently around the minimum.

Ubiquitous in string construction and low energy pheno 
models. It couples to the SM through high scale suppressed 
operators.



A simple model 

SM Higgs potential

Modulus potential

Trilinear coupling 
between Higgs 
and modulus
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f: large field range of 𝜒;

M: high energy scale (in SUSY, 
soft mass/natural Higgs mass 
without tuning, more later)
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f: large field range of 𝜒;

M: high energy scale (in SUSY, 
soft mass/natural Higgs mass 
without tuning, more later).

Effective Higgs mass: 

At 𝜒0 =           , Higgs mass changes sign! 

�m2
h +

M2

f
�

<latexit sha1_base64="MkJqzVOLoU78Q1pgMNfR7yY6RcA=">AAACBHicbVDLSsNAFJ34rPUVddnNYBEEsSRR0GXRjRuhgn1Ak4bJdNIMnUnCzEQooQs3/oobF4q49SPc+TdO2yy09cCFwzn3cu89QcqoVJb1bSwtr6yurZc2yptb2zu75t5+SyaZwKSJE5aIToAkYTQmTUUVI51UEMQDRtrB8Hritx+IkDSJ79UoJR5Hg5iGFCOlJd+snHI/6jnwBLqhQDi/7TnjPBxDF0fUN6tWzZoCLhK7IFVQoOGbX24/wRknscIMSdm1rVR5ORKKYkbGZTeTJEV4iAakq2mMOJFePn1iDI+00odhInTFCk7V3xM54lKOeKA7OVKRnPcm4n9eN1PhpZfTOM0UifFsUZgxqBI4SQT2qSBYsZEmCAuqb4U4QjoMpXMr6xDs+ZcXScup2Wc15+68Wr8q4iiBCjgEx8AGF6AObkADNAEGj+AZvII348l4Md6Nj1nrklHMHIA/MD5/ANVelvQ=</latexit>

m2
h

M2
f

<latexit sha1_base64="t9b/HJ6uel3mtneVWetCRiu9RKg=">AAAB+3icbVBNS8NAEJ3Ur1q/oj16WSyCp5IUQb0VvXgRKhhbaGPYbDft0s0m7G6EEupf8eJBxat/xJv/xm2bg7Y+mOHx3gw7+8KUM6Ud59sqrayurW+UNytb2zu7e/b+wb1KMkmoRxKeyE6IFeVMUE8zzWknlRTHIaftcHQ19duPVCqWiDs9Tqkf44FgESNYGymwq71IYpLHwfChMclvTENRYNecujMDWiZuQWpQoBXYX71+QrKYCk04VqrrOqn2cyw1I5xOKr1M0RSTER7QrqECx1T5+ez4CTo2Sh9FiTQlNJqpvzdyHCs1jkMzGWM9VIveVPzP62Y6OvdzJtJMU0HmD0UZRzpB0yRQn0lKNB8bgolk5lZEhtikoU1eFROCu/jlZeI16hd19/a01rws0ijDIRzBCbhwBk24hhZ4QGAMz/AKb9aT9WK9Wx/z0ZJV7FThD6zPH5+slEw=</latexit><latexit sha1_base64="t9b/HJ6uel3mtneVWetCRiu9RKg=">AAAB+3icbVBNS8NAEJ3Ur1q/oj16WSyCp5IUQb0VvXgRKhhbaGPYbDft0s0m7G6EEupf8eJBxat/xJv/xm2bg7Y+mOHx3gw7+8KUM6Ud59sqrayurW+UNytb2zu7e/b+wb1KMkmoRxKeyE6IFeVMUE8zzWknlRTHIaftcHQ19duPVCqWiDs9Tqkf44FgESNYGymwq71IYpLHwfChMclvTENRYNecujMDWiZuQWpQoBXYX71+QrKYCk04VqrrOqn2cyw1I5xOKr1M0RSTER7QrqECx1T5+ez4CTo2Sh9FiTQlNJqpvzdyHCs1jkMzGWM9VIveVPzP62Y6OvdzJtJMU0HmD0UZRzpB0yRQn0lKNB8bgolk5lZEhtikoU1eFROCu/jlZeI16hd19/a01rws0ijDIRzBCbhwBk24hhZ4QGAMz/AKb9aT9WK9Wx/z0ZJV7FThD6zPH5+slEw=</latexit><latexit sha1_base64="t9b/HJ6uel3mtneVWetCRiu9RKg=">AAAB+3icbVBNS8NAEJ3Ur1q/oj16WSyCp5IUQb0VvXgRKhhbaGPYbDft0s0m7G6EEupf8eJBxat/xJv/xm2bg7Y+mOHx3gw7+8KUM6Ud59sqrayurW+UNytb2zu7e/b+wb1KMkmoRxKeyE6IFeVMUE8zzWknlRTHIaftcHQ19duPVCqWiDs9Tqkf44FgESNYGymwq71IYpLHwfChMclvTENRYNecujMDWiZuQWpQoBXYX71+QrKYCk04VqrrOqn2cyw1I5xOKr1M0RSTER7QrqECx1T5+ez4CTo2Sh9FiTQlNJqpvzdyHCs1jkMzGWM9VIveVPzP62Y6OvdzJtJMU0HmD0UZRzpB0yRQn0lKNB8bgolk5lZEhtikoU1eFROCu/jlZeI16hd19/a01rws0ijDIRzBCbhwBk24hhZ4QGAMz/AKb9aT9WK9Wx/z0ZJV7FThD6zPH5+slEw=</latexit><latexit sha1_base64="t9b/HJ6uel3mtneVWetCRiu9RKg=">AAAB+3icbVBNS8NAEJ3Ur1q/oj16WSyCp5IUQb0VvXgRKhhbaGPYbDft0s0m7G6EEupf8eJBxat/xJv/xm2bg7Y+mOHx3gw7+8KUM6Ud59sqrayurW+UNytb2zu7e/b+wb1KMkmoRxKeyE6IFeVMUE8zzWknlRTHIaftcHQ19duPVCqWiDs9Tqkf44FgESNYGymwq71IYpLHwfChMclvTENRYNecujMDWiZuQWpQoBXYX71+QrKYCk04VqrrOqn2cyw1I5xOKr1M0RSTER7QrqECx1T5+ez4CTo2Sh9FiTQlNJqpvzdyHCs1jkMzGWM9VIveVPzP62Y6OvdzJtJMU0HmD0UZRzpB0yRQn0lKNB8bgolk5lZEhtikoU1eFROCu/jlZeI16hd19/a01rws0ijDIRzBCbhwBk24hhZ4QGAMz/AKb9aT9WK9Wx/z0ZJV7FThD6zPH5+slEw=</latexit>



