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“Gravitational particle 
production” may 
play crucial role!



Reheating after inflation
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V (�)
Inflation

Reheating

After inflation, inflaton cohenrent oscillation begins

Inflaton oscillation induces particle production

Eventually inflaton energy is converted into radiation 



Example of particle production
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QFT treatment of particle production
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A Method for Calculation

Useful parametrization

Given initial conditions, one can directly solve (12), but here we use a di↵erent tech-
nique [18]. Let us rewrite �k(⌧) as follows:

�k(⌧) = ↵k(⌧)vk(⌧) + �k(⌧)v
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Since both ↵k(⌧) and �k(⌧) are time-dependent, one can always write �k in this form. Still
there is a degree of freedom for the choice of ↵k(⌧) and �k(⌧). One can impose the following
condition, which is consistent with the equation of motion (12):
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Instead of solving (12), one may solve (16), which is often much easier for the purpose of
evaluating the particle production numerically. Note that (14) ensures

|↵k(⌧)|2 � |�k(⌧)|2 = 1. (17)

In order to extract the number density from ↵k and �k, we must first specify the initial
condition for the mode function (which corresponds to the choice of the vacuum state) and
the observer state which counts the number density. In general, there is no preferred choice
for the states of the vacuum and the observer in curved spacetime. In our case, however, we
may formally assume that the spacetime is asymptotically static in the far past ⌧ ! �1
(deep in the inflationary era) as well as in the far future ⌧ ! +1 (deep in the MD or RD
era). In such a case, it is natural to take the vacuum/observer as the negative frequency
modes in the limit ⌧ ! �1/1, respectively. The negative frequency mode approaches to

�k(⌧) ! 1p
2k

e�ik⌧ , (18)

in the limit ⌧ ! �1. Thus we take ↵(⌧i) = 1 and �(⌧i) = 0 in the limit ⌧i ! �1 as the
initial condition. Note that it represents the adiabatic vacuum of the infinite order [2], since
the spacetime is assumed to be static in the far past/future regions.#2 In our numerical
calculation, however, it is of course impossible to run from ⌧i = �1, and hence we start
our numerical calculation with ↵(⌧i) = 1 and �(⌧i) = 0 at some large but finite ⌧i. We will
discuss how to infer the result with ⌧i ! �1 from our numerical results with finite ⌧i in the
next section.

Here is a comment on the size of m2
� and ⇠. The exact solution to (12) during the (pure)

de Sitter era with the initial condition (18) is given by
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#2 One can show that our definition of f� is equivalent to the number density defined by the Bogoliubov
coe�cient where the vacuum and the observer states are taken as the zero-th order adiabatic vacuum as long
as !0

k/!k = 0 at ⌧ = ⌧i and ⌧f , where ⌧f is the conformal time at which the number density is evaluated.
Since the adiabatic expansion is exact in the limit in the far past/future regions, our f� coincides with the
number density defined by the adiabatic vacuum of the infinite order for �⌧i, ⌧f ! 1 as well.

4

Equaion of motion:

Energy density:

Vacuum conrtribution
(subtracted by cosmological constant)
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with the � contribution to the energy density neglected. Thus for any given inflation model,
we can calculate the production rate of � through the time dependence of the scale factor a
in (3). These equations are written in terms of the conformal time as
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The Friedmann equation of the second kind is given by
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2.2 Quantization and adiabatic vacuum

Since m
(e↵)2
� is time-dependent in the expanding Universe, we should be careful about the

choice of mode function and vacuum state. Let us define the Fourier mode as
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The Fourier mode satisfies the equation of motion:

�00
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� . (12)

From the canonical commutation relation

[e�(~x), e�0(~x0)] = i�(~x� ~x0), (13)

we obtain the normalization condition

�k�
0⇤
k � �⇤

k�
0
k = i. (14)

The vacuum state |0i is defined as a~k |0i = 0 for some mode function �k at some initial time
⌧ = ⌧i. In the Heisenberg picture, the state does not evolve once we fix it at the initial time.
Instead, the mode function develops with time, which may be interpreted as the particle
production as will be shown later.
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For m(e↵)2
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Background evolution

Friedmann equation 3M2
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where we have assumed power-law potential V ∝ φn and ⟨· · · ⟩ means time average in a
period longer than oscillation period but much shorter than the Hubble time scale. Then
we obtain

⟨ρ̇φ⟩+
6n

n + 2
⟨H⟩ ⟨ρφ⟩ = 0. (2.7)

This shows that ⟨ρφ⟩ ∝ ⟨a(t)⟩−6n/(n+2) and ⟨H⟩ = (n+ 2)/(3nt).
This oscillation-averaged picture is often useful when discussing cosmological evolution

of the oscillating inflaton field. However, it does not contain small oscillations in ρφ and
H , which come from the effects neglected in the Virial theorem. Although the oscillation
amplitude is small, it induces particle production and may have observational impacts in
some cases.♠2

To analyze the oscillatory behavior, quantities are divided into oscillation-averaged
parts and oscillation parts: ρφ = ⟨ρφ⟩ + δρφ and H = ⟨H⟩ + δH . The oscillation part
satisfies

δḢ =
3n

n+ 2
⟨H⟩2 −

φ̇2
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. (2.8)

By noting φ̇2/2 + V = ⟨ρφ⟩+ δρφ ≃ 3M2
P ⟨H⟩2 (1 + 2δH/⟨H⟩), this is rewritten as
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. (2.9)

The first term on the l.h.s. is δḢ ∼ mφδH ≫ ⟨H⟩δH , and hence it dominates the second
term. For the same reason, on the r.h.s., the first term gives the dominant contribution.
Then, by integrating this equation, we obtain

δH ≃ −
1

n + 2

φφ̇

M2
P

. (2.10)

The scale factor a(t) is obtained by integrating ȧ/a = H = ⟨H⟩+ δH :

a(t) ≃ ⟨a(t)⟩
(

1−
1
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)
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t

ti
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where quantities with subscript i are evaluated at an arbitrary initial time in the inflaton-
oscillation dominated era.♠3 This explicitly shows that the Hubble parameter H as well as
the scale factor a(t) depend on φ2 and oscillate with time. Note that the relative oscillation
amplitude, δH/H ∝ φ/MP , becomes smaller and smaller as the universe expands since
the inflaton oscillation amplitude decreases with time. Thus the oscillation in the scale
factor is most efficient just after inflation.

We have performed numerical calculation to check the above formula. Fig. 1 shows
time evolution of H (left) and δH (right) for n = 2. We have compared numerical results
and the approximate analytic formula (2.10) for δH . We have taken φi = 0.1 and mφ = 1
in Planck unit.

♠2 Such kind of particle production is also briefly discussed in ref. [3].
♠3 Here we neglect terms suppressed by ∼ ⟨φ2⟩/M2

P in the oscillation-averaged scale factor ⟨a(t)⟩.
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δḢ +
6n

n+ 2
⟨H⟩δH ≃ −

1

n + 2

1

M2
P

[

d

dt
+ 3H

]

(

φφ̇
)

. (2.9)
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Slow-Fast decomposition

“Slow” part Ẋ ⇠ O(HX) “Fast” oscillating part Ẋ ⇠ O(m�X)

Slow part

Fast part
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Figure 1: Time evolution of H (left) and δH (right). We have compared numerical
results and the approximate analytic formula (2.10) for δH . We have taken mφ = 1 in
Planck unit.

2.2 Gravitational annihilation of inflaton

2.2.1 Scalar

Now let us discuss the gravitational inflaton decay. To be concrete, we consider the matter
Lagrangian for a real scalar χ:

SM =

∫

d4x
√
−g

[

−
1

2
gµν∂µχ∂νχ−

1

2
m2

χχ
2

]

, (2.12)

where we assume mχ ≪ mφ. As shown above, the scale factor and hence
√
−g contains

φ2 dependence. Therefore, neglecting terms including mχ, the action can be expanded as

SM =

∫

dτd3x ⟨a(t)⟩2
(

1−
1

n+ 2

φ2

M2
P

)

1

2

[

χ′2 − (∂iχ)
2
]

, (2.13)

where we have used the conformal time dτ = dt/a(t) and the prime denotes derivative with
respect to τ . This explicitly shows that the inflaton φ couples to (∂χ)2 and φ (partially)
“decays” or “annihilates” into χ particles. According to the analysis of particle production
under the oscillating background φ [5,6], it might be interpreted as the annihilation of the
inflaton into χ particles. Thus we call this “gravitational annihilation” for convenience in
the following.

To estimate the production rate, we write down the equation of motion for χ̃k ≡ aχk

where χk denotes the Fourier mode of χ with comoving wavenumber k,

χ̃′′
k +

(

k2 −
a′′

a

)

χ̃k = 0 → χ̃′′
k +

(

k2 − 2 ⟨H⟩2 +
φ′2

2M2
P

)

χ̃k = 0, (2.14)

where H ≡ a′/a = aH . Therefore, the effective mass of χ̃ oscillates rapidly.♠4 Particle
creation with k ≃ mφ occurs and the creation rate was studied e.g. in Ref. [5]:

Γ(φφ→ χχ) ≃
C
32π

Φ2

M2
P

m3
φ

M2
P

, (2.15)

♠4 If χ couples to the Ricci scalar as L = 1

2
f(χ)R, the equation of motion becomes χ̃′′ − ∇2χ̃ +

(a′′/a)(χ̃+3f,χa) = 0. Thus if f(χ) = −χ2/6, χ̃ does not couple to the scale factor or the inflaton in the
limit mχ = 0. This corresponds to the conformal coupling.
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Action of minimal scalar

production rate in a realistic inflationary cosmology. Sec. 4 is devoted to summary and
discussion.

2 Scalar field in cosmological background

2.1 Model and equations of motion
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where MP is the reduced Planck scale, R is the Ricci scalar, � denotes the inflaton field
with V (�) being its potential and � denotes a real scalar field. It has a Z2 symmetry under
which � changes its sign, and hence � is stable and is a candidate of DM. We assume that �
does not have a direct coupling to the inflaton and other standard model fields. It interacts
only through the metric or the gravity. The coupling strength to the gravity is controlled by
the non-minimal coupling ⇠. Pure Einstein gravity corresponds to ⇠ = 0 and the conformal
coupling corresponds to ⇠ = 1/6.

We use the Friedmann-Robertson-Walker metric:

gµ⌫dx
µdx⌫ = a2(⌧)(�d⌧ 2 + d~x2), (2)

where a(⌧) denotes the cosmic scale factor with ⌧ being the conformal time, which is related
to the physical time as dt = ad⌧ . Defining e� ⌘ a�, the action of e� is given by
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where the prime denotes the derivative with respect to ⌧ . Thus e� satisfies the equation of
motion
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H2 =

✓
ȧ
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gravity. In Sec. 3 the gravitational particle production rate in supergravity is studied. In
particular, we find that the production rate of a scalar field with minimal Kähler potential
can be suppressed compared with the non-SUSY case. The case of more general classes
of Kähler potential and several additional features of gravitational particle production in
supergravity are discussed in Sec. 4. Some phenomenological implications are discussed in
Sec. 5.

2 Gravitational particle production in non-SUSY the-

ory

First let us briefly review the gravitational particle production in the non-SUSY case with
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where MP is the reduced Planck scale and R the Ricci curvature, � denotes the canonical
inflaton field and L� is the inflaton Lagrangian, whose concrete form is not specified. We
assume the Friedmann-Robertson-Walker universe where the line element is given by ds2 =
�dt2+ a2(t)d~x2 with a(t) being the cosmic scale factor. To discuss the gravitational particle
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where H = ȧ/a denotes the Hubble parameter and we have used the Friedmann equation in
the last equality:
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with V� being the inflaton potential. Eq. (3) may show that the minimal scalar field � “feels”
the time dependence of the Ricci curvature R.

Particle production phenomenon is related to the (rapid) time-dependence of the e↵ective
mass em2

�. It is clearly seen that the last term in the most right hand side of the expression
(3) is highly time-dependent due to the inflaton dynamics, while the time dependence of the
first and second terms are rather mild compared with the last term.
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Graviton production
Graviton action is the same as minimal massless scalar

where the spin connection ω ab
µ is given as

ω ab
µ = 2eν[a∂[µe

b]
ν] − eν[aeb]σeµc∂νe

c
σ . (2.23)

By using the conformal time and rescaling the spinor field as ψ̃ ≡ a3/2(t)ψ, the action can
be rewritten as

SM = −
∫

dτd3x ¯̃ψδµaγ
a∂µψ̃, (2.24)

where the summation for µ is taken over {τ, x1, x2, x3}. Therefore, the scale factor does
not couple to the massless fermion. Note that these facts are closely related to the Weyl
invariance of massless vector bosons and fermions. In other words, this annihilation
process is applied to any fields lighter than the inflaton if they are not Weyl invariant.♠9

For example, if vector bosons and fermions are massive, they are coupled to the scale
factor and hence produced by the inflaton oscillation.

2.2.3 Graviton

Finally, let us see the inflaton-graviton coupling. The graviton is defined as the transverse-
traceless part of the metric perturbation:

ds2 = −dt2 + a(t)2(δij + hij)dx
idxj, (2.25)

where hij satisfies ∂ihij = hii = 0. Expressing the two helicity modes by hλ (λ = +,×), it
is known that the equation of motion of the graviton is the same as that of the minimally-
coupled massless scalar field. Thus h̃λ ≡ ahλ satisfies the same equation as (2.14). It
means that the graviton production rate is given by

Γ(φφ→ hh) ≃
C
16π

Φ2

M2
P

m3
φ

M2
P

. (2.26)

The abundance of graviton, or the gravitational wave, is given by Eq. (2.18). The present
frequency of the gravitational wave is

fGW ≃
mφa(Hinf)

2π
≃ 2× 105Hz

( mφ

1013GeV

)

(

TR

1010GeV

)1/3 ( Hinf

1014GeV

)−2/3

, (2.27)

where we have taken the present scale factor to be equal to one. The present gravitational
wave spectrum in terms of ΩGW has a peak at this frequency and scales as f−1/2 for higher
frequencies. Around this frequency range, the abundance of gravitational wave is typically
below the observable level of future space laser interferometers [11].