A simple model 

V (�, h) = +
1

2
m2

��
2

�m2
hh

†h+
�

4
|h|4,

+
M2

f
�h†h

<latexit sha1_base64="WYLAnuUgbd1+XczOsPBhNwlQkns="></latexit>

f: large field range of 𝜒;

M: high energy scale (in SUSY, 
soft mass/natural Higgs mass 
without tuning, more later).

M2 >> mh2 (fine-tuned), trilinear coupling dominates. 
Higgs mass ~ M.  
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Connection to Fine-tuning
Fine-tuning: if we could change SM parameters, e.g., Higgs 
mass parameter, the electroweak physics could be changed 
dramatically. 

Unbroken EWSEWSB

Today, SM parameters are fixed. Yet in the early Universe,
the toy model I just present realizes the dynamics 
associated with fine-tuning: oscillations between different 
electroweak phases.
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In our evaluation below, we use ns = 0.9677 ± 0.006 (Planck TT+lowP+lensing) [30]. We also fix c = 1/16⇡. For
↵ = 1, the lower bounds on m� as a function of ns or r are illustrated in Fig. S6. In this case, the central value of ns

gives us Nk ⇡ 46.4, r ⇡ 0.086, ⇢k/⇢end ⇡ 9. This leads to a conservative lower mass bound of the modulus, m� > 477
TeV when wmod = 0 and a much weaker bound when wmod increases, e.g., m� > 8 MeV when wmod = 0.1. Yet the
potential strong mass bound on the modulus for wmod = 0 may not be solid given the current precision of ns. If
we allow for ns to vary in the 1� range, for instance, when ns takes the value at the lower 1� bound, ns = 0.962,
Nk ⇡ 39.2, r ⇡ 0.10, ⇢k/⇢end ⇡ 8.3. When wmod = 0, m� > 0.14 MeV, which is negligible. In the future, if the
precision of ns could be improved by a factor of 2 to 3 with the CMB-S4 measurements [35], we will have a better
assessment of the compatibility of the modulus scenario and di↵erent classes of inflation models.

A more optimistic scenario is that in the near future, we will detect primordial gravitational waves and measure
r. The precision of CMB-S4 measurement of r is projected to be significantly improved to 5 ⇥ 10�4. Assuming a
measured r = 0.085 and CMB-S4’s sensitivity, we could obtain a solid lower bound on m�: m� > 1000 TeV, when
w = 0 as shown in the right panel of Fig. S6. When w is increased to 0.1, the bound is considerably relaxed to be
well below the cosmological moduli bound.

S4 Aspects of the model

1. Fine tuning and duration of non-linear dynamics

In an untuned scenario, e.g., �0 . f in Eq. 1, at the beginning of the modulus oscillation, there is still a transition
between the unbroken and broken electroweak phases, associated with tachyonic Higgs production. The initial frag-
mentation of the modulus and burst of gravitational waves are thus possible even in theories that are not fine-tuned.
However, as the universe expands, the amplitude of the modulus oscillation quickly reduces. Once |�(t)| < �0, the
Higgs potential is always in the broken phase, so we expect that the coupled phase with exotic equation of state turns
o↵ and the system quickly returns to a standard moduli-dominated phase with w ⇡ 0. The bigger �0 is, the shorter
the duration of the non-linear dynamics. In other words, the number of electroweak-flipping oscillations and hence
the duration of non-linear dynamics is a probe of fine-tuning.

2. Origin of moduli couplings

In this section we will explain the origin of the M
2(�/f)h†

h ansatz for the modulus coupling to the Higgs, and
some variations that can arise. We first start by supposing that the modulus is a chiral superfield X � X + FX✓

2,
with a supersymmetry breaking VEV
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2
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i.e. Z has a soft mass ⇠ m
2
3/2. If X deviates from its vacuum expectation value, then in general this mass term will

also fluctuate. For example, we might suppose that X has a superpotential
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where gX , �X ⇠ O(1) and factors of mX/m
k�2
pl have been extracted to ensure that mX acts as an overall spurion for

shift-symmetry breaking. That is to say, it ensures that if X ⇠ mpl all terms in the potential are of comparable size.
Now, if X has a canonical Kähler potential
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pl have been extracted to ensure that mX acts as an overall spurion for

shift-symmetry breaking. That is to say, it ensures that if X ⇠ mpl all terms in the potential are of comparable size.
Now, if X has a canonical Kähler potential
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From this we see that requiring that X is the dominant source of SUSY breaking leads to m3/2 ⇠ mX . This then
parametrically guarantees that

FX ⇠ m3/2mplg(X) (S47)

where g(X) is an order-one function of X/mpl. In particular, the term (S44) contains a trilinear coupling:

2⇠XZRe(FX,0mX)

m
2
pl

Re(X)Z†
Z. (S48)

The prefactor here parametrically has size m
2
3/2/mpl. This is the analogue of our toy model, with Z playing the

role of the Higgs boson, Re(X) playing the role of the modulus �, and a prefactor of order M
2
/f with f ⇠ mpl and

M ⇠ m3/2. In other words, a typical Planckian field displacement of X from its minimum will lead to an order-1
variation in the soft mass of Z.

We can also read o↵ from this discussion that the |FX |
2 term in the Lagrangian contains pieces that behave like

⇠
2
XZ |mX |

2

m
4
pl

|Z|
4
|X|

2 (1 + O(X/mpl) + . . .) . (S49)

In other words, we expect that moduli will inevitably generate quartic couplings of our fields with parametric size

�Z ⇠

m
2
3/2

m
2
pl

. (S50)

Such F -term quartic couplings can also originate, as mentioned in the main text, from additional Kähler potential

terms like
R

d
4
✓
X†X
⇤4 (Z†Z)2. They will exist even, for instance, along D-flat directions of fields with gauge charges,

as discussed in more detail below. The value of the quartic will be sensitive to the modulus value, but the parametric
size will not.

In the context of the MSSM, moduli can a↵ect Higgs soft masses by replacing Z†Z with h†
u,dhu,d, or they can

a↵ect holomorphic (bµ-term) masses by coupling to huhd. If the modulus primarily a↵ects the bµ-term rather than
the soft masses, the dynamics can be rather di↵erent from our toy model, as a tachyonic direction exists both for
large positive bµ and for large negative bµ, possibly disappearing in an intermediate region as the modulus oscillates.
It would be interesting to simulate this scenario in future work.

Many theories of moduli have special points in field space where the metric is singular and a tower of particles
becomes light, e.g. in string theory where many moduli fields T have Kähler potentials of the form a log(T + T †).
Our field � should be thought of as expanding around a value of T � 1, far from the singularity in moduli space
at T = 0. The noncanonical Kähler term expanded around the minimum will give rise to terms like 1

m2
pl

�
2
@µ�@

µ
�,

which may influence the dynamics. We assume that the field remains far from the singularity at T = 0, so that it
is valid to work in terms of the canonically normalized field �. Nonetheless, as mentioned in §II, the omitted terms
could have important dynamical e↵ects. It would be interesting to include such terms in future simulations.

In general, working with moduli whose imaginary parts have associated shift symmetries, which appear via the
combination T + T †, does not qualitatively change the discussion. In certain sequestered scenarios, couplings may
take a di↵erent form. For example, in the context of the large-volume scenario, we expect that the SM matter fields
are sequestered from the overall volume modulus and the leading modulus decay is from the coupling [36, 37]
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Here eT is a modified chiral superfield missing its F -component, which is related to the conformal compensator in
a superspace formulation of the theory [38]. In the presence of an oscillating solution ⇤T ⇠ m

2
T , this generates

similar physics to a bµ term linearly proportional to the modulus. After the modulus fragments, it could lead to
rather di↵erent dynamics due to the derivatives acting on the modulus. Again, it could be interesting to simulate
such variations in the future.

3. The potential along a D-flat direction

Supersymmetric theories with renormalizable superpotentials generically have a variety of flat directions [39, 40].
The flat directions of the renormalizable, supersymmetric MSSM, together with the leading non-renormalizable oper-
ators that lift them, have been catalogued in [41]. The existence of these flat directions is well known to have potential
e↵ects on cosmology, most famously for baryogenesis [42, 43].

Embed the toy model in SUSY
Modulus superfield: 

Z: generic chiral 
superfield (e.g., Higgs 
superfield)

soft mass: m3/22 trilinear coupling: m3/22/mpl
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In our evaluation below, we use ns = 0.9677 ± 0.006 (Planck TT+lowP+lensing) [30]. We also fix c = 1/16⇡. For
↵ = 1, the lower bounds on m� as a function of ns or r are illustrated in Fig. S6. In this case, the central value of ns

gives us Nk ⇡ 46.4, r ⇡ 0.086, ⇢k/⇢end ⇡ 9. This leads to a conservative lower mass bound of the modulus, m� > 477
TeV when wmod = 0 and a much weaker bound when wmod increases, e.g., m� > 8 MeV when wmod = 0.1. Yet the
potential strong mass bound on the modulus for wmod = 0 may not be solid given the current precision of ns. If
we allow for ns to vary in the 1� range, for instance, when ns takes the value at the lower 1� bound, ns = 0.962,
Nk ⇡ 39.2, r ⇡ 0.10, ⇢k/⇢end ⇡ 8.3. When wmod = 0, m� > 0.14 MeV, which is negligible. In the future, if the
precision of ns could be improved by a factor of 2 to 3 with the CMB-S4 measurements [35], we will have a better
assessment of the compatibility of the modulus scenario and di↵erent classes of inflation models.

A more optimistic scenario is that in the near future, we will detect primordial gravitational waves and measure
r. The precision of CMB-S4 measurement of r is projected to be significantly improved to 5 ⇥ 10�4. Assuming a
measured r = 0.085 and CMB-S4’s sensitivity, we could obtain a solid lower bound on m�: m� > 1000 TeV, when
w = 0 as shown in the right panel of Fig. S6. When w is increased to 0.1, the bound is considerably relaxed to be
well below the cosmological moduli bound.

S4 Aspects of the model

1. Fine tuning and duration of non-linear dynamics

In an untuned scenario, e.g., �0 . f in Eq. 1, at the beginning of the modulus oscillation, there is still a transition
between the unbroken and broken electroweak phases, associated with tachyonic Higgs production. The initial frag-
mentation of the modulus and burst of gravitational waves are thus possible even in theories that are not fine-tuned.
However, as the universe expands, the amplitude of the modulus oscillation quickly reduces. Once |�(t)| < �0, the
Higgs potential is always in the broken phase, so we expect that the coupled phase with exotic equation of state turns
o↵ and the system quickly returns to a standard moduli-dominated phase with w ⇡ 0. The bigger �0 is, the shorter
the duration of the non-linear dynamics. In other words, the number of electroweak-flipping oscillations and hence
the duration of non-linear dynamics is a probe of fine-tuning.