3 Extended Gravity

In the previous section we have shown that, in the Einstein gravity, the inflaton necessarily
couples to scalar fields and graviton through the φ dependence of the scale factor, which
is proportional to φ2. In this section, we discuss particle production in the extended

♠9 See Refs. [10] for the gravitino production.
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Taking into account the Hubble expansion, one can easily see that the largest contribution
comes from the very beginning of the�-oscillation at H =m� unless w is unlikely large and/or
n is so small. Note that even if � obtains a Hubble induced mass term, this production mecha-
nism becomes effective soon after the� oscillation.

2.2.2 Graviton

Next we apply our formalism to the graviton production. The graviton action is given by
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where ⌧ is the conformal time, and hi j is the metric perturbation satisfying the transverse and
traceless conditions hi i = @i hi j = 0. The indices i , j and k run the space coordinates. Hence
the production rate is similar to the minimal scalar, except for the factor 2 corresponding to the
two polarization states of the graviton:
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2.3 Cosmological implications

The gravitational annihilation of a subdominant scalar field � yields the abundance given in
(2.21), but the gravitational annihilation of inflaton also gives a significant contribution [12, 14].
The ratio of � abundance produced by a subdominant scalar field � to that produced by the
inflaton is estimated as
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with Hinf and �inf being the Hubble scale at the end of inflation and the inflaton decay rate,
respectively. Here we have assumed that the inflaton oscillation behaves as non-relativistic
matter and the inflaton decays into radiation. Also, � is assumed to be sub-dominant at the
onset of its oscillation. The dominant contribution comes from the gravitational annihilation
of the inflaton since m� < Hinf in order for � to begin coherent oscillation after inflation. In
this case, cosmological implications were studied in [14], and we briefly discuss them here. The
energy density-to-entropy ratio of � with a sizable mass term is estimated to be
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Probing reheating temperature of the universe with gravitational wave background 8

3. Prospects for the determination of TR with future space-based laser

interferometer experiments

The spectrum of the primordial gravitational wave background generated during

inflation crucially depends on the reheating temperature TR after inflation, as can be
seen from Fig. 3. Conversely, this fact opens up the possibility that future experiments

devoted to detect gravitational wave background will probe the reheating stage of the

universe.

Figure 2. Ωgw(f) at f = 0.1Hz for η = 0.01, 0,−0.01 from upper to lower.

Figure 3. Primordial gravitational wave spectrum for TR = 109 GeV and TR =
105 GeV are shown by thin and thick lines for r = 0.1 and 0.001. Also shown are
expected sensitivity of DECIGO (green dashed), correlated analysis of DECIGO (blue
dot-dashed), ultimate-DECIGO (purple dashed) and correlated analysis of ultimate-
DECIGO (red dotted), from upper to lower.
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frequency of the gravitational wave is

fGW ≃
mφa(Hinf)

2π
≃ 2× 105Hz

( mφ

1013GeV

)

(

TR

1010GeV

)1/3 ( Hinf

1014GeV

)−2/3

, (2.27)

where we have taken the present scale factor to be equal to one. The present gravitational
wave spectrum in terms of ΩGW has a peak at this frequency and scales as f−1/2 for higher
frequencies. Around this frequency range, the abundance of gravitational wave is typically
below the observable level of future space laser interferometers [11].

3 Extended Gravity

In the previous section we have shown that, in the Einstein gravity, the inflaton necessarily
couples to scalar fields and graviton through the φ dependence of the scale factor, which
is proportional to φ2. In this section, we discuss particle production in the extended

♠9 See Refs. [10] for the gravitino production.
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where we have taken the present scale factor to be equal to one. The present gravitational
wave spectrum in terms of ΩGW has a peak at this frequency and scales as f−1/2 for higher
frequencies. Around this frequency range, the abundance of gravitational wave is typically
below the observable level of future space laser interferometers [11].
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In the previous section we have shown that, in the Einstein gravity, the inflaton necessarily
couples to scalar fields and graviton through the φ dependence of the scale factor, which
is proportional to φ2. In this section, we discuss particle production in the extended

♠9 See Refs. [10] for the gravitino production.
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Anomalous interaction suppressed by PQ scale
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1. Scalar PGDM

2. Fermion PGDM

3. Vector PGDM



1. Scalar PGDM
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d
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Real scalar field interacting only through gravity

Several production mechanisms of PGDM

Thermal scattering of SM particle with graviton exchange

SM+ SM ! graviton ! ��

Garny, Sandora, Sloth (2015);  Tang, Wu (2016)

Gravitational particle production Ema, KN, Tang (2018)

In most cases, this is larger than thermal production.
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inflaton can have some gauge charges other than SM, such as
U(1)B�L. In that case,� should be regarded as a radial compo-
nent of the complex scalar, and e��h = 0. In this paper, how-
ever, we keep e��h 6= 0 to make our discussion generic. Also,
although it is higher dimensional, the following term may be
relevant:

�Lkin = ckin
h 2

M 2
Pl

�
@ �
�2

. (3)

It can be sizable, for it respects the shift symmetry, � ! � +
const. We can also consider the non-minimal coupling be-
tween the Higgs and R . We first omit these terms for simplicity,
and discuss their effects at the end of this paper.

Below we explain each term in detail.

A. Inflaton potential

As a prototype of an inflaton potential for low-scale infla-
tion, we consider the hilltop model [51–54] (see Refs. [55–58]
for supergravity embeddings):

V (�) =⇤4


1�
✓
�

v�

◆n�2
, (4)

where n > 2 is an integer and v� > 0 is the vacuum expecta-
tion value (VEV) of the inflaton at the minimum of its poten-
tial. The inflaton mass around the minimum is

m� =
p

2n⇤2

v�
. (5)

Since we are interested in small field inflation models, we as-
sume that v� ⌧ MPl. Otherwise, the model would be rather
similar to high-scale inflation models. Inflation takes place in
the flat region of the potential: |�| ⌧ v� . Here and in what
follows, we consider the field space of the positive branch:
� > 0.[3 The Hubble parameter at the end of inflation Hinf is
typically much smaller than m� in this case:

Hinf

m�
' v�p

6nMPl
⌧ 1. (6)

Using the standard technique to calculate the large-scale
curvature perturbation [60], one finds the scalar spectral index
and tensor-to-scalar ratio as

ns ' 1� 2
N

n �1
n �2

, r ' 16n
N (n �2)

ñ
1

2N n (n �2)

v 2
�

M 2
Pl

ô n
n�2

, (7)

where N is the e-folding number of the cosmic microwave
background (CMB) scale, which lies between 50 and 60 de-
pending on the subsequent thermal history. Thus the tensor-
to-scalar ratio is negligibly small in small-field models with

[3 A pre-inflation before the observed inflation can solve the initial condition
problem of the hilltop inflation. If there exist a Hubble induced mass term
during the pre-inflation and a small Z2 (�!��) breaking term, the initial
condition is dynamically selected [59].

FIG. 1. Here we show ns -r plane for n = 4, 6, 8 with varying k from
10�4 to 10�2. The solid (dashed) lines correspond to N = 50 (60). The
circle, triangle, and square represent points at k = 10�4, 10�3, 10�2 re-
spectively. The yellow shaded region stands for one and two sigma
regions of ns [61].

v� ⌧ MPl. The overall normalization of the curvature pertur-
bation observed by the Planck satellite [61] implies

P⇣ ' 2.2⇥10�9 '
⇥
2n ((n �2)N )n�1

⇤ 2
n�2

12⇡2

⇤4

(v n
�M n�4

Pl )
2

n�2

. (8)

It relates⇤ and v� and hence there is essentially one parameter
left, which we take v� hereafter.

For a reasonable value of n , the predicted spectral index
[Eq. (7)] is slightly outside the favored range: ns = 0.968(6) at
68% confidence level [61]. This discrepancy is resolved if there
exists the following Planck suppressed operator [55, 56]:

�VPl =�⇤4 k
2
�2

M 2
Pl

, (9)

with k Æ O (1/nN ). While it is too small to change the infla-
ton dynamics significantly, it can shift the slow-roll parameter
⌘ for a certain range of k . If n æ 6, it is possible to shift the
spectral index within 68% confidence level for N = 50–60. See
Fig. 1 and Ref. [62]. Since the suitable value of k is small, this
term is safely neglected in the oscillation phase. Thus, we use
the potential given in Eq. (4) in the following discussion.

B. Higgs-inflaton couplings and bare mass term

If we denote ' ⌘ v� ��, the potential is given as

U (�, h ) =V (v� �') + 1
2

Ä
m 2

h + e��h v� +��h v 2
�

ä
h 2

+
��h

2
'h 2+

��h

2
'2h 2+

�h

4
h 4, (10)

where we have defined

��h ⌘� �e��h +2��h v�
�

. (11)

Note that ' = 0 at the minimum of the potential. Here comes
our crucial observation. In order to realize the EW scale, the

�

V (�)

if m� . m� where C is a numerical factor and � denotes the inflaton oscillation amplitude.
Thus the created number density during one Hubble time is given by

n� ' 9C

4⇡
H3. (42)

Again, the dominant contribution comes from the earliest epoch, i.e., H ⇠ Hinf . Similarly
to the case studied in the conformal coupling case, the typical physical momentum of � is
k/a ⇠ m� for each epoch and the final momentum distribution of � is not exponentially
suppressed for large k since the production continues until the inflaton decays. We expect
that the momentum distribution looks like

f�(k, ⌧) ⇠

8
>>><

>>>:

✓
Hinf

m�

◆3

for k < aendm�,
✓
Hinf

m�

◆3 ✓
k

aendm�

◆�9/2

for k > aendm�,

(43)

and there is an exponential cuto↵ at k ⇠ a(t = ��1
inf )m�. It is not suppressed even for m� �

Hinf . Note again that the low momentum behavior of (43) may not be so simple because
of the nontrivial time scale of the inflaton dynamics during the transition from inflation to
the reheating era. As mentioned above, there are another contribution as (40), (33) and
(30). Again we stress that, in realistic situation, these contributions should be smoothly
connected because we cannot strictly define the “end” of inflation and the typical time scale
of the inflaton motion changes from Hinf to m� gradually around the transition epoch. The
number density is dominated by that from the oscillation e↵ect (43) for m� � Hinf and two
contributions are comparable for m� . Hinf . In any case, the number density is given by

n�(⌧) ⇠ CH3
inf

✓
aend
a(⌧)

◆3

, (44)

for Hinf < m� < m� where we numerically find C ⇠ 10�2. The present DM energy density
from gravitational production divided by the entropy density is then given by

⇢
(GP)
�

s
⇠ C

4

m�HinfTR

M2
P

' 3⇥ 10�10 GeV C
⇣ m�

109 GeV

⌘✓
Hinf

109 GeV

◆✓
TR

1010 GeV

◆
, (45)

for m� < m� and TR denotes the reheating temperature after inflation and we assumed that
the inflaton coherent oscillation behaves as non-relativistic matter.

3.2 Numerical simulation in realistic inflation model

Let us now calculate the phase space density numerically. As a concrete inflation model, let
us consider the hilltop inflation or new inflation models [19–25]. The inflaton potential is
given by

V (�) = M4


1�

✓
�

v�

◆n�2
, (46)
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New inflation

Concrete Calculation

We can numerically evaluate f�(k) = |�k|2 given inflation model

Given initial conditions, one can directly solve (12), but here we use a di↵erent tech-
nique [18]. Let us rewrite �k(⌧) as follows:

�k(⌧) = ↵k(⌧)vk(⌧) + �k(⌧)v
⇤
k(⌧), vk(⌧) ⌘ 1p

2!k

exp

✓
�i

Z
!kd⌧

◆
. (15)

Since both ↵k(⌧) and �k(⌧) are time-dependent, one can always write �k in this form. Still
there is a degree of freedom for the choice of ↵k(⌧) and �k(⌧). One can impose the following
condition, which is consistent with the equation of motion (12):

↵0
kvk =

!0
k

2!k

v⇤k�k, �0
kv

⇤
k =

!0
k

2!k

vk↵k. (16)

Instead of solving (12), one may solve (16), which is often much easier for the purpose of
evaluating the particle production numerically. Note that (14) ensures

|↵k(⌧)|2 � |�k(⌧)|2 = 1. (17)

In order to extract the number density from ↵k and �k, we must first specify the initial
condition for the mode function (which corresponds to the choice of the vacuum state) and
the observer state which counts the number density. In general, there is no preferred choice
for the states of the vacuum and the observer in curved spacetime. In our case, however, we
may formally assume that the spacetime is asymptotically static in the far past ⌧ ! �1
(deep in the inflationary era) as well as in the far future ⌧ ! +1 (deep in the MD or RD
era). In such a case, it is natural to take the vacuum/observer as the negative frequency
modes in the limit ⌧ ! �1/1, respectively. The negative frequency mode approaches to

�k(⌧) ! 1p
2k

e�ik⌧ , (18)

in the limit ⌧ ! �1. Thus we take ↵(⌧i) = 1 and �(⌧i) = 0 in the limit ⌧i ! �1 as the
initial condition. Note that it represents the adiabatic vacuum of the infinite order [2], since
the spacetime is assumed to be static in the far past/future regions.#2 In our numerical
calculation, however, it is of course impossible to run from ⌧i = �1, and hence we start
our numerical calculation with ↵(⌧i) = 1 and �(⌧i) = 0 at some large but finite ⌧i. We will
discuss how to infer the result with ⌧i ! �1 from our numerical results with finite ⌧i in the
next section.