2. Origin of moduli couplings

In this section we will explain the origin of the M
2(�/f)h†

h ansatz for the modulus coupling to the Higgs, and
some variations that can arise. We first start by supposing that the modulus is a chiral superfield X � X + FX✓

2,
with a supersymmetry breaking VEV

hXi = X0 + FX,0✓
2
, where X0 ⇠ mpl, FX,0 ⇠ m3/2mpl. (S43)

Generic chiral superfields will obtain soft SUSY-breaking mass terms through couplings to X,
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i.e. Z has a soft mass ⇠ m
2
3/2. If X deviates from its vacuum expectation value, then in general this mass term will

also fluctuate. For example, we might suppose that X has a superpotential
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where gX , �X ⇠ O(1) and factors of mX/m
k�2
pl have been extracted to ensure that mX acts as an overall spurion for

shift-symmetry breaking. That is to say, it ensures that if X ⇠ mpl all terms in the potential are of comparable size.
Now, if X has a canonical Kähler potential
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High-scale/meso-tuned SUSY
Given the current LHC data, nature is probably tuned or 
more precisely “meso-tuned”: Higgs is the only light scalar 
with a little hierarchy and no other random light scalars 
around, e.g., mini-split SUSY scenario (Ibe et.al 2011; Hall et. 
al; Arkani-Hamed et al.; Arvanitaki et al., … 2012)
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What interesting cosmological 
consequences could this model have?



Possibility 1: Particle production and 
fragmentation Amin, Fan, Lozanov, Reece, ’18

When the Higgs mass flips sign, there could be a tachyonic 
instability: 
 

When                , the Higgs modes grow exponentially. 

That is, there is a tachyonic particle production process when the 
modulus flips to the tachyonic side, converting modulus energy into 
the Higgs energy. 

The produced Higgs could back-react on the modulus and fragment 
the modulus field (three conditions have to be satisfied in order for 
the process to be efficient). 

!2
k < 0
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±

p
2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the

remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12
mpl, f = mpl.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧ
TT
ij + 3Hḣ
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2
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where h
TT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = g

FRW
µ⌫ + hµ⌫), and ⇧TT

ij is the
transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = ag in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where Hg is the Hubble parameter of the universe at the time of generation of the gravitational waves, gth and g0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (ath) and today (a0), ⌦r,0 is
the fractional energy density in relativistic species today and wmod is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:

k
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Possibility 2: Imprint on the inflaton 
spectrum Fan, Reece, Wang, 1905.05764

Consider a low-scale inflation model. On top of the toy model I 
showed, include the Higgs coupling to the inflaton.
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Inflaton potential 

coupling between inflaton
and the Higgs



Consider: a) energy density is dominated by inflaton. b) 
interactions between the higgs and inflaton could be 
treated as perturbations; c) back-reaction from Higgs to 
modulus is small.

⇤
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Classical primordial clocks
Chen  ’11; Saito et.al ’12; Gao et.al ’13; Noumi et.al ’13….

Heavy fields could always be present during inflation (heavy fields 
from UV physics, SUSY breaking; SM fields obtain masses of 
Hubble through gravitational coupling…)

Classical oscillation of a massive field (due to a sharp turn in the 
inflaton trajectory)

Density fluctuation (subhorizon) 

Correction to the spectrum 

Fortunately, this is indeed the case and in this letter we shall introduce the primordial

standard clock (PSC). There exist many massive fields in the primordial universe. These

massive fields originate from the UV completion (such as the moduli fields, KK modes and

stringy excitations, which are typically quite heavy) and IR uplifting (such as the standard

model fields and other light fields, which become heavier through radiative corrections or

couplings to the background curvature). If the massive fields are heavy enough, at some point

during their evolution in any time-dependent background, they oscillate either classically

or quantum mechanically in a model and scenario-independent way, similarly to that of

harmonic oscillators in the flat spacetime. These oscillations can be regarded as a PSC,

generating ticks for the time coordinate. The ticks get imprinted in the density fluctuations

in terms of special oscillatory features – the clock signals – that directly encode a(t) [8–11].

To demonstrate how a(t) is encoded in the clock signal, let us first look at the case of the

classical PSC [8, 9]. In this case, the oscillation of massive fields is excited by certain sharp

features in models. Once excited, the massive field � oscillates as a background component

if the mass m is larger than the horizon scale,

� / e
imt

. (1)

These oscillations induce small oscillatory components to the couplings in various correlation

functions. On the other hand, the density fluctuation ⇣ corresponds to a massless mode in

the primordial universe. At subhorizon, this mode oscillates as

⇣k / e
�ik⌧

, (2)

where the conformal time ⌧ is related to the physical time t by d⌧ = dt/a(t), and k is the

comoving momentum of the mode.

The correlation function between ⇣’s schematically contains the following term,

h⇣2ki �
Z

e
i(mt�2k⌧)

d⌧ . (3)

Notice that the oscillation frequency of ⇣ is t-dependent, given by the background evolution.

Although at most places this integral averages to zero, once the frequency of ⇣ matches to

that of the massive clock field, the resonance condition is satisfied

d

dt
(mt� 2k⌧) = 0 , (4)

and the correlation function receives a large contribution [12]

h⇣2ki � e
i(mt⇤�2k⌧⇤) , (5)
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Figure 1: The classical PSC signals, plotted as the amplitude of the oscillatory component of
the two-point correlation function as a function of the scale k, for four di↵erent types of scenarios
characterized by di↵erent a(t). The light green lines are the sharp feature signals, which are
qualitatively the same for di↵erent scenarios. The dark blue lines are the clock signals. The
relative spacing between the ticks of the clock signals, namely the phases of these oscillations,
directly encodes a(t). Some less model-independent properties such as the envelops of the signals
are also shown in Fig.1 & 3.

where t⇤ or ⌧⇤ denotes the time at which the resonance happens,

a(t⇤) = a(⌧⇤) = 2k/m . (6)

Using these relations we see that

h⇣2ki � exp [im t(2k/m)� 2ik ⌧(2k/m)] , (7)

where t(2k/m) and ⌧(2k/m) are inverse functions of the scale factor a(t) and a(⌧), respec-

tively. Therefore, the scale factor evolution is directly recorded in the phase of this signal as

a function of the comoving momentum k. Superhorizon physics can only change the envelops

of the clock signals. See Fig. 1 for illustrations.