Here is a comment on the size of m2
� and ⇠. The exact solution to (12) during the (pure)

de Sitter era with the initial condition (18) is given by

�k(⌧) = e
i(2⌫+1)⇡

4
1p
2k

r
�⇡k⌧

2
H(1)

⌫ (�k⌧), ⌫2 ⌘ 9

4
� 12⇠ � m2

�

H2
, (19)

#2 One can show that our definition of f� is equivalent to the number density defined by the Bogoliubov
coe�cient where the vacuum and the observer states are taken as the zero-th order adiabatic vacuum as long
as !0

k/!k = 0 at ⌧ = ⌧i and ⌧f , where ⌧f is the conformal time at which the number density is evaluated.
Since the adiabatic expansion is exact in the limit in the far past/future regions, our f� coincides with the
number density defined by the adiabatic vacuum of the infinite order for �⌧i, ⌧f ! 1 as well.
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initial condition. Note that it represents the adiabatic vacuum of the infinite order [2], since
the spacetime is assumed to be static in the far past/future regions.#2 In our numerical
calculation, however, it is of course impossible to run from ⌧i = �1, and hence we start
our numerical calculation with ↵(⌧i) = 1 and �(⌧i) = 0 at some large but finite ⌧i. We will
discuss how to infer the result with ⌧i ! �1 from our numerical results with finite ⌧i in the
next section.
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#2 One can show that our definition of f� is equivalent to the number density defined by the Bogoliubov
coe�cient where the vacuum and the observer states are taken as the zero-th order adiabatic vacuum as long
as !0

k/!k = 0 at ⌧ = ⌧i and ⌧f , where ⌧f is the conformal time at which the number density is evaluated.
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Figure 1: The phase space density of � after the gravitational particle production in hilltop
inflation model with v� = 0.5MP . (Left) The case of conformal coupling ⇠ = 1/6. We have
taken m� = (0.2, 0.5, 1, 2) ⇥ m� for each line. (Right) The same as the left but for the
minimal coupling ⇠ = 0.

fixed physical momentum k/aend, such a limit can be achieved by taking the duration of
inflation long in a numerical calculation. In order to identify such e↵ects, we plot f�(k)
for di↵erent initial condition in Fig. 2. Three lines correspond to di↵erent initial condition,
�i = (0.38, 0.41, 0.44) ⇥ �end for “long,” “mid” and “short,” respectively. The DM mass is
taken to be m� = m� (left) and m� = 2m� (right). The wave number in the horizontal
axis is normalized by aendm�. As seen from the left panel, the flat part at large k is initial
condition dependent and becomes smaller as the initial time is taken to be earlier. The
following simple example may be helpful to understand this behavior. Let us consider the
integral:

I(k) =

Z ⌧f

⌧i

eik⌧

⌧ 2 + ⌧ 20
d⌧, (49)

where ⌧0 is a real number. In the limit �⌧i = ⌧f = 1, we can exactly solve it by using the
residue theorem and obtain exponential form: I(k) = ⇡e�k⌧0/⌧0. If we take large but finite
�⌧i = ⌧f (� ⌧0), we instead have power law tail as I(k) ⇠ ⇡e�k⌧0/⌧0+1/(⌧ 2f k). The integrand
is more complicated in a realistic situation, but we expect that a similar phenomena occur
in our numerical calculation. Therefore the flat part at large k is interpreted as an e↵ect of
finite ⌧i and ⌧f , and we expect that it disappears for �⌧i, ⌧f ! �1. On the other hand, the
modes with smaller k are not a↵ected by the change of the initial condition, and hence are
expected to be intact in the limit �⌧i, ⌧f ! 1. We have checked that the result in Fig. 1 is
not a↵ected by the change of the initial condition, and hence we expect that it provides good
estimation of f� in the limit �⌧i, ⌧f ! 1. This issue is related to the choice of the initial
condition at ⌧ = ⌧i. If we could carefully choose the initial conditions of ↵k and �k at ⌧ = ⌧i
so that they match the solution with ↵k = 1 and �k = 0 at ⌧ = �1, the ⌧i dependence
would be gone.
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Figure 1: The phase space density of � after the gravitational particle production in hilltop
inflation model with v� = 0.5MP . (Left) The case of conformal coupling ⇠ = 1/6. We have
taken m� = (0.2, 0.5, 1, 2) ⇥ m� for each line. (Right) The same as the left but for the
minimal coupling ⇠ = 0.

fixed physical momentum k/aend, such a limit can be achieved by taking the duration of
inflation long in a numerical calculation. In order to identify such e↵ects, we plot f�(k)
for di↵erent initial condition in Fig. 2. Three lines correspond to di↵erent initial condition,
�i = (0.38, 0.41, 0.44) ⇥ �end for “long,” “mid” and “short,” respectively. The DM mass is
taken to be m� = m� (left) and m� = 2m� (right). The wave number in the horizontal
axis is normalized by aendm�. As seen from the left panel, the flat part at large k is initial
condition dependent and becomes smaller as the initial time is taken to be earlier. The
following simple example may be helpful to understand this behavior. Let us consider the
integral:

I(k) =

Z ⌧f

⌧i

eik⌧

⌧ 2 + ⌧ 20
d⌧, (49)

where ⌧0 is a real number. In the limit �⌧i = ⌧f = 1, we can exactly solve it by using the
residue theorem and obtain exponential form: I(k) = ⇡e�k⌧0/⌧0. If we take large but finite
�⌧i = ⌧f (� ⌧0), we instead have power law tail as I(k) ⇠ ⇡e�k⌧0/⌧0+1/(⌧ 2f k). The integrand
is more complicated in a realistic situation, but we expect that a similar phenomena occur
in our numerical calculation. Therefore the flat part at large k is interpreted as an e↵ect of
finite ⌧i and ⌧f , and we expect that it disappears for �⌧i, ⌧f ! �1. On the other hand, the
modes with smaller k are not a↵ected by the change of the initial condition, and hence are
expected to be intact in the limit �⌧i, ⌧f ! 1. We have checked that the result in Fig. 1 is
not a↵ected by the change of the initial condition, and hence we expect that it provides good
estimation of f� in the limit �⌧i, ⌧f ! 1. This issue is related to the choice of the initial
condition at ⌧ = ⌧i. If we could carefully choose the initial conditions of ↵k and �k at ⌧ = ⌧i
so that they match the solution with ↵k = 1 and �k = 0 at ⌧ = �1, the ⌧i dependence
would be gone.
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aend : scale factor 
at the end of inflation

Phase space distribution well after inflation

Energy density is peaked around k ⇠ aendm�

Y.Ema, KN, Y.Tang (2018)
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◆

a4⇢� =

Z
d3k

(2⇡)3
!kf�(k)

if m� . m� where C is a numerical factor and � denotes the inflaton oscillation amplitude.
Thus the created number density during one Hubble time is given by

n� ' 9C

4⇡
H3. (42)

Again, the dominant contribution comes from the earliest epoch, i.e., H ⇠ Hinf . Similarly
to the case studied in the conformal coupling case, the typical physical momentum of � is
k/a ⇠ m� for each epoch and the final momentum distribution of � is not exponentially
suppressed for large k since the production continues until the inflaton decays. We expect
that the momentum distribution looks like

f�(k, ⌧) ⇠
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for k < aendm�,
✓
Hinf
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k
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◆�9/2

for k > aendm�,

(43)

and there is an exponential cuto↵ at k ⇠ a(t = ��1
inf )m�. It is not suppressed even for m� �

Hinf . Note again that the low momentum behavior of (43) may not be so simple because
of the nontrivial time scale of the inflaton dynamics during the transition from inflation to
the reheating era. As mentioned above, there are another contribution as (40), (33) and
(30). Again we stress that, in realistic situation, these contributions should be smoothly
connected because we cannot strictly define the “end” of inflation and the typical time scale
of the inflaton motion changes from Hinf to m� gradually around the transition epoch. The
number density is dominated by that from the oscillation e↵ect (43) for m� � Hinf and two
contributions are comparable for m� . Hinf . In any case, the number density is given by

n�(⌧) ⇠ CH3
inf

✓
aend
a(⌧)

◆3

, (44)

for Hinf < m� < m� where we numerically find C ⇠ 10�2. The present DM energy density
from gravitational production divided by the entropy density is then given by

⇢
(GP)
�

s
⇠ C

4

m�HinfTR

M2
P

' 3⇥ 10�10 GeV C
⇣ m�

109 GeV

⌘✓
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109 GeV

◆✓
TR

1010 GeV

◆
, (45)

for m� < m� and TR denotes the reheating temperature after inflation and we assumed that
the inflaton coherent oscillation behaves as non-relativistic matter.

3.2 Numerical simulation in realistic inflation model

Let us now calculate the phase space density numerically. As a concrete inflation model, let
us consider the hilltop inflation or new inflation models [19–25]. The inflaton potential is
given by

V (�) = M4


1�

✓
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v�

◆n�2
, (46)
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Figure 1: The phase space density of � after the gravitational particle production in hilltop
inflation model with v� = 0.5MP . (Left) The case of conformal coupling ⇠ = 1/6. We have
taken m� = (0.2, 0.5, 1, 2) ⇥ m� for each line. (Right) The same as the left but for the
minimal coupling ⇠ = 0.

fixed physical momentum k/aend, such a limit can be achieved by taking the duration of
inflation long in a numerical calculation. In order to identify such e↵ects, we plot f�(k)
for di↵erent initial condition in Fig. 2. Three lines correspond to di↵erent initial condition,
�i = (0.38, 0.41, 0.44) ⇥ �end for “long,” “mid” and “short,” respectively. The DM mass is
taken to be m� = m� (left) and m� = 2m� (right). The wave number in the horizontal
axis is normalized by aendm�. As seen from the left panel, the flat part at large k is initial
condition dependent and becomes smaller as the initial time is taken to be earlier. The
following simple example may be helpful to understand this behavior. Let us consider the
integral:

I(k) =

Z ⌧f

⌧i

eik⌧

⌧ 2 + ⌧ 20
d⌧, (49)

where ⌧0 is a real number. In the limit �⌧i = ⌧f = 1, we can exactly solve it by using the
residue theorem and obtain exponential form: I(k) = ⇡e�k⌧0/⌧0. If we take large but finite
�⌧i = ⌧f (� ⌧0), we instead have power law tail as I(k) ⇠ ⇡e�k⌧0/⌧0+1/(⌧ 2f k). The integrand
is more complicated in a realistic situation, but we expect that a similar phenomena occur
in our numerical calculation. Therefore the flat part at large k is interpreted as an e↵ect of
finite ⌧i and ⌧f , and we expect that it disappears for �⌧i, ⌧f ! �1. On the other hand, the
modes with smaller k are not a↵ected by the change of the initial condition, and hence are
expected to be intact in the limit �⌧i, ⌧f ! 1. We have checked that the result in Fig. 1 is
not a↵ected by the change of the initial condition, and hence we expect that it provides good
estimation of f� in the limit �⌧i, ⌧f ! 1. This issue is related to the choice of the initial
condition at ⌧ = ⌧i. If we could carefully choose the initial conditions of ↵k and �k at ⌧ = ⌧i
so that they match the solution with ↵k = 1 and �k = 0 at ⌧ = �1, the ⌧i dependence
would be gone.
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Figure 1: The phase space density of � after the gravitational particle production in hilltop
inflation model with v� = 0.5MP . (Left) The case of conformal coupling ⇠ = 1/6. We have
taken m� = (0.2, 0.5, 1, 2) ⇥ m� for each line. (Right) The same as the left but for the
minimal coupling ⇠ = 0.

fixed physical momentum k/aend, such a limit can be achieved by taking the duration of
inflation long in a numerical calculation. In order to identify such e↵ects, we plot f�(k)
for di↵erent initial condition in Fig. 2. Three lines correspond to di↵erent initial condition,
�i = (0.38, 0.41, 0.44) ⇥ �end for “long,” “mid” and “short,” respectively. The DM mass is
taken to be m� = m� (left) and m� = 2m� (right). The wave number in the horizontal
axis is normalized by aendm�. As seen from the left panel, the flat part at large k is initial
condition dependent and becomes smaller as the initial time is taken to be earlier. The
following simple example may be helpful to understand this behavior. Let us consider the
integral:

I(k) =

Z ⌧f

⌧i

eik⌧

⌧ 2 + ⌧ 20
d⌧, (49)

where ⌧0 is a real number. In the limit �⌧i = ⌧f = 1, we can exactly solve it by using the
residue theorem and obtain exponential form: I(k) = ⇡e�k⌧0/⌧0. If we take large but finite
�⌧i = ⌧f (� ⌧0), we instead have power law tail as I(k) ⇠ ⇡e�k⌧0/⌧0+1/(⌧ 2f k). The integrand
is more complicated in a realistic situation, but we expect that a similar phenomena occur
in our numerical calculation. Therefore the flat part at large k is interpreted as an e↵ect of
finite ⌧i and ⌧f , and we expect that it disappears for �⌧i, ⌧f ! �1. On the other hand, the
modes with smaller k are not a↵ected by the change of the initial condition, and hence are
expected to be intact in the limit �⌧i, ⌧f ! 1. We have checked that the result in Fig. 1 is
not a↵ected by the change of the initial condition, and hence we expect that it provides good
estimation of f� in the limit �⌧i, ⌧f ! 1. This issue is related to the choice of the initial
condition at ⌧ = ⌧i. If we could carefully choose the initial conditions of ↵k and �k at ⌧ = ⌧i
so that they match the solution with ↵k = 1 and �k = 0 at ⌧ = �1, the ⌧i dependence
would be gone.
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if m� . m� where C is a numerical factor and � denotes the inflaton oscillation amplitude.
Thus the created number density during one Hubble time is given by

n� ' 9C

4⇡
H3. (42)

Again, the dominant contribution comes from the earliest epoch, i.e., H ⇠ Hinf . Similarly
to the case studied in the conformal coupling case, the typical physical momentum of � is
k/a ⇠ m� for each epoch and the final momentum distribution of � is not exponentially
suppressed for large k since the production continues until the inflaton decays. We expect
that the momentum distribution looks like

f�(k, ⌧) ⇠
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(43)

and there is an exponential cuto↵ at k ⇠ a(t = ��1
inf )m�. It is not suppressed even for m� �

Hinf . Note again that the low momentum behavior of (43) may not be so simple because
of the nontrivial time scale of the inflaton dynamics during the transition from inflation to
the reheating era. As mentioned above, there are another contribution as (40), (33) and
(30). Again we stress that, in realistic situation, these contributions should be smoothly
connected because we cannot strictly define the “end” of inflation and the typical time scale
of the inflaton motion changes from Hinf to m� gradually around the transition epoch. The
number density is dominated by that from the oscillation e↵ect (43) for m� � Hinf and two
contributions are comparable for m� . Hinf . In any case, the number density is given by

n�(⌧) ⇠ CH3
inf

✓
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a(⌧)
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, (44)

for Hinf < m� < m� where we numerically find C ⇠ 10�2. The present DM energy density
from gravitational production divided by the entropy density is then given by
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for m� < m� and TR denotes the reheating temperature after inflation and we assumed that
the inflaton coherent oscillation behaves as non-relativistic matter.