The classical PSC requires presence of sharp features, which limits its generality. So

it still remained a question whether there exist some types of signals that are as general

4

Fortunately, this is indeed the case and in this letter we shall introduce the primordial

standard clock (PSC). There exist many massive fields in the primordial universe. These

massive fields originate from the UV completion (such as the moduli fields, KK modes and

stringy excitations, which are typically quite heavy) and IR uplifting (such as the standard

model fields and other light fields, which become heavier through radiative corrections or

couplings to the background curvature). If the massive fields are heavy enough, at some point

during their evolution in any time-dependent background, they oscillate either classically

or quantum mechanically in a model and scenario-independent way, similarly to that of

harmonic oscillators in the flat spacetime. These oscillations can be regarded as a PSC,

generating ticks for the time coordinate. The ticks get imprinted in the density fluctuations

in terms of special oscillatory features – the clock signals – that directly encode a(t) [8–11].

To demonstrate how a(t) is encoded in the clock signal, let us first look at the case of the

classical PSC [8, 9]. In this case, the oscillation of massive fields is excited by certain sharp

features in models. Once excited, the massive field � oscillates as a background component

if the mass m is larger than the horizon scale,

� / e
imt

. (1)

These oscillations induce small oscillatory components to the couplings in various correlation

functions. On the other hand, the density fluctuation ⇣ corresponds to a massless mode in

the primordial universe. At subhorizon, this mode oscillates as

⇣k / e
�ik⌧

, (2)

where the conformal time ⌧ is related to the physical time t by d⌧ = dt/a(t), and k is the

comoving momentum of the mode.

The correlation function between ⇣’s schematically contains the following term,

h⇣2ki �
Z

e
i(mt�2k⌧)

d⌧ . (3)

Notice that the oscillation frequency of ⇣ is t-dependent, given by the background evolution.

Although at most places this integral averages to zero, once the frequency of ⇣ matches to

that of the massive clock field, the resonance condition is satisfied

d

dt
(mt� 2k⌧) = 0 , (4)

and the correlation function receives a large contribution [12]

h⇣2ki � e
i(mt⇤�2k⌧⇤) , (5)

3

Correlation function

Fortunately, this is indeed the case and in this letter we shall introduce the primordial

standard clock (PSC). There exist many massive fields in the primordial universe. These

massive fields originate from the UV completion (such as the moduli fields, KK modes and

stringy excitations, which are typically quite heavy) and IR uplifting (such as the standard

model fields and other light fields, which become heavier through radiative corrections or

couplings to the background curvature). If the massive fields are heavy enough, at some point

during their evolution in any time-dependent background, they oscillate either classically

or quantum mechanically in a model and scenario-independent way, similarly to that of

harmonic oscillators in the flat spacetime. These oscillations can be regarded as a PSC,

generating ticks for the time coordinate. The ticks get imprinted in the density fluctuations

in terms of special oscillatory features – the clock signals – that directly encode a(t) [8–11].

To demonstrate how a(t) is encoded in the clock signal, let us first look at the case of the

classical PSC [8, 9]. In this case, the oscillation of massive fields is excited by certain sharp

features in models. Once excited, the massive field � oscillates as a background component

if the mass m is larger than the horizon scale,

� / e
imt

. (1)

These oscillations induce small oscillatory components to the couplings in various correlation

functions. On the other hand, the density fluctuation ⇣ corresponds to a massless mode in

the primordial universe. At subhorizon, this mode oscillates as

⇣k / e
�ik⌧

, (2)

where the conformal time ⌧ is related to the physical time t by d⌧ = dt/a(t), and k is the

comoving momentum of the mode.

The correlation function between ⇣’s schematically contains the following term,

h⇣2ki �
Z

e
i(mt�2k⌧)

d⌧ . (3)

Notice that the oscillation frequency of ⇣ is t-dependent, given by the background evolution.

Although at most places this integral averages to zero, once the frequency of ⇣ matches to

that of the massive clock field, the resonance condition is satisfied

d

dt
(mt� 2k⌧) = 0 , (4)

and the correlation function receives a large contribution [12]

h⇣2ki � e
i(mt⇤�2k⌧⇤) , (5)

3

Figure 1: The classical PSC signals, plotted as the amplitude of the oscillatory component of
the two-point correlation function as a function of the scale k, for four di↵erent types of scenarios
characterized by di↵erent a(t). The light green lines are the sharp feature signals, which are
qualitatively the same for di↵erent scenarios. The dark blue lines are the clock signals. The
relative spacing between the ticks of the clock signals, namely the phases of these oscillations,
directly encodes a(t). Some less model-independent properties such as the envelops of the signals
are also shown in Fig.1 & 3.

where t⇤ or ⌧⇤ denotes the time at which the resonance happens,

a(t⇤) = a(⌧⇤) = 2k/m . (6)

Using these relations we see that

h⇣2ki � exp [im t(2k/m)� 2ik ⌧(2k/m)] , (7)

where t(2k/m) and ⌧(2k/m) are inverse functions of the scale factor a(t) and a(⌧), respec-

tively. Therefore, the scale factor evolution is directly recorded in the phase of this signal as

a function of the comoving momentum k. Superhorizon physics can only change the envelops

of the clock signals. See Fig. 1 for illustrations.

The classical PSC requires presence of sharp features, which limits its generality. So

it still remained a question whether there exist some types of signals that are as general

4

Inverse function

Scale factor evolution directly recorded in the phase.
Could be used to distinguish inflation and alternatives.