3.2 Numerical simulation in realistic inflation model

Let us now calculate the phase space density numerically. As a concrete inflation model, let
us consider the hilltop inflation or new inflation models [19–25]. The inflaton potential is
given by

V (�) = M4


1�
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◆n�2
, (46)
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Figure 1: The phase space density of � after the gravitational particle production in hilltop
inflation model with v� = 0.5MP . (Left) The case of conformal coupling ⇠ = 1/6. We have
taken m� = (0.2, 0.5, 1, 2) ⇥ m� for each line. (Right) The same as the left but for the
minimal coupling ⇠ = 0.

fixed physical momentum k/aend, such a limit can be achieved by taking the duration of
inflation long in a numerical calculation. In order to identify such e↵ects, we plot f�(k)
for di↵erent initial condition in Fig. 2. Three lines correspond to di↵erent initial condition,
�i = (0.38, 0.41, 0.44) ⇥ �end for “long,” “mid” and “short,” respectively. The DM mass is
taken to be m� = m� (left) and m� = 2m� (right). The wave number in the horizontal
axis is normalized by aendm�. As seen from the left panel, the flat part at large k is initial
condition dependent and becomes smaller as the initial time is taken to be earlier. The
following simple example may be helpful to understand this behavior. Let us consider the
integral:

I(k) =

Z ⌧f

⌧i

eik⌧

⌧ 2 + ⌧ 20
d⌧, (49)

where ⌧0 is a real number. In the limit �⌧i = ⌧f = 1, we can exactly solve it by using the
residue theorem and obtain exponential form: I(k) = ⇡e�k⌧0/⌧0. If we take large but finite
�⌧i = ⌧f (� ⌧0), we instead have power law tail as I(k) ⇠ ⇡e�k⌧0/⌧0+1/(⌧ 2f k). The integrand
is more complicated in a realistic situation, but we expect that a similar phenomena occur
in our numerical calculation. Therefore the flat part at large k is interpreted as an e↵ect of
finite ⌧i and ⌧f , and we expect that it disappears for �⌧i, ⌧f ! �1. On the other hand, the
modes with smaller k are not a↵ected by the change of the initial condition, and hence are
expected to be intact in the limit �⌧i, ⌧f ! 1. We have checked that the result in Fig. 1 is
not a↵ected by the change of the initial condition, and hence we expect that it provides good
estimation of f� in the limit �⌧i, ⌧f ! 1. This issue is related to the choice of the initial
condition at ⌧ = ⌧i. If we could carefully choose the initial conditions of ↵k and �k at ⌧ = ⌧i
so that they match the solution with ↵k = 1 and �k = 0 at ⌧ = �1, the ⌧i dependence
would be gone.
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Figure 1: The phase space density of � after the gravitational particle production in hilltop
inflation model with v� = 0.5MP . (Left) The case of conformal coupling ⇠ = 1/6. We have
taken m� = (0.2, 0.5, 1, 2) ⇥ m� for each line. (Right) The same as the left but for the
minimal coupling ⇠ = 0.

fixed physical momentum k/aend, such a limit can be achieved by taking the duration of
inflation long in a numerical calculation. In order to identify such e↵ects, we plot f�(k)
for di↵erent initial condition in Fig. 2. Three lines correspond to di↵erent initial condition,
�i = (0.38, 0.41, 0.44) ⇥ �end for “long,” “mid” and “short,” respectively. The DM mass is
taken to be m� = m� (left) and m� = 2m� (right). The wave number in the horizontal
axis is normalized by aendm�. As seen from the left panel, the flat part at large k is initial
condition dependent and becomes smaller as the initial time is taken to be earlier. The
following simple example may be helpful to understand this behavior. Let us consider the
integral:

I(k) =

Z ⌧f

⌧i

eik⌧

⌧ 2 + ⌧ 20
d⌧, (49)

where ⌧0 is a real number. In the limit �⌧i = ⌧f = 1, we can exactly solve it by using the
residue theorem and obtain exponential form: I(k) = ⇡e�k⌧0/⌧0. If we take large but finite
�⌧i = ⌧f (� ⌧0), we instead have power law tail as I(k) ⇠ ⇡e�k⌧0/⌧0+1/(⌧ 2f k). The integrand
is more complicated in a realistic situation, but we expect that a similar phenomena occur
in our numerical calculation. Therefore the flat part at large k is interpreted as an e↵ect of
finite ⌧i and ⌧f , and we expect that it disappears for �⌧i, ⌧f ! �1. On the other hand, the
modes with smaller k are not a↵ected by the change of the initial condition, and hence are
expected to be intact in the limit �⌧i, ⌧f ! 1. We have checked that the result in Fig. 1 is
not a↵ected by the change of the initial condition, and hence we expect that it provides good
estimation of f� in the limit �⌧i, ⌧f ! 1. This issue is related to the choice of the initial
condition at ⌧ = ⌧i. If we could carefully choose the initial conditions of ↵k and �k at ⌧ = ⌧i
so that they match the solution with ↵k = 1 and �k = 0 at ⌧ = �1, the ⌧i dependence
would be gone.
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Again, the dominant contribution comes from the earliest epoch, i.e., H ⇠ Hinf . Similarly
to the case studied in the conformal coupling case, the typical physical momentum of � is
k/a ⇠ m� for each epoch and the final momentum distribution of � is not exponentially
suppressed for large k since the production continues until the inflaton decays. We expect
that the momentum distribution looks like
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and there is an exponential cuto↵ at k ⇠ a(t = ��1
inf )m�. It is not suppressed even for m� �

Hinf . Note again that the low momentum behavior of (43) may not be so simple because
of the nontrivial time scale of the inflaton dynamics during the transition from inflation to
the reheating era. As mentioned above, there are another contribution as (40), (33) and
(30). Again we stress that, in realistic situation, these contributions should be smoothly
connected because we cannot strictly define the “end” of inflation and the typical time scale
of the inflaton motion changes from Hinf to m� gradually around the transition epoch. The
number density is dominated by that from the oscillation e↵ect (43) for m� � Hinf and two
contributions are comparable for m� . Hinf . In any case, the number density is given by
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for Hinf < m� < m� where we numerically find C ⇠ 10�2. The present DM energy density
from gravitational production divided by the entropy density is then given by
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for m� < m� and TR denotes the reheating temperature after inflation and we assumed that
the inflaton coherent oscillation behaves as non-relativistic matter.

3.2 Numerical simulation in realistic inflation model

Let us now calculate the phase space density numerically. As a concrete inflation model, let
us consider the hilltop inflation or new inflation models [19–25]. The inflaton potential is
given by

V (�) = M4
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One can easily check that 50% of the total Banch-
Davies value 3H4

8π2m2 is given by perturbations which look
relatively homogeneous on scale smaller than λ0.5 ∼
H−1 exp

(

H2

m2

)

and 90% of the Banch-Davies value is

given by perturbations which look homogeneous on scale

smaller than λ0.9 ∼ H−1 exp
(

H2

6m2

)

. Note that the scales

H−1 exp
(

H2

m2

)

and H−1 exp
(

H2

6m2

)

are exponentially dif-

ferent from each other. Therefore it would be incorrect to
think that the universe after inflation looks like a chess-
board with cells of positive and negative σ of approxi-
mately equal size l ∼ λ0.5 (or l ∼ λ0.9). Still the loga-
rithms of the scales λ0.5 and λ0.9 are similar and propor-
tional to H2/m2. In this rather vague sense we will be
talking about the distribution of the curvaton field being
locally homogeneous on scale

λ0 ∼ H−1 exp
(

O
(H2

m2

))

. (7)

To get a better understanding of the spatial distribution
of the curvaton field we performed computer simulations
of the process of formation and accumulation of the cur-
vaton perturbations, using the methods developed in Ref.
[18], see Fig. 1.

FIG. 1: Results of a computer simulation of the Bunch-
Davies distribution of the curvaton field σ for H/m = 3.
For greater values of H/m the typical height of the hills
grow as H2/m, and a typical size of the ‘islands’ grows as

H−1 exp

(

O

(

H
2

m2

))

. In order to make the level σ = 0 clearly

visible, we show only the part of the ‘curvaton landscape’ with
σ > 0, i.e. above the ‘sea level’ σ = 0. As we will show below,
the amplitude of the curvaton density perturbations behaves
in a rather peculiar way near the ‘shoreline’ σ = 0, see Figs.
2 and 3.

Exponentially large domains with positive and nega-
tive σ are separated by the boundaries with σ = 0, which

correspond to the ‘shoreline’ in Fig. 1. The 3D distribu-
tion of the domain boundaries with σ = 0, which we will
call ‘the curvaton web,’ resembles the network of domain
walls in the theories with spontaneous breaking of a dis-
crete symmetry. The main difference is that usually the
domain walls have large energy density; they exist only
because of the topological reasons. In our case the situa-
tion is opposite: The potential energy density of the field
σ is of the order H4 inside the domains, and it vanishes
at the boundaries with σ = 0. On the other hand, the
amplitude of the curvaton density perturbations behaves
in a rather peculiar way near the walls with σ = 0, see
Figs. 2 and 3.

In order to evaluate the perturbations of metric, let us
first consider perturbations on the scale much larger than
the size of a typical domain, l ∼ k−1 ≫ λ0 [9]. In this
case the fluctuating field σ wanders many times in the
region −H2/m <∼ σ <∼ H2/m on the scale l, so its value
averaged over the domain of a size ∼ k−1 vanishes. As
a result, addition of a perturbation δσ(k) with k ≪ k0
does not lead to the usual density perturbations m2σδσ
[21]. Perturbations of density will be nongaussian. To
get a rough estimate of their amplitude, one may assume
that they are quadratic in δσ, which would lead to an
estimate for δρ

⟨ρσ⟩
at the stage of inflation,

δρ

⟨ρσ⟩
∼

m2

H2

(

k

H

)
2m

2

3H2

, (8)

see Eq. (5) in [9]. (Note that here we are writing
⟨ρσ⟩ = O(H4) instead of the local value ρσ(x).) How-
ever, it was pointed out in our paper [9] that for a more
accurate evaluation of the amplitude of the perturbations
one should find the correlation function

ξ(r, t) =
1

⟨ρσ⟩2
(〈

ρσ(
→
x , t)ρσ(

→
x +

→
r , t)

〉

− ⟨ρσ⟩2
)

. (9)

After that one can find δρ
⟨ρσ⟩

from the relation

ξ (r, t) =

∫

dk

k

sinkr

kr

(

δρ
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)2

.

This yields [9]
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∫
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d3k , (10)

where σ2
kk

3 = H2

2

(

k2

H2

)2m2/3H2

for k ≪ H . Because we

are only interested in large scale fluctuations produced at
inflation, we can make a UV cut off at k ∼ H . The corre-
sponding calculation have been made in [9] taking into ac-
count the complicated inflationary and post-inflationary
evolution in the chaotic inflation scenario for all wave-
lengths. However, in the context of the present discus-
sion we are assuming that the Hubble constant during

PGDM from coherent oscillation

generated during inflation,#8 and it will be e↵ectively regarded as the homogeneous mode,
which results in the coherent oscillation of � field after inflation. This is another source of
the DM production. Typical field variance averaged over the superhorizon mode is derived
from the solution (19) as [29, 30]
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. (50)

In a horizon patch, the � field is almost homogeneous with its typical value given by
ph�2i.

The � field then begins a coherent oscillation when H ⇠ m�. The abundance of the coherent
oscillation is estimated as
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Here we assumed that � begins to oscillate before the reheating is completed: �inf < m�.
Otherwise, the abundance is suppressed by the factor ⇠ p

m�/�inf . This also contributes to

the DM density. One crucial di↵erence from the gravitationally produced contribution ⇢(GP)
�

is that the large scale fluctuation of � has an (uncorrelated) isocurvature perturbation, which
is severely constrained from observation.#9 The magnitude of DM isocurvature perturbation
is estimated as
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where R� ⌘ ⇢
(CO)
� /⇢DM denotes the fraction of � coherent oscillation energy density in the

total DM energy density. The observational constraint is SDM . 9⇥10�6 [28]. Note however
that (50) is an asymptotic averaged value when the inflation lasts long enough and it may
be possible to have larger/smaller field value in the actual Universe if m� ⌧ Hinf . It is also
a↵ected by other terms like L ⇠ ���4.

Scattering of standard model particles in thermal bath also produces PGDM through
the graviton exchange [11–14]. The cross section for the process like   ! ��, where  
collectively denotes the standard model fields that are in thermal bath with temperature T ,
is

�(  ! ��) ' A T 2

M4
P

, (53)

#8 The condition of the growth of long wavelength mode in the dS era is ⌫2 > 1/4 in (19), or m2
� <

(2� 12⇠)H2
inf .

#9 Note on terminology: coherent oscillation may also be regarded as gravitational production, since (50)
is induced gravitationally. We just call such long wavelength (superhorizon modes) contribution as coherent
oscillation and short wavelength (subhorizon modes) one as gravitational production.
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is induced gravitationally. We just call such long wavelength (superhorizon modes) contribution as coherent
oscillation and short wavelength (subhorizon modes) one as gravitational production.
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Figure 3: Illustration with reheating temperature TR = 109 GeV (107 GeV) and inflaton mass
m� = 1012 GeV (1013 GeV) for minimal coupling ⇠ = 0 in the left (right) panel. Four di↵erent
lines (dot-dashed, solid, dashed, and dotted) correspond to ⌦� = (4, 1, 0.1, 0.01)⇥⌦DM. The
long dashed red line shows the isocurvature perturbation limit and region above this line is
excluded. The dominant production mechanism is coherent oscillation for m� <

p
2Hinf and

gravitational production for m� >
p
2Hinf .

for T � m�, A ' 1/24⇡, 1/48⇡ and 1/12⇡ for complex scalar, Dirac fermion and massless
vector, respectively. The final DM abundance from thermal production is dominated by
those produced in the earliest epoch and estimated as

⇢
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s
⇠ Am�TRT

8
max

M6
PH

3
inf

⇠ A m�T
5
R

M4
PHinf

(54)

where Tmax ⇠ (T 2
RHinfMP )1/4 is the maximum cosmic temperature of the dilute plasma

after inflation. Compared with the inflaton-induced gravitational contribution (45), the
thermal production contribution is suppressed by T 4

R/(H
2
infM

2
P ). Thus thermal contribution

is subdominant in most cases, and some DM scenarios implementing thermal production
solely were discussed in Ref. [31–35], for examples. However, it is possible that � is much
heavier than the inflaton, m� � m�, so that all the gravitational production is not e↵ective,
while Tmax > m� and hence thermal production is active. In such a case, thermal production
can give a dominant contribution to the PGDM abundance.

In Fig. 3, we show the total contribution for PGDM’s relic abundance ⌦� as functions of
Hinf and DM mass m�. We have chosen the reheating temperature TR = 109 GeV (107 GeV)
and inflaton mass m� = 1012 GeV (1013 GeV) for minimal coupling ⇠ = 0 in the left (right)
panel. From top to down, di↵erent lines (dot-dashed, solid, dashed, and dotted) correspond
to ⌦� = (4, 1, 0.1, 0.01) ⇥ ⌦DM. The long dashed line marks the isocurvature perturbation
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is subdominant in most cases, and some DM scenarios implementing thermal production
solely were discussed in Ref. [31–35], for examples. However, it is possible that � is much
heavier than the inflaton, m� � m�, so that all the gravitational production is not e↵ective,
while Tmax > m� and hence thermal production is active. In such a case, thermal production
can give a dominant contribution to the PGDM abundance.

In Fig. 3, we show the total contribution for PGDM’s relic abundance ⌦� as functions of
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2. Fermion PGDM
itational production of massive vector boson in detail. In particular, we carefully distinguish
the transverse and longitudinal mode and discuss how they behave under the time-dependent
background. We conclude in Sec. 4.

2 Fermion production

2.1 Fermion action in the FRW Universe

Let us consider an action of free Majorana fermion  , which satisfies the Majorana condition

 = �C�1 
T
with C denoting the charge conjugation matrix,

S =

Z

d4x e



�1

2
 (eµa�

aDµ �m) 

�

, (1)

where eµa denotes the vierbein with a, b, . . . and µ, ⌫, . . . represent local Lorentz and general
coordinate indices respectively, and e ⌘ det(eµa) =

p�g. The covariant derivative is given
by

Dµ = @µ +
1

4
!ab
µ �[a�b], (2)

where the spin connection is defined as

!ab
µ = 2e⌫[a@

[µe⌫]
b] � e⌫[aeb]�eµc@⌫e

c
�. (3)

In the Friedmann-Robertson-Walker (FRW) background,

ds2 = �dt2 + a2(t)�ijdx
idxj = a2(⌧)

�

�d⌧ 2 + �ijdx
idxj

�

, (4)

the only non-zero components are

!i
j0 = �jiH, (5)

whereH = a0/a is the conformal Hubble parameter, which is related to the Hubble parameter
H = ȧ/a through H = aH. Here and in what follows, the prime (dot) denotes the derivative
with respect to conformal time ⌧ (physical time t). It is convenient to perform the rescaling
as e ⌘ a3/2 so that the action becomes

S =

Z

d⌧d3x



�1

2
e (�µa�

a@µ � am) e 

�

. (6)

It is seen that the rescaled field has a canonical kinetic term and the action is independent
of the scale factor a in the massless limit m ! 0. In other words, a fermion is conformal in
the massless limit. Therefore, the rate of gravitational particle production is suppressed by
the fermion mass m .

3

Free fermion minimally coupled to gravity

itational production of massive vector boson in detail. In particular, we carefully distinguish
the transverse and longitudinal mode and discuss how they behave under the time-dependent
background. We conclude in Sec. 4.

2 Fermion production

2.1 Fermion action in the FRW Universe

Let us consider an action of free Majorana fermion  , which satisfies the Majorana condition
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coordinate indices respectively, and e ⌘ det(eµa) =

p�g. The covariant derivative is given
by

Dµ = @µ +
1

4
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the only non-zero components are
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whereH = a0/a is the conformal Hubble parameter, which is related to the Hubble parameter
H = ȧ/a through H = aH. Here and in what follows, the prime (dot) denotes the derivative
with respect to conformal time ⌧ (physical time t). It is convenient to perform the rescaling
as e ⌘ a3/2 so that the action becomes

S =

Z

d⌧d3x



�1

2
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. (6)

It is seen that the rescaled field has a canonical kinetic term and the action is independent
of the scale factor a in the massless limit m ! 0. In other words, a fermion is conformal in
the massless limit. Therefore, the rate of gravitational particle production is suppressed by
the fermion mass m .

3

Canonical fermion

itational production of massive vector boson in detail. In particular, we carefully distinguish
the transverse and longitudinal mode and discuss how they behave under the time-dependent
background. We conclude in Sec. 4.

2 Fermion production

2.1 Fermion action in the FRW Universe

Let us consider an action of free Majorana fermion  , which satisfies the Majorana condition

 = �C�1 
T
with C denoting the charge conjugation matrix,

S =

Z

d4x e
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, (1)

where eµa denotes the vierbein with a, b, . . . and µ, ⌫, . . . represent local Lorentz and general
coordinate indices respectively, and e ⌘ det(eµa) =

p�g. The covariant derivative is given
by

Dµ = @µ +
1

4
!ab
µ �[a�b], (2)

where the spin connection is defined as

!ab
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[µe⌫]
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�. (3)

In the Friedmann-Robertson-Walker (FRW) background,

ds2 = �dt2 + a2(t)�ijdx
idxj = a2(⌧)
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�d⌧ 2 + �ijdx
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, (4)

the only non-zero components are

!i
j0 = �jiH, (5)

whereH = a0/a is the conformal Hubble parameter, which is related to the Hubble parameter
H = ȧ/a through H = aH. Here and in what follows, the prime (dot) denotes the derivative
with respect to conformal time ⌧ (physical time t). It is convenient to perform the rescaling
as e ⌘ a3/2 so that the action becomes

S =

Z

d⌧d3x
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�

. (6)

It is seen that the rescaled field has a canonical kinetic term and the action is independent
of the scale factor a in the massless limit m ! 0. In other words, a fermion is conformal in
the massless limit. Therefore, the rate of gravitational particle production is suppressed by
the fermion mass m .

3

It does not “feel” gravity in the massless limit m ! 0
(a fermion is conformal in massless limit)

Fermion may be more natural candidate of PGDM

E.g.) Renormalizable interaction with SM is naturally forbidden,
Stability is ensured by Z2(B-L) for B-L singlet fermion.



Formalism to calculate fermion production

It is seen that the rescaled field has a canonical kinetic term and the action is independent
of the scale factor a in the massless limit m ! 0. In other words, a fermion is conformal in
the massless limit. Therefore, the rate of gravitational particle production is suppressed by
the fermion mass m .

It is convenient to work with the Fourier mode since we are interested in the free fermion:

e (~x, ⌧) =

Z

d3k

(2⇡)3
 ~k(⌧)e

i~k·~x. (7)

The equation of motion for the mode function is given by
⇣

@⌧�
0 � i~k · ~� � am

⌘

 ~k(⌧) = 0. (8)

Now let us expand the mode function as

 ~k(⌧) =
X

h=±

h

u~k,h(⌧)b~k,h + v~k,h(⌧)b
†
�~k,h

i

, (9)

where v~k,h = �C�1uT
�~k,h and h denotes the helicity degree of freedom. The normalization

condition is taken as follows:

u†
~k,h

(⌧)u~k,h0(⌧) = v†~k,h(⌧)v~k,h0(⌧) = �hh0 , u†
~k,h

(⌧)v~k,h0(⌧) = 0. (10)

The creation and annihilation operators satisfy the following anti-commutation relation:
n

b~k,h, b
†
~k0,h0

o

= (2⇡)3 �(~k � ~k0)�hh0 ,
n

b~k,h, b~k0,h0

o

=
n

b†~k,h, b
†
~k0,h0

o

= 0, (11)

so that the original field satisfies the anti-commutation relation
n

e (⌧, ~x), e †(⌧, ~y)
o

= �(~x�~y).
Let us write the mode function as

u~k,h(⌧) =
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~k,h
(⌧)

u�
~k,h

(⌧)

!

⌦ ⇠~k,h, (12)

where ⇠~k,h denotes the eigenvector of the helicity, which satisfies (~� · ~̂k)⇠~k,h = h⇠~k,h with k̂ ⌘
~k/|~k| and h = ±1. Taking ~k to be the z-direction, we have ⇠~k,+ = (1, 0)T and ⇠~k,� = (0, 1)T .
Adopting the Dirac representation for the gamma matrices, the equation of motion becomes

i@⌧u
±
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(⌧) + hku⌥
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(⌧)⌥ amu±
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(⌧) = 0, (13)

which may be cast into the second order form,

@2⌧u
±
~k,h

(⌧) +
⇥

!2

k(⌧)± i(am)0
⇤
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(⌧) = 0, !2

k(⌧) ⌘ k2 + a2m2. (14)
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where the prefactor 2 counts the two helicity modes and

f (~k, ⌧) ⌘
1

2!k



am

✓

�

�

�

u�
~k,h

(⌧)
�

�

�

2

�
�

�

�

u+

~k,h
(⌧)

�

�

�

2

◆

+ 2hkRe
⇣

u+

~k,h
(⌧)u�⇤

~k,h
(⌧)

⌘

�

+
1

2
, (21)

=
1

2!k

h

am+ 2 Im
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⌘i
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2
(22)

denotes the occupation number or the phase space density. The last factor +1/2 cancels
the negatively divergent energy density due to the fermionic zero-point fluctuations. One
sees that f = 0 for the Minkowski mode function (17). In the time-dependent background
(a0 > 0) the mode function may be modified from this asymptotic form and hence we will
obtain f > 0 that signals particle production. The number density is also a useful quantity,
which is then given by

a3(⌧)n (⌧) = 2

Z

d3k

(2⇡)3
f (k, ⌧). (23)

In order to estimate the particle production, we conveniently rewrite the mode function
as

u+

~k,h
(⌧) = Ak,h(⌧)g+e

�i
R ⌧ !k(⌧

0
)d⌧ 0 +Bk,h(⌧)g�e

i
R ⌧ !k(⌧

0
)d⌧ 0 , (24)

where coe�cients are assumed to satisfy

A0
k,h(⌧) = �g0�

g
+

e2i
R ⌧ !k(⌧

0
)d⌧ 0Bk,h(⌧), B0

k,h(⌧) = �g0
+

g�
e�2i

R ⌧ !k(⌧
0
)d⌧ 0Ak,h(⌧), (25)

where g± ⌘
p

(!k ± am)/(2!k). One can check that u+

k,h(⌧) satisfies the equation of motion
(14). The other mode function is given by

u�
~k,h
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h

Ak,h(⌧)g�e
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R ⌧ !k(⌧
0
)d⌧ 0 � Bk,h(⌧)g+e

i
R ⌧ !k(⌧

0
)d⌧ 0

i

, (26)

and hence the normalization condition (15) implies |Ak,h(⌧)|2+ |Bk,h(⌧)|2 = 1, which ensures
that the phase space density cannot exceed unity as expected from the Pauli exclusion
principle. The initial condition (17) is equivalent to Ak,h(⌧ ! �1) = 1 and Bk,h(⌧ !
�1) = 0. Since the initial condition and the time evolution (25) do not explicitly depend
on h, Ak,h and Bk,h are the same for both h = ±. In what follows we omit the helicity
subscript h for this reason. Deviation from these initial values Ak = 1 and Bk = 0 indicate
particle production. With these definitions, we have

f (~k, ⌧) = |Bk(⌧)|2, Bk(⌧) '
Z ⌧

d⌧ 0
a2Hmk

2!2

k

e�2i
R ⌧ 0 !k(⌧

00
)d⌧ 00 . (27)

Thus what we have to do is to calculate Bk(⌧) under the background evolution of the cosmic
scale factor a(⌧). The calculation is almost parallel to the case of scalar field with conformal
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obtain f > 0 that signals particle production. The number density is also a useful quantity,
which is then given by

a3(⌧)n (⌧) = 2

Z

d3k

(2⇡)3
f (k, ⌧). (23)

In order to estimate the particle production, we conveniently rewrite the mode function
as
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0
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where coe�cients are assumed to satisfy
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where g± ⌘
p

(!k ± am)/(2!k). One can check that u+

k,h(⌧) satisfies the equation of motion
(14). The other mode function is given by
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and hence the normalization condition (15) implies |Ak,h(⌧)|2+ |Bk,h(⌧)|2 = 1, which ensures
that the phase space density cannot exceed unity as expected from the Pauli exclusion
principle. The initial condition (17) is equivalent to Ak,h(⌧ ! �1) = 1 and Bk,h(⌧ !
�1) = 0. Since the initial condition and the time evolution (25) do not explicitly depend
on h, Ak,h and Bk,h are the same for both h = ±. In what follows we omit the helicity
subscript h for this reason. Deviation from these initial values Ak = 1 and Bk = 0 indicate
particle production. With these definitions, we have

f (~k, ⌧) = |Bk(⌧)|2, Bk(⌧) '
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Thus what we have to do is to calculate Bk(⌧) under the background evolution of the cosmic
scale factor a(⌧). The calculation is almost parallel to the case of scalar field with conformal
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denotes the occupation number or the phase space density. The last factor +1/2 cancels
the negatively divergent energy density due to the fermionic zero-point fluctuations. One
sees that f = 0 for the Minkowski mode function (17). In the time-dependent background
(a0 > 0) the mode function may be modified from this asymptotic form and hence we will
obtain f > 0 that signals particle production. The number density is also a useful quantity,
which is then given by

a3(⌧)n (⌧) = 2
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In order to estimate the particle production, we conveniently rewrite the mode function
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and hence the normalization condition (15) implies |Ak,h(⌧)|2+ |Bk,h(⌧)|2 = 1, which ensures
that the phase space density cannot exceed unity as expected from the Pauli exclusion
principle. The initial condition (17) is equivalent to Ak,h(⌧ ! �1) = 1 and Bk,h(⌧ !
�1) = 0. Since the initial condition and the time evolution (25) do not explicitly depend
on h, Ak,h and Bk,h are the same for both h = ±. In what follows we omit the helicity
subscript h for this reason. Deviation from these initial values Ak = 1 and Bk = 0 indicate
particle production. With these definitions, we have
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Thus what we have to do is to calculate Bk(⌧) under the background evolution of the cosmic
scale factor a(⌧). The calculation is almost parallel to the case of scalar field with conformal
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denotes the occupation number or the phase space density. The last factor +1/2 cancels
the negatively divergent energy density due to the fermionic zero-point fluctuations. One
sees that f = 0 for the Minkowski mode function (17). In the time-dependent background
(a0 > 0) the mode function may be modified from this asymptotic form and hence we will
obtain f > 0 that signals particle production. The number density is also a useful quantity,
which is then given by

a3(⌧)n (⌧) = 2
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In order to estimate the particle production, we conveniently rewrite the mode function
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and hence the normalization condition (15) implies |Ak,h(⌧)|2+ |Bk,h(⌧)|2 = 1, which ensures
that the phase space density cannot exceed unity as expected from the Pauli exclusion
principle. The initial condition (17) is equivalent to Ak,h(⌧ ! �1) = 1 and Bk,h(⌧ !
�1) = 0. Since the initial condition and the time evolution (25) do not explicitly depend
on h, Ak,h and Bk,h are the same for both h = ±. In what follows we omit the helicity
subscript h for this reason. Deviation from these initial values Ak = 1 and Bk = 0 indicate
particle production. With these definitions, we have

f (~k, ⌧) = |Bk(⌧)|2, Bk(⌧) '
Z ⌧

d⌧ 0
a2Hmk

2!2

k

e�2i
R ⌧ 0 !k(⌧

00
)d⌧ 00 . (27)