Inflation a(t) = eHt
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where t⇤ or ⌧⇤ denotes the time at which the resonance happens,

a(t⇤) = a(⌧⇤) = 2k/m . (6)

Using these relations we see that

h⇣2ki � exp [im t(2k/m)� 2ik ⌧(2k/m)] , (7)

where t(2k/m) and ⌧(2k/m) are inverse functions of the scale factor a(t) and a(⌧), respec-

tively. Therefore, the scale factor evolution is directly recorded in the phase of this signal as

a function of the comoving momentum k. Superhorizon physics can only change the envelops

of the clock signals. See Fig. 1 for illustrations.

The classical PSC requires presence of sharp features, which limits its generality. So

it still remained a question whether there exist some types of signals that are as general
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h⇣2ki � ei(mt⇤�2k⌧⇤) + h.c.
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Back to our model, for the modulus, when back-reaction is 
negligible,  

 

• higgs on inflaton �, i.e. the underlined term in Eq. (2.7). This requires ⇤ �
p
M3/H.

Yet we are interested in the case that the contribution is not much too small and thus

we can find potentially observable modifications to the inflaton fluctuations. Note

that there is a subtlety: the bold term in Eq. (2.7) has fast oscillations in it. Thus

the actual impact to � may be smoothed out and the condition could be relaxed a

bit. This is indeed evidenced in the numerical calculation: even when ⇤ <

p
M3/H,

the correction to the inflaton spectrum is only of order O(10%).

• inflaton � on Higgs, i.e. the underlined term in Eq. (2.8). This requires ⇤ � �̇/mh.

• higgs on the modulus �, i.e. the underline term in Eq. (2.9). This requires f �

M
2
/m�.

Yi uses blue to denote terms that could be ignored. I try to avoid color so use underline.

Yet if there is a better way, I’m happy to change them.

In addition, we assume that

• The modulus starts rolling from the symmetry breaking side. Thus the Higgs field

configuration is dominated by the zero mode.

• The energy density of � is subdominant compared to that of the inflaton. This

requires f ⌧
p
3MplH/m� with Mpl the reduced Planck scale. When this is satisfied,

the Higgs energy density is also subdominant, because ⇢h ⇠ M
4
⌧ m

2
�f

2.

We consider the following hierarchy

�0 ⇠ f � M � m� � mh & H, (2.10)

where �0 is the initial amplitude of the modulus and H is the Hubble scale of the inflation.

For example, one benchmark model we keep using in the rest of the paper has M = 103H,

m� = 10H, mh = 2H. Given the observed normalization of the scalar perturbation

spectrum P⇣ = (H2
/(2⇡�̇))2 ' 2.4⇥10�9, we have �̇ ' 3200H. To satisfy the assumptions

above except for the first one ⇤ �
p
M3/H, we need ⇤ � 1.6 ⇥ 103H and 105H ⌧ f ⌧

0.17Mpl. We numerically test even when ⇤ = 104H, which doesn’t satisfy ⇤ �
p
M3/H,

the correction to the inflaton spectrum is a perturbation. Check the constraints and values

again.

For simplicity we take the Higgs self-coupling � ⇠ O(1) when estimating parameters.4

We also set the coupling between inflaton and higgs y = 1 (a general y ⇠ O(1) can be

absorbed into the redefinition of ⇤).

To solve the system of equations, we start from Eq. (2.9) and solve the modulus’ motion

first. Given the assumption that the Higgs has negligible back-reaction on �, we have, up

to an unimportant phase,

� = �0a
�3/2 cos(m�t) . (2.11)

4
Higgs self-coupling is about 0.16 today. Yet in the early Universe, it could also vary and depend on the

modulus field value, as explored in Ref [1].
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For the Higgs,  

• We ignore the coupling between modulus and inflaton. Since both of them have

approximate shift symmetries, could we have double suppressions (two spurions)?

This doesn’t seem to work. Yet we could argue that we focus on the new phase

transition oscillations while the oscillations of modulus do not lead to new features.

• We only consider Higgs as a real scalar. Will using a full doublet change anything?

• clarify the initial conditions and address the questions such as when these oscillations

happen.

• Nice to have discussions on UV completion of the toy model. Emphasize that we are

considering a low-scale inflation model.

2.1 The evolution of the Higgs

The Higgs zero mode can be split into two components, h = hvev + hosc, where hvev is the

instant Higgs vacuum expectation value (vev) by minimizing the Higgs potential (including

the contribution from interacting with the modulus �), and hosc is the oscillation on top

of that. The Higgs e↵ective mass is

m
2
e↵(t) = M

2�0

f
e
� 3Ht

2 cos(m�t)�m
2
h
. (2.12)

We will assume �0 = f below for simplicity. Then m
2
e↵(t) is of order M

2 most of the time.

The inflaton couples to h
2. Given the energy hierarchy we consider, |hosc| ⌧ |hvev|.

An explanation could be found in Appendix A. In the symmetric phase h
2 = h

2
osc and in

the broken phase h
2
' h

2
vev + 2hvevhosc. So it is dominantly the broken phases that could

modify the inflaton two-point function. For a benchmark, h2 and hosc as a function of time

are presented in Fig. 1.

In the symmetric phase (m2
e↵ > 0), hvev = 0. In the broken phase (m2

e↵ < 0),

hvev(t) =

s
�m

2
e↵(t)

�
. (2.13)

Using WKB approximation, we find that hosc(t) could be written as

hosc(t) = A(t)ei✓(t) , ✓(t) ⌘
p
2

Z
t

|me↵(t
0)|dt0 , m

2
e↵ < 0, (2.14)

hosc(t) = eA(t)ei
e✓(t)

, e✓(t) ⌘
Z

t

|me↵(t
0)|dt0 , m

2
e↵ > 0, (2.15)

where A(t), eA(t) are slowly varying functions compared to theme↵ scale. From the equation

above, one could see that hosc(t) oscillates with a frequency ⇠ M .

In summary, there are three types of oscillations with di↵erent time scales in the Higgs

evolution:

• Slow oscillation of hvev with a period !vev ⇠ 2⇡/m�.
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Figure 2. Comparison between the numerical result and the analytical estimate using Eq. (3.20)
in the low k range for the benchmark ⇤ = 104H,M = 103H,m� = 10H,mh = H,� = 1. Left:
numerical result. Right: analytical estimate based on Eq. (3.20).