Thus what we have to do is to calculate Bk(⌧) under the background evolution of the cosmic
scale factor a(⌧). The calculation is almost parallel to the case of scalar field with conformal
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denotes the occupation number or the phase space density. The last factor +1/2 cancels
the negatively divergent energy density due to the fermionic zero-point fluctuations. One
sees that f = 0 for the Minkowski mode function (17). In the time-dependent background
(a0 > 0) the mode function may be modified from this asymptotic form and hence we will
obtain f > 0 that signals particle production. The number density is also a useful quantity,
which is then given by
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In order to estimate the particle production, we conveniently rewrite the mode function
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and hence the normalization condition (15) implies |Ak,h(⌧)|2+ |Bk,h(⌧)|2 = 1, which ensures
that the phase space density cannot exceed unity as expected from the Pauli exclusion
principle. The initial condition (17) is equivalent to Ak,h(⌧ ! �1) = 1 and Bk,h(⌧ !
�1) = 0. Since the initial condition and the time evolution (25) do not explicitly depend
on h, Ak,h and Bk,h are the same for both h = ±. In what follows we omit the helicity
subscript h for this reason. Deviation from these initial values Ak = 1 and Bk = 0 indicate
particle production. With these definitions, we have
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Thus what we have to do is to calculate Bk(⌧) under the background evolution of the cosmic
scale factor a(⌧). The calculation is almost parallel to the case of scalar field with conformal
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Figure 1: Illustration of the gravitationally produced fermion abundance with two sets of
inflaton mass and reheating temperature, m

inf

= 1015 GeV and T
R

= 1011 GeV (Left), m
inf

=
1013 GeV and T

R

= 1011 GeV (Right). Three di↵erent curves (gray solid, blue dashed, and
purple dotted) correspond to ⌦ = (1, 0.1, 0.01)⇥ ⌦

DM

.

For m . H
inf

, on the other hand, the slow contribution likely dominates and we have

⇢ 
s

' 4⇥ 10�10GeVA
⇣ m

109 GeV

⌘

2

✓

T
R

1010 GeV

◆

. (33)

In this case, the abundance is independent of the inflationary scale H
inf

.#5 Comparing it
with the present DM abundance ⇢

DM

/s ⇠ 4 ⇥ 10�10 GeV, it is possible that a pure singlet
fermion having only the gravitational interaction becomes a dominant component of DM if
its mass is relatively large.

In Fig. 1 we illustrate with several contours of the fermion abundance on the plane of
(m,H

inf

) with two choices of inflaton mass and reheating temperature, the left panel with
m

inf

= 1015 GeV and T
R

= 1011 GeV, and right panel with m
inf

= 1013 GeV and T
R

=
1011 GeV. Three di↵erent contours (gray solid, blue dashed, and purple dotted) correspond
to ⌦ = (1, 0.1, 0.01) ⇥ ⌦

DM

, where ⌦i (i =  ,DM) is the density parameter defined by
⇢i/⇢crit with ⇢crit being the critical energy density of the present universe. Evidently, wide
parameter space exists for the correct DM relic density. Note that we should also include the
contribution from thermal production by gravitational annihilation of SM particles in the
thermal bath [16–19]. See Appendix C for details. In the parameter space we have shown,

#5 If m < HR, the expression (33) should be multiplied by the factor (m/HR)1/2 (hence becomes inde-
pendent of the reheating temperature) due to the change of expression of k

c

, as noticed in the previous
footnote.
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3. Vector PGDM

Massive vector boson minimally coupled to gravity

to ⌦ = (1, 0.1, 0.01) ⇥ ⌦
DM

, where ⌦i (i =  ,DM) is the density parameter defined by
⇢i/⇢crit with ⇢crit being the critical energy density of the present universe. Evidently, wide
parameter space exists for the correct DM relic density. Note that we should also include the
contribution from thermal production by gravitational annihilation of SM particles in the
thermal bath [18–21]. See Appendix C for details. In the parameter space we have shown,
however, contributions from thermal production is negligible.

3 Vector boson production

3.1 Vector boson action in the FRW Universe

Let us consider an action of massive vector boson,

S =

Z

d4x
p
�g



�1

4
gµ⇢g⌫�Fµ⌫F⇢� �

1

2
m2gµ⌫AµA⌫

�

, (34)

where Fµ⌫ = @µA⌫ � @⌫Aµ. In the FRW background, this action is rewritten as

S =

Z

d⌧d3x
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4
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1

2
a2m2⌘µ⌫AµA⌫

�

. (35)

One can impose a Z
2

symmetry under which only Aµ changes its sign to forbid the kinetic
mixing with the standard model hypercharge photon. Then Aµ is stable and a candidate of
DM. See Refs. [38, 39] for concrete model buildings.

The vector boson mass can be regarded as a result of the Higgs mechanism. In this
case, the radial component of the Higgs boson is a physical field but it can be decoupled
from the dynamics if the radial component is heavy enough. This is achieved by assuming
that the gauge coupling constant is much smaller than the Higgs self coupling constant, for
example. Or we can rely on the Stuckelberg mechanism: let the gauge boson mass term be
m2gµ⌫(Aµ + c@µ�)(A⌫ + c@⌫�) by introducing additional real scalar field �. This mass term
respects the gauge symmetry Aµ ! Aµ + @µ� if � transforms as �! ���/c with arbitrary
function �. By setting � = 0 using this gauge degree of freedom, we end up with the massive
vector boson action (34). In this case, there is no physical degree of freedom other than the
vector boson.

It is again convenient to work with the Fourier mode since we are interested in the free
vector boson:

Aµ(~x, t) =

Z

d3k

(2⇡)3
Aµ(~k, t)e

i~k·~x. (36)

Since Aµ(~x, t) is a real field, Aµ(~k, t) = A⇤
µ(�~k, t) must be satisfied. The three physical

components are divided into the transverse and longitudinal mode: ~A = ~AT + k̂AL, where

9

Transverse-longitudinal decomposition

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
ikȦL

k2 + a2m2

. (37)

Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)
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The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/

p
k2 + a2m2,
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where the e↵ective mass is given by#6
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3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
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†
�~k,h

i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/

p
2 if ~k points to the z-

direction. The ladder operators satisfy
h
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i
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h
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i

=
h

a†~k,h, a
†
~k0,h0

i

= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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symmetry under which only Aµ changes its sign to forbid the kinetic
mixing with the standard model hypercharge photon. Then Aµ is stable and a candidate of
DM. See Refs. [38, 39] for concrete model buildings.

The vector boson mass can be regarded as a result of the Higgs mechanism. In this
case, the radial component of the Higgs boson is a physical field but it can be decoupled
from the dynamics if the radial component is heavy enough. This is achieved by assuming
that the gauge coupling constant is much smaller than the Higgs self coupling constant, for
example. Or we can rely on the Stuckelberg mechanism: let the gauge boson mass term be
m2gµ⌫(Aµ + c@µ�)(A⌫ + c@⌫�) by introducing additional real scalar field �. This mass term
respects the gauge symmetry Aµ ! Aµ + @µ� if � transforms as �! ���/c with arbitrary
function �. By setting � = 0 using this gauge degree of freedom, we end up with the massive
vector boson action (34). In this case, there is no physical degree of freedom other than the
vector boson.

It is again convenient to work with the Fourier mode since we are interested in the free
vector boson:

Aµ(~x, t) =

Z

d3k

(2⇡)3
Aµ(~k, t)e

i~k·~x. (36)

Since Aµ(~x, t) is a real field, Aµ(~k, t) = A⇤
µ(�~k, t) must be satisfied. The three physical

components are divided into the transverse and longitudinal mode: ~A = ~AT + k̂AL, where

9

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
ikȦL

k2 + a2m2

. (37)

Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)

ST =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ ~AT |2 � (k2 + a2m2)| ~AT |2
⌘

, (39)

SL =

Z

d3kd⌧

(2⇡)3
1

2

✓

a2m2

k2 + a2m2

|@⌧AL|2 � a2m2|AL|2
◆

. (40)

The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/

p
k2 + a2m2,

SL =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ fAL|2 � !2

L|fAL|2
⌘

, !2

L =
a2m2

f 2

� f 00

f
⌘ k2 +m2

L, (41)

where the e↵ective mass is given by#6

m2

L = a2m2 � k2

k2 + a2m2

✓

a00

a
� a02

a2
3a2m2

k2 + a2m2

◆

. (42)

3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
ha

†
�~k,h

i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/

p
2 if ~k points to the z-

direction. The ladder operators satisfy
h

a~k,h, a
†
~k0,h0

i

= (2⇡)3�hh0�(~k � ~k0),
h

a~k,h, a~k0,h0

i

=
h

a†~k,h, a
†
~k0,h0

i

= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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Transverse mode

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
ikȦL

k2 + a2m2

. (37)

Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)

ST =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ ~AT |2 � (k2 + a2m2)| ~AT |2
⌘

, (39)

SL =

Z

d3kd⌧

(2⇡)3
1

2

✓

a2m2

k2 + a2m2

|@⌧AL|2 � a2m2|AL|2
◆

. (40)

The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/

p
k2 + a2m2,

SL =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ fAL|2 � !2

L|fAL|2
⌘

, !2

L =
a2m2

f 2

� f 00

f
⌘ k2 +m2

L, (41)

where the e↵ective mass is given by#6

m2

L = a2m2 � k2

k2 + a2m2

✓

a00

a
� a02

a2
3a2m2

k2 + a2m2

◆

. (42)

3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
ha

†
�~k,h

i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/

p
2 if ~k points to the z-

direction. The ladder operators satisfy
h

a~k,h, a
†
~k0,h0

i

= (2⇡)3�hh0�(~k � ~k0),
h

a~k,h, a~k0,h0

i

=
h

a†~k,h, a
†
~k0,h0

i

= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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(similar to massive conformal scalar)

Conformal in the massless limit

Ref. [14]. Here we present only the results. The number density of the transverse vector
boson is given by

nAT
(t) ' H3

inf



CT
m4

m4

inf

+ ⌘
m

H
inf

�✓

a(t
end

)

a(t)

◆

3

, (51)

where ⌘ is given by the same expression as (31) after reinterpreting m in (31) as the vector
boson mass. It is assumed that m ⌧ m

inf

since otherwise the vector boson production
is suppressed. Taking account of the two polarization degrees of freedom, the numerical
coe�cient CT is found to be 3/(256⇡) if the inflaton potential is well approximated by the
quadratic one [15]. Assuming that the universe is matter-dominated before the completion
of reheating, we obtain the energy to entropy density ratio as

⇢T
s

=
T
R

mnAT
(t

end

)

4H2

inf

M2

P

' T
R

H
inf

m

4M2

P

"

CT
✓

m

m
inf

◆

4

+ ⌘
m

H
inf

#

. (52)

3.3 Longitudinal mode production

The longitudinal mode is more similar to a scalar field, as seen from the action (41). It is
quantized as

fAL(~k, ⌧) = fAL(~k, ⌧)a~k +
fA⇤
L(
~k, ⌧)a†

�~k
, (53)

where the ladder operators satisfy
h

a~k, a
†
~k0

i

= (2⇡)3�(~k � ~k0),
⇥

a~k, a~k0
⇤

=
h

a†~k, a
†
~k0

i

= 0. (54)

The equation of motion of the mode function is

fA00
L + !2

L(k, ⌧)fAL = 0, !2

L = k2 +m2

L. (55)

For convenience, we also present the equation of motion in the original basis:

A00
L +

2f 0

f
A0

L + (k2 + a2m2)AL = A00
L +

2Hk2

k2 + a2m2

A0
L + (k2 + a2m2)AL = 0. (56)

During the de Sitter phase, the e↵ective mass of the longitudinal mode is given by

m2

L = a2m2 � a2H2

inf

k2(2k2 � a2m2)

(k2 + a2m2)2
. (57)

In the high momentum limit k � am, it is approximated as

m2

L ' a2(m2 � 2H2

inf

), (58)
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Longitudinal mode

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
ikȦL

k2 + a2m2

. (37)

Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)

ST =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ ~AT |2 � (k2 + a2m2)| ~AT |2
⌘

, (39)

SL =

Z

d3kd⌧

(2⇡)3
1

2

✓

a2m2

k2 + a2m2

|@⌧AL|2 � a2m2|AL|2
◆

. (40)

The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/

p
k2 + a2m2,

SL =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ fAL|2 � !2

L|fAL|2
⌘

, !2

L =
a2m2

f 2

� f 00

f
⌘ k2 +m2

L, (41)

where the e↵ective mass is given by#6

m2

L = a2m2 � k2

k2 + a2m2

✓

a00

a
� a02

a2
3a2m2

k2 + a2m2

◆

. (42)

3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
ha

†
�~k,h

i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/

p
2 if ~k points to the z-

direction. The ladder operators satisfy
h

a~k,h, a
†
~k0,h0

i

= (2⇡)3�hh0�(~k � ~k0),
h

a~k,h, a~k0,h0

i

=
h

a†~k,h, a
†
~k0,h0

i

= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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!2
L ⌘ k2 +m2

L

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
ikȦL

k2 + a2m2

. (37)

Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)

ST =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ ~AT |2 � (k2 + a2m2)| ~AT |2
⌘

, (39)

SL =

Z

d3kd⌧

(2⇡)3
1

2

✓

a2m2

k2 + a2m2

|@⌧AL|2 � a2m2|AL|2
◆

. (40)

The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/

p
k2 + a2m2,

SL =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ fAL|2 � !2

L|fAL|2
⌘

, !2

L =
a2m2

f 2

� f 00

f
⌘ k2 +m2

L, (41)

where the e↵ective mass is given by#6

m2

L = a2m2 � k2

k2 + a2m2

✓

a00

a
� a02

a2
3a2m2

k2 + a2m2

◆

. (42)

3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
ha

†
�~k,h

i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/

p
2 if ~k points to the z-

direction. The ladder operators satisfy
h

a~k,h, a
†
~k0,h0

i

= (2⇡)3�hh0�(~k � ~k0),
h

a~k,h, a~k0,h0

i

=
h

a†~k,h, a
†
~k0,h0

i

= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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Figure 2: Illustration of the gravitationally produced vector boson abundance with two
sets of inflaton mass and reheating temperature, m

inf

= 1013 GeV and T
R

= 1011 GeV (Left),
m

inf

= 1012 GeV and T
R

= 1010 GeV (Right). Three di↵erent curves (gray solid, blue dashed,
and purple dotted) correspond to ⌦A = (1, 0.1, 0.01)⇥ ⌦

DM

.

For the case of a massive fermion, the presence of mass term violates the conformal invari-
ance and it somehow feels the background time evolution, resulting in particle production.
The dominant production process depends on the fermion’s mass m. For m . H

inf

, the
non-adiabaticity of the fermion wave function is prominent when the fermion becomes non-
relativistic k ⇠ am for each wavenumber k. Those with momentum k such that k ⇠ am and
H ⇠ m gives the dominant contribution to the final fermion abundance as already pointed
out in Ref. [30]. For m � H

inf

, such an e↵ect of the universe expansion is negligible while
the inflaton coherent oscillation produces excites the high momentum fermion modes, since
the cosmic scale factor a(⌧) includes a small but nonzero oscillating part. In both cases, we
have the viable parameter regions that can reproduce the present DM abundance. All these
features are similar to the case of a scalar field with conformally coupled to gravity [14].

For the case of a massive vector boson, the story is a bit complicated. The transverse
mode is conformal in the massless limit, and hence the gravitational production proceeds
only through the presence of mass term. Again it is similar to the case of conformally coupled
scalar field. On the other hand, the longitudinal mode shows more non-trivial behavior. For
m . H

inf

, during the de Sitter phase the vector obtains superhorizon quantum fluctuations
and eventually behaves as non-relativistic matter. In contrast to the scalar field with minimal
coupling, there is a limit for the growth of the superhorizon modes at k ⇠ am, and hence such
a model is not constrained by the presence of DM isocurvature perturbation on cosmological
scales [40]. For m � H

inf

, it is rather close to the minimally coupled scalar field, and the
inflaton coherent oscillation excites the high-momentum longitudinal mode. In both cases

17
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Gravitational particle production
in extended gravity
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Background evolution in f(Φ)R gravity

gravity, since it sometimes happens that the Hubble parameter as well as the scale factor
oscillates more violently [12, 13]. This means that the scale factor linearly depends on φ.
Therefore, we will expand H and a(t) at the linear order in φ and neglect φ2 dependence
in this section.

Let us consider the following action:

S =

∫

d4x
√
−g

[

1

2
f(φ)R−

1

2
gµν∂µφ∂νφ− V (φ)

]

+ SM, (3.1)

where f(φ) is an arbitrary function of φ, which can be expanded as

f(φ) = M2
P

(

1 + c1
φ

MP
+ · · ·

)

. (3.2)

Here we take f(0) = M2
P without loss of generality by redefining φ as a deviation from

the potential minimum.

3.1 Background dynamics

Let us first consider the homogeneous mode of φ which undergoes a coherent oscillation
around the potential minimum: φ = φ(t). Let us compute φ-dependence of the scale
factor a(t). From the Einstein equation, we obtain

3fH2 = ρφ − 3Hḟ, (3.3)

where ρφ ≡ φ̇2/2 + V and

(3H2 + 2Ḣ)f + f̈ + 2Hḟ = −
1

2
φ̇2 + V. (3.4)

The equation of motion of φ reads

φ̈+ 3Hφ̇+ V,φ − 3f,φ(2H
2 + Ḣ) = 0. (3.5)

One of these three equations is actually redundant.
It should be noticed that the Hubble parameter H is an oscillating function with

time, as opposed to the case of the Einstein gravity. To see this, we expand H and φ
as H = H0 + H1 and φ = φ0 + φ1, where the subscript 0 represents the solution in the
Einstein gravity limit f(φ) = M2

P , and we regard the effect of non-minimal coupling c1 as
a small perturbation.♠10 Thus we have H0 = (n+ 2)/(3nt) for V ∝ φn. We also consider
the deep oscillation regime: i.e., H ≪ mφ, with mφ being the mass scale of φ.

From Eq. (3.3), we obtain

H2
0 =

ρφ0
3M2

P

, (3.6)

H1 =
ρφ1

6M2
PH0

−
c1

2MP

(

φ̇0 +H0φ0

)

, (3.7)

where ρφ1 = φ̇0φ̇1+ V,φ0φ1. In order to estimate the magnitude of ρφ1, we rewrite (3.5) as

ρ̇φ1 + 6H0φ̇0φ̇1 + 3H1φ̇
2
0 − 3c1MP φ̇0(2H

2
0 + Ḣ) = 0. (3.8)

♠10 Note that this expansion is different from what we have done in the previous section.

8

Friedmann equation:

gravity, since it sometimes happens that the Hubble parameter as well as the scale factor
oscillates more violently [12, 13]. This means that the scale factor linearly depends on φ.
Therefore, we will expand H and a(t) at the linear order in φ and neglect φ2 dependence
in this section.

Let us consider the following action:

S =

∫

d4x
√
−g

[

1

2
f(φ)R−

1

2
gµν∂µφ∂νφ− V (φ)

]

+ SM, (3.1)

where f(φ) is an arbitrary function of φ, which can be expanded as

f(φ) = M2
P

(

1 + c1
φ

MP
+ · · ·

)

. (3.2)

Here we take f(0) = M2
P without loss of generality by redefining φ as a deviation from

the potential minimum.

3.1 Background dynamics

Let us first consider the homogeneous mode of φ which undergoes a coherent oscillation
around the potential minimum: φ = φ(t). Let us compute φ-dependence of the scale
factor a(t). From the Einstein equation, we obtain

3fH2 = ρφ − 3Hḟ, (3.3)

where ρφ ≡ φ̇2/2 + V and

(3H2 + 2Ḣ)f + f̈ + 2Hḟ = −
1

2
φ̇2 + V. (3.4)

The equation of motion of φ reads

φ̈+ 3Hφ̇+ V,φ − 3f,φ(2H
2 + Ḣ) = 0. (3.5)

One of these three equations is actually redundant.
It should be noticed that the Hubble parameter H is an oscillating function with

time, as opposed to the case of the Einstein gravity. To see this, we expand H and φ
as H = H0 + H1 and φ = φ0 + φ1, where the subscript 0 represents the solution in the
Einstein gravity limit f(φ) = M2

P , and we regard the effect of non-minimal coupling c1 as
a small perturbation.♠10 Thus we have H0 = (n+ 2)/(3nt) for V ∝ φn. We also consider
the deep oscillation regime: i.e., H ≪ mφ, with mφ being the mass scale of φ.

From Eq. (3.3), we obtain

H2
0 =

ρφ0
3M2

P

, (3.6)

H1 =
ρφ1

6M2
PH0

−
c1

2MP

(

φ̇0 +H0φ0

)

, (3.7)

where ρφ1 = φ̇0φ̇1+ V,φ0φ1. In order to estimate the magnitude of ρφ1, we rewrite (3.5) as

ρ̇φ1 + 6H0φ̇0φ̇1 + 3H1φ̇
2
0 − 3c1MP φ̇0(2H

2
0 + Ḣ) = 0. (3.8)

♠10 Note that this expansion is different from what we have done in the previous section.

8
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P without loss of generality by redefining φ as a deviation from

the potential minimum.
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From Eq. (3.3), we obtain

H2
0 =

ρφ0
3M2

P

, (3.6)

H1 =
ρφ1

6M2
PH0

−
c1

2MP

(

φ̇0 +H0φ0

)

, (3.7)

where ρφ1 = φ̇0φ̇1+ V,φ0φ1. In order to estimate the magnitude of ρφ1, we rewrite (3.5) as

ρ̇φ1 + 6H0φ̇0φ̇1 + 3H1φ̇
2
0 − 3c1MP φ̇0(2H

2
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Assume:

(Einstein + small deviation)

This is further rewritten as

ρ̇φ1 + 6H0φ̇0φ̇1 +
φ̇2
0

2M2
PH0

ρφ1 =
2c1
MP

ρφ0φ̇0. (3.9)

The second and third terms on the l.h.s. are of the order of ∼ Hρφ1, and are subdominant
compared to the first term. Thus integrating this equation, we obtain ρφ1 ∼ c1MPH2

0φ0,
since φ̇ is an oscillating function with time scale ∼ 1/m. Therefore, on the r.h.s. of
Eq. (3.7), the second term dominates over the other terms. As a result, we obtain

H1 ≃ −
c1

2MP
φ̇0. (3.10)

Integrating ȧ/a = H , we find the scale factor

a(t) ≃ ai

(

t

ti

)
n+2
3n

(

1−
c1
2

φ

MP

)

≡ a0(t)

(

1−
c1
2

φ

MP

)

. (3.11)

These results show that the Hubble parameter H as well as the scale factor a explic-
itly depend on φ(t) and hence rapidly oscillating functions with time. The combination
a2(t)f(φ) becomes

a2(t)f(φ) ≃ M2
Pa0(t)

2. (3.12)

Thus the φ dependence cancels out in the combination a2(t)f(φ).
We have performed numerical calculation to confirm the above considerations. Fig. 2

shows time evolution of φ(t) (top left), H (top right), a2 (bottom left) and a2f(φ) (bottom
right) for n = 2. We have taken φi = 0.1, c1 = 0.3 and mφ = 1 in Planck unit. We have
compared numerical results and approximate analytic formula (3.10) for H and (3.11) for
a2. It is clearly seen that H as well as the scale factor a oscillates with time, but the
combination a2f(φ) does not.

3.2 Gravitational decay of inflaton

3.2.1 Scalar

First let us consider the inflaton decay into a real scalar χ. We introduce the following
term in the action

SM =

∫

d4x
√
−g

[

−
1

2
h(φ)gµν∂µχ∂νχ

]

, (3.13)

where h(φ) is an arbitrary function of φ, which is expanded as h(φ) = 1+ d1φ/MP + · · · .
The reason for the introduction of this non-minimal coupling will become clear soon.
Naively, this term leads to the decay rate of the inflaton as Γ(φ→ χχ) = d21m

3
φ/(128πM

2
P ).

But this naive expectation is not correct as we will see below.
Clearly h(φ) is an oscillating function and it might seem that it induces particle cre-

ation of χ. But we must be also careful on the prefactor
√
−g, which could cancel the

oscillation of h(φ). More precisely, by using the conformal time and metric matter action
becomes

SM =

∫

dτd3x a2(t)h(φ)
1

2

[

χ′2 − (∂iχ)
2
]

. (3.14)
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Figure 2: Time evolution of φ(t) (top left), H (top right), a2 (bottom left) and a2f(φ)
(bottom right). We have compared numerical results and approximate analytic formula
(3.10) for H . We have taken c1 = 0.3 and mφ = 1 in Planck unit.
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2.2 Gravitational annihilation of inflaton

2.2.1 Scalar

Now let us discuss the gravitational inflaton decay. To be concrete, we consider the matter
Lagrangian for a real scalar χ:

SM =

∫

d4x
√
−g

[

−
1

2
gµν∂µχ∂νχ−

1

2
m2

χχ
2

]

, (2.12)

where we assume mχ ≪ mφ. As shown above, the scale factor and hence
√
−g contains

φ2 dependence. Therefore, neglecting terms including mχ, the action can be expanded as

SM =

∫

dτd3x ⟨a(t)⟩2
(

1−
1

n+ 2

φ2

M2
P

)

1

2

[

χ′2 − (∂iχ)
2
]

, (2.13)

where we have used the conformal time dτ = dt/a(t) and the prime denotes derivative with
respect to τ . This explicitly shows that the inflaton φ couples to (∂χ)2 and φ (partially)
“decays” or “annihilates” into χ particles. According to the analysis of particle production
under the oscillating background φ [5,6], it might be interpreted as the annihilation of the
inflaton into χ particles. Thus we call this “gravitational annihilation” for convenience in
the following.

To estimate the production rate, we write down the equation of motion for χ̃k ≡ aχk

where χk denotes the Fourier mode of χ with comoving wavenumber k,

χ̃′′
k +

(

k2 −
a′′

a

)

χ̃k = 0 → χ̃′′
k +

(

k2 − 2 ⟨H⟩2 +
φ′2

2M2
P

)

χ̃k = 0, (2.14)

where H ≡ a′/a = aH . Therefore, the effective mass of χ̃ oscillates rapidly.♠4 Particle
creation with k ≃ mφ occurs and the creation rate was studied e.g. in Ref. [5]:

Γ(φφ→ χχ) ≃
C
32π

Φ2

M2
P

m3
φ

M2
P

, (2.15)

♠4 If χ couples to the Ricci scalar as L = 1

2
f(χ)R, the equation of motion becomes χ̃′′ − ∇2χ̃ +

(a′′/a)(χ̃+3f,χa) = 0. Thus if f(χ) = −χ2/6, χ̃ does not couple to the scale factor or the inflaton in the
limit mχ = 0. This corresponds to the conformal coupling.
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Thus it is the combination a2(t)h(φ) that determines the particle creation rate of χ. By
using the result obtained in the previous section, the combination a2(t)h(φ) becomes

a2(t)h(φ) ≃ a0(t)
2

[

1 + (d1 − c1)
φ

MP

]

. (3.15)

Thus the φ dependence vanishes for d1 = c1, i.e., f(φ) = M2
Ph(φ). In this case, φ does

not couple to χ, hence no χ particle production is induced by the φ oscillation except for
the effect studied in the previous section. In the present toy model, there is no reason to
expect f(φ) = M2

Ph(φ) and hence the decay occurs unless there is a tuning, but later we
will see that this tuning automatically happens if we regard χ as the graviton.