3.2.2 hvevhosc contribution

Now let’s consider the fast oscillating hvevhosc’s contribution to the primordial spectrum.

Combining Eq. (2.13), (2.15) and Eq. (3.14), we have at ⌧ ! 0,

�u
(1)
k;osc '

y

2⇤2(2k)3/2(k⌧)

Z 0

�1
d⌘ e

�2ik⌘+
p
2i

R
t |me↵(t0)|dt0

s
�m

2
e↵(t)

�
A(t)f(⌘) , (3.21)

where f(⌘) = @⌘2

⇣
1� i

k⌘

⌘2
e
�2ik⌘

�
e
2ik⌘. At resonance, the condition of stationary phase

gives

k

a(t)
=

|me↵(t)|
p
2

. (3.22)

Since |me↵ | is oscillatory, the resonance happens many times for each k, each time with an

almost random phase. The amplitude of resonance also decays at time scales comparable

to 1/H. As an order-of-magnitude estimate, it makes sense to approximate the correction

to the wavefunction summing over all resonances, for each k mode

�u
(1)
k;osc ⇠

p
(number of resonances in 1/H time)⇥ (the contribution from the first resonance) .

(3.23)

The square root takes into account that the randomness of each resonance phase. Here,

the numbers of resonance per Hubble time is approximately m�/(⇡H).

To obtain a crude yet relatively clean analytical understanding of the resonance contri-

butions, we study the behavior near a (locally) maximally symmetry broken point t0. This

is illustrated in Fig. 3. Below we take H ! 0. In this limit, a ! 1 and ⌧ ! �
1
H
+t+O(H).

We also take mh ! 0.

For a given k, the resonance condition (3.22) can be written as

�t =
1

m�

arccos


2k2

M2

f

��(t0)

�
, (3.24)
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e↵(t) ⇠ M2 cos(m�t)
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Figure 3. Two resonances around a maximally symmetry broken point.

where the sum runs over the two resonances at time tr’s and the resonance phases are given

by

✓r = �2k ⌘|
t=tr

+
p
2

Z
tr

t0

|me↵(t
0)|dt0

= 2
k

H
� 2ktr +

p
2

Z
tr

t0

|me↵(t
0)|dt0

⇡ 2
k

H
� 2k (t0 ±�t) +

r
2

�
Me

� 3Ht0
4

Z
tr

t0

q
cos (m�t

0)dt0

⇡ 2
k

H
� 2kt0 ⌥

2k

m�

arccos

✓
2k2

M2

f

��(t0)

◆
+

r
2

�

2M

m�

e
� 3Ht0

4 E

✓
1

2
m�(tr � t0)

���� 2
◆

(3.26)

where we used the approximation that when H ! 0, the conformal time ⌘ ⇡ �
1
H
+ t. The

resonance time tr takes one of the two values t0 ± �t for the first and second resonance,

respectively. In the last line above, we use Eq. (3.24). E (x|2) is the elliptic integral of the

second kind and is sub-dominant in the phase when M . 103H.

Numerically, we observe an interesting repeated “k-wavepacket” feature with two os-

cillation frequencies in the k-space in the correction to the two-point function at large k.

This is shown in Fig. 4. From the analytic estimate of the phases at resonance in Eq. (3.26),

we could understand the origins of the two frequencies as follows:

• The large frequency (fast oscillation in k-space): since we consider k � H, the leading

oscillation is proportional to cos(2k/H). In every �k/H = 10 range, there should be

about 3 peaks, which roughly agrees with the full numerical result in Fig. 4.

• The small frequency (slow modulation in k-space): the slow modulation gives the

envelope of the fast oscillations. In a single symmetry breaking phase, the two res-

onances with phases given by Eq. (3.26) could partially cancel each other at certain

k’s. More specifically, the common phase 2k/H, which leads to fast oscillations, can-

cels out. On the other hand, the terms with opposite signs, ± 2k
m�

arccos
⇣
2k2

M2
f

��(t0)

⌘
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Potential Observable: fine structure in CMB 

Correction to 
temperature 
harmonics 
(⨉10)

unbinned Planck 
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~ 10% correction in primordial spectrum ⟹ ~1 % 
correction in the temperature spectrum

Yet the correction over a large range of    ; 

Need a more thorough analysis to see whether it is 
within current sensitivity. 

In the near future, LSS, CMB Stage-4 will improve 
sensitivity by one order of magnitude (Slosar et.al. 
’19 “inflationary archaeology”). 
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spectrum into the CLASS package [20] to compute the CMB temperature spectrum. The

result for the benchmark model is presented in Fig. 5. For the input primordial spectrum,

we add the modifications due to phase transition oscillations on top of a smooth spectrum

with ns = 0.9649, which is the central value of the spectral index of scalar perturbations

determined by Planck temperature, polarization, and lensing data [21].

The range of angular multipole moments ` that could be a↵ected is determined by

the the comoving wave number compared to the scale of the observable universe. Roughly

speaking,

` ⇠
k

H0
⇠

k

10�4Mpc�1 , (4.1)

where H0 is the Hubble today. From Fig. 5, we observe that a 10% modification in the

primordial spectrum leads to a ⇠ 1% modification in a wide range of `’s in the CMB

temperature spectrum. The reason for the reduction of the modification in the CMB

spectrum is that the temperature harmonic power spectrum is given by a convolution

C` ⌘
1

2⇡2

Z
dk

k
⇥2

`
(k)P⇣(k), (4.2)

where ⇥` is a transfer function and P⇣ is the primordial spectrum. The oscillations in the

primordial spectrum are thus smoothed out by the integration, reducing the amplitude.

It is challenging to search for the oscillatory signal of order 1% that we present in

this benchmark model, since unbinned Planck data has large error per `, at order 10% or

even larger (though the error bar for binned data is much smaller, the signal is further

averaged away). For the search for the signal in Planck data, it remains interesting to

further explore two possibilities: i) Explore the parameter region where the primordial

power spectrum gets non-perturbatively large corrections; and ii) carry out a more careful

statistical analysis and template-based search on the Planck unbinned data. These are

beyond the scope of this paper.

In the future, the upcoming experiments such as CMB-S4 [22] will further improve

the high-` observation and provide better data for searching for this feature. Also, it is

interesting to see if the oscillation leaves more observable e↵ects in the large scale structure

and the future 21 cm surveys, since they may su↵er less from projection e↵ects. Prelimi-

nary studies using either CMB or large scale structure on searching for simple sin(C log k)

oscillation feature in the primordial spectrum could be found in Ref. [23].

Here we have assumed that the feature lies at high `. On the other hand, if the

oscillatory feature happened much earlier and appears in the low-` CMB multipoles, it

would be related to the possible parity asymmetry observation hinted at by WMAP [24]

and Planck [25]. However, with the large cosmic variance at low `, we do not expect to

get much information about the underlying particle physics even if the oscillatory power

spectrum may improve the fitting of data.

5 Comparisons between di↵erent models

One natural question one could ask is that whether the k-wavepacket feature in the primor-

dial spectrum that we find from the phase oscillation model could show up in a di↵erent
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Summary and outlook
Higgs dynamics in the early Universe could be highly 
non-trivial: e.g., oscillations between different phases.

Possible consequences (depend on parameters and 
couplings)

1. Particle production, field fragmentation and 
generation of gravitation waves;

2. Imprints on the inflaton spectrum: novel “k-
wavepacket” features and lead to fine-structure in 
the CMB spectrum.  



Many open questions: 

— Other possible probes?  

— Could observable directly test level of fine-tuning?



Thank you! 



We argued, with a combination of numerical and analytic 
computations, that this requires three conditions:

ΔV(h)

1) ∆V ~ V,
nearly flat 
direction

3) Fine-tuning: point 
of marginal breaking 
near minimum2) Light modulus: 

m𝜒 < M Suggestive: apply to fine-tuned SUSY 
Higgs boson with a flat direction in the 
field space.

�
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Inflation a(t) = eHt
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Figure 1: The classical PSC signals, plotted as the amplitude of the oscillatory component of
the two-point correlation function as a function of the scale k, for four di↵erent types of scenarios
characterized by di↵erent a(t). The light green lines are the sharp feature signals, which are
qualitatively the same for di↵erent scenarios. The dark blue lines are the clock signals. The
relative spacing between the ticks of the clock signals, namely the phases of these oscillations,
directly encodes a(t). Some less model-independent properties such as the envelops of the signals
are also shown in Fig.1 & 3.

where t⇤ or ⌧⇤ denotes the time at which the resonance happens,

a(t⇤) = a(⌧⇤) = 2k/m . (6)

Using these relations we see that

h⇣2ki � exp [im t(2k/m)� 2ik ⌧(2k/m)] , (7)

where t(2k/m) and ⌧(2k/m) are inverse functions of the scale factor a(t) and a(⌧), respec-

tively. Therefore, the scale factor evolution is directly recorded in the phase of this signal as

a function of the comoving momentum k. Superhorizon physics can only change the envelops

of the clock signals. See Fig. 1 for illustrations.

The classical PSC requires presence of sharp features, which limits its generality. So

it still remained a question whether there exist some types of signals that are as general

4
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Correction to two-point function

inflation (fast expansion)
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Figure 1: The classical PSC signals, plotted as the amplitude of the oscillatory component of
the two-point correlation function as a function of the scale k, for four di↵erent types of scenarios
characterized by di↵erent a(t). The light green lines are the sharp feature signals, which are
qualitatively the same for di↵erent scenarios. The dark blue lines are the clock signals. The
relative spacing between the ticks of the clock signals, namely the phases of these oscillations,
directly encodes a(t). Some less model-independent properties such as the envelops of the signals
are also shown in Fig.1 & 3.

where t⇤ or ⌧⇤ denotes the time at which the resonance happens,

a(t⇤) = a(⌧⇤) = 2k/m . (6)

Using these relations we see that

h⇣2ki � exp [im t(2k/m)� 2ik ⌧(2k/m)] , (7)

where t(2k/m) and ⌧(2k/m) are inverse functions of the scale factor a(t) and a(⌧), respec-

tively. Therefore, the scale factor evolution is directly recorded in the phase of this signal as

a function of the comoving momentum k. Superhorizon physics can only change the envelops

of the clock signals. See Fig. 1 for illustrations.

The classical PSC requires presence of sharp features, which limits its generality. So

it still remained a question whether there exist some types of signals that are as general

4

h⇣2ki � ei(mt⇤�2k⌧⇤) + h.c.
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Side comments:

a) Do not discuss modulus-inflaton coupling. It leads to 
some well-known modifications of the inflaton 
spectrum (similar to signal of classical primordial clock).

b) How do oscillations start: multiple possibilities. 
Modulus starts from the flat part of its potential and 
starts to oscillate when it rolls to the non-flat part of 
the potential.



As an aside, quantum fluctuations of massive field modify 
the bi-spectrum (non-Gaussianity). 

e.g, quasi-single inflation: Chen, Wang ’09 …

could be used to: 

a) differentiate inflation and alternatives: Chen, Namjoo, 
Wang, ’15…; 

b) probe masses and spins of heavy fields: “Cosmological 
collider physics” Arkani-Hamed, Maldacena ’15 … In 
particular, could be used to probe Higgs sector and high 
dimensional GUT, Kumar and Sundrum ’17, ’18. 



Imprint on the inflaton spectrum

                                            dominated by broken phase

(@�)2h2
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h2 ⇡ h2
vev + 2hvevhosc
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small freq: m𝜒          

Low k modification

piece-wise cosine function: 

(full cosine function leads to a sin(log(k)) 
spectrum).  
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Comparison between different models