Having revealed the φ-χ coupling, we can calculate the decay rate of φ as

Γ(φ → χχ) =
m3

φ

128πM2
P

(d1 − c1)
2 . (3.16)

It coincides with the result in Ref. [2] for d1 = 0. It is noticed that even for d1 = 0, i.e.,
no explicit coupling between φ and χ, the rapid oscillation of the scale factor leads to the
efficient decay of the inflaton.

3.2.2 Vector boson and fermion

Next let us consider vector bosons and fermions:

SM = −
∫

d4x
√
−g

[

hG(φ)
1

4
gµαgνβFµνFαβ + hF (φ)ψ̄e

µ
aγ

aDµψ

]

, (3.17)

where hG(φ) and hF (φ) are arbitrary functions of φ, which can be expanded as hG(φ) =
1 + dGφ/MP + · · · and hF (φ) = 1 + dFφ/MP + · · · . As shown in Sec. 2.2.2, by using the
conformal time and appropriate rescaling of the fields, they can be rewritten as the form
that does not include the scale factor:

SM = −
∫

dτd3x

[

hG(φ)
1

4
ηµαηνβFµνFαβ + hF (φ)

¯̃ψδµaγ
a∂µψ̃

]

. (3.18)

Thus the oscillation in the scale factor does not affect the decay rate of φ into massless
vector bosons and fermions. The decay rate into vector bosons is given by

Γ(φ→ gg) =
N

64πM2
P

d2Gm
3
φ, (3.19)

where N denotes the number of vector bosons. The decay rate into massless fermions
vanishes.

3.2.3 Graviton

Here we apply our results to the inflaton-graviton coupling. Assuming that the back-
ground is homogeneous and expanding only the tensor part as Eq. (2.25), we obtain the
graviton action as♠11

S =

∫

dτd3x a(t)2f(φ)
1

8

[

h′2
ij − (∂lhij)

2
]

, (3.20)

♠11 Terms proportional to (hij)2 is cancelled out by using the background equation (3.4).
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4.1 Background dynamics

The action is given by

S =
Z

d 4x
p�g
✓

1
2

M 2
P f (R)+LM

◆
, (4.1)

whereLM denotes the Lagrangian for matter. This model includes one scalar degree of freedom
(“scalaron") if F ⌘ @ f /@ R 6= const.. The background equations of motion are given by

3F H 2 =
1
2

�
F R � f
��3H Ḟ +

⇢M

M 2
P

, (4.2)

F̈ �H Ḟ +2F Ḣ =�⇢M +pM

M 2
P

. (4.3)

Note that the second equation is derived from the first equation just by taking a time derivative
if there is no matter sector.\12 This is natural because there is only one dynamical degree of
freedom, i.e., the Hubble parameter, in the gravity sector. These two equations are combined
to yield

F̈ +3H Ḟ +
1
3
(2 f � F R) =

⇢M �3pM

3M 2
P

, (4.4)

⇢̇M +3H (⇢M +pM ) = 0. (4.5)

Hereafter we assume that the matter satisfies the equation of state pM = w⇢M , which implies
⇢M / a�3(1+w ).

\12 Recall that the Ricci scalar is given by R = 6(Ḣ +2H 2).
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\12 Recall that the Ricci scalar is given by R = 6(Ḣ +2H 2).

13

Light particle abundnace is determined just by the branching ratio.
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2 Background dynamics

2.1 Background equations

First of all, we derive the background equation [7]. We consider the following action
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where H = ȧ/a is the Hubble parameter.
The Friedmann equation is obtained by introducing the lapse function N by dt → Ndt

and taking variation with respect to it:
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where ρφ is the energy density of φ and we have taken N = 1 after the variation. Note that
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where pφ is the pressure of φ. As we will see later, violent oscillating features of φ’s energy
density and of the Hubble parameter for H ≫ M originate from the last term in Eq. (2.8).
The equation of motion for φ is

(

1 +
3H2

M2

)

φ̈+ 3H

(

1 +
3H2

M2
+

2Ḣ

M2

)

φ̇+
∂V

∂φ
= 0. (2.9)

From this equation of motion, we can see that the potential is effectively suppressed due to
the non-minimal derivative coupling for H/M ≫ 1. Note that Eq. (2.9) is equivalent to the
energy conservation equation

ρ̇φ + 3H (ρφ + pφ) = 0, (2.10)

and that one of the three equations (2.4), (2.7) and (2.9) is redundant. Also, Ḣ is calculated
by eliminating φ̈ from the time derivative of Eq. (2.4) and Eq. (2.9) as

Ḣ

M2
= −

(1 + 3H2

M2 )(1 +
9H2

M2 )
ϵ
2 +

HV ′

M2φ̇
ϵ

(1 + 3H2

M2 )− (1− 9H2

M2 )
ϵ
2

, (2.11)

where the prime denotes the derivative with respect to φ.
In the following, we consider the power-law potential

V =
λ

n
φn. (2.12)

Here we define the effective mass meff as

meff ≡

⎧

⎪

⎨

⎪

⎩

M
H

√

V ′

φ

∣

∣

∣

φ→Φ
= M

H

√
λΦ

n

2
−1 (H

M ≫ 1)
√

V ′

φ

∣

∣

∣

φ→Φ
=

√
λΦ

n

2
−1 (H

M ≪ 1)
(2.13)

where Φ is the amplitude of the φ oscillation. Note that the effective mass is an increasing
function with time due to the suppression factor M/H for H/M ≫ 1. Also note that meffΦ
remains constant for H/M ≫ 1 in the inflaton oscillation dominated era. We sometimes
express

√
λ as mφ for n = 2.

2.2 Evolution of the universe

The evolution of the universe for models with the non-minimal derivative coupling was
investigated in detail in Ref. [13]. Here, we briefly summarize the discussion given there. We
assume that the universe is dominated by the inflaton φ and neglect the damping of φ due
to particle production in this subsection.

First, consider the case where meff ≪ H (Phase 0). In this case, inflation takes place due
to the large Hubble friction term. We summarize the inflationary predictions of the models
with non-minimal derivative coupling in App. A.
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Case 2:  H >> M

Case 1:  H << M

|p�| ⇠ O(m�⇢�/H) � ⇢�

H is violently oscillating! 

|Ḣ| ⇠ m�H(� H2)

Similar to Einstein gravity

Jinno, Mukaida, KN (2013)
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Figure 1: Results of numerical calculation for M = 10−4, λ = 1 and n = 2 in the Planck
unit. (Upper left) Time evolution of φ. (Upper right) Time evolution of H/M . (Lower left)
Time evolution of J . (Lower right) Time evolution of ⟨H⟩t.

6

Hinf/M ⇠ 104Hinf/M ⇠ 104

Numerical results

Particle production (even the graviton production)
can be signifucantly enhanced for H>>M 

However, there is gradient instability in this regime.

Ema, Jinno, Mukaida, KN (2015)

Inflaton fluctuation exponentially develops in shortest time range.

|p�| � ⇢� c2s ⌧ 0

Analysis assuming homogeneous inflaton breaks down.
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and we have omitted the scale factor here. The effective annihilation rate of� into the graviton
pair is
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(5.21)

Therefore, this annihilation mode cannot exceed the ordinary gravitational production if we
prohibit the gradient instability.\22

5.3 Cosmological implications

Now we discuss the cosmological implications of the gravitational particle production. To be
concrete, we take n = 2 and w = 1/3. The dominant contribution to the abundance of the
minimally-coupled scalar comes from H ⇠ M , since ���!��/H is an increasing function of
time for H ¶M while it is decreasing at H ÆM . We obtain

Y�
��

H>M
⇠ ↵m 2

effT

M 2
P H

✓
⇢�
⇢M

◆2
, (5.22)

\22 If we allow the gradient instability to occur, the graviton (or gravitational wave) signal would be much more
stronger, although the precise analysis is difficult to perform.
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Scalar abundance in derivative coupling model
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Summary

It is efficient in the reheating era where 
inflaton oscillates rapidly.

Gravitational production rate is sensitive to the
extension of gravity theory.

Gravitational particle production is ubiquitos phenomena
that happen in the early Universe.

Particles with only gravitational interaction can be
produced to become dominant dark matter.

Implications: moduli problem, baryogenesis, etc…
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Non-minimal coupling

production rate in a realistic inflationary cosmology. Sec. 4 is devoted to summary and
discussion.

2 Scalar field in cosmological background

2.1 Model and equations of motion

Let us consider an action

S =

Z
d4x

p�g

✓
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2
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2
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where MP is the reduced Planck scale, R is the Ricci scalar, � denotes the inflaton field
with V (�) being its potential and � denotes a real scalar field. It has a Z2 symmetry under
which � changes its sign, and hence � is stable and is a candidate of DM. We assume that �
does not have a direct coupling to the inflaton and other standard model fields. It interacts
only through the metric or the gravity. The coupling strength to the gravity is controlled by
the non-minimal coupling ⇠. Pure Einstein gravity corresponds to ⇠ = 0 and the conformal
coupling corresponds to ⇠ = 1/6.

We use the Friedmann-Robertson-Walker metric:

gµ⌫dx
µdx⌫ = a2(⌧)(�d⌧ 2 + d~x2), (2)

where a(⌧) denotes the cosmic scale factor with ⌧ being the conformal time, which is related
to the physical time as dt = ad⌧ . Defining e� ⌘ a�, the action of e� is given by

S =

Z
d⌧d3x

1
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a
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where the prime denotes the derivative with respect to ⌧ . Thus e� satisfies the equation of
motion

e�00 � @2
i e�+m(e↵)2

� e� = 0. (4)

Treated as classical background, � has the following equation of motion,

�̈+ 3H�̇+
@V

@�
= 0, (5)

where the dot denotes the derivative with respect to the physical time t and the Hubble
parameter H is given by the Friedmann equation,

H2 =

✓
ȧ
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=
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ȧ

a

◆2

=
1

3M2
P

✓
1

2
�̇2 + V (�)

◆
, (6)

2

production rate in a realistic inflationary cosmology. Sec. 4 is devoted to summary and
discussion.

2 Scalar field in cosmological background

2.1 Model and equations of motion

Let us consider an action

S =

Z
d4x

p�g

✓
1

2
(M2

P � ⇠�2)R� 1

2
gµ⌫@µ�@⌫�� V (�)� 1

2
gµ⌫@µ�@⌫�� 1

2
m2

��
2

◆
, (1)

where MP is the reduced Planck scale, R is the Ricci scalar, � denotes the inflaton field
with V (�) being its potential and � denotes a real scalar field. It has a Z2 symmetry under
which � changes its sign, and hence � is stable and is a candidate of DM. We assume that �
does not have a direct coupling to the inflaton and other standard model fields. It interacts
only through the metric or the gravity. The coupling strength to the gravity is controlled by
the non-minimal coupling ⇠. Pure Einstein gravity corresponds to ⇠ = 0 and the conformal
coupling corresponds to ⇠ = 1/6.

We use the Friedmann-Robertson-Walker metric:

gµ⌫dx
µdx⌫ = a2(⌧)(�d⌧ 2 + d~x2), (2)

where a(⌧) denotes the cosmic scale factor with ⌧ being the conformal time, which is related
to the physical time as dt = ad⌧ . Defining e� ⌘ a�, the action of e� is given by

S =

Z
d⌧d3x

1

2

⇥
e�02 � (@ie�)2 �m(e↵)2

� e�2
⇤
, m(e↵)2

� ⌘ a2m2
� � (1� 6⇠)

a00

a
, (3)

where the prime denotes the derivative with respect to ⌧ . Thus e� satisfies the equation of
motion

e�00 � @2
i e�+m(e↵)2

� e� = 0. (4)

Treated as classical background, � has the following equation of motion,

�̈+ 3H�̇+
@V

@�
= 0, (5)

where the dot denotes the derivative with respect to the physical time t and the Hubble
parameter H is given by the Friedmann equation,

H2 =

✓
ȧ
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Figure 1: The phase space density of � after the gravitational particle production in hilltop
inflation model with v� = 0.5MP . (Left) The case of conformal coupling ⇠ = 1/6. We have
taken m� = (0.2, 0.5, 1, 2) ⇥ m� for each line. (Right) The same as the left but for the
minimal coupling ⇠ = 0.

fixed physical momentum k/aend, such a limit can be achieved by taking the duration of
inflation long in a numerical calculation. In order to identify such e↵ects, we plot f�(k)
for di↵erent initial condition in Fig. 2. Three lines correspond to di↵erent initial condition,
�i = (0.38, 0.41, 0.44) ⇥ �end for “long,” “mid” and “short,” respectively. The DM mass is
taken to be m� = m� (left) and m� = 2m� (right). The wave number in the horizontal
axis is normalized by aendm�. As seen from the left panel, the flat part at large k is initial
condition dependent and becomes smaller as the initial time is taken to be earlier. The
following simple example may be helpful to understand this behavior. Let us consider the
integral:

I(k) =

Z ⌧f

⌧i

eik⌧

⌧ 2 + ⌧ 20
d⌧, (49)

where ⌧0 is a real number. In the limit �⌧i = ⌧f = 1, we can exactly solve it by using the
residue theorem and obtain exponential form: I(k) = ⇡e�k⌧0/⌧0. If we take large but finite
�⌧i = ⌧f (� ⌧0), we instead have power law tail as I(k) ⇠ ⇡e�k⌧0/⌧0+1/(⌧ 2f k). The integrand
is more complicated in a realistic situation, but we expect that a similar phenomena occur
in our numerical calculation. Therefore the flat part at large k is interpreted as an e↵ect of
finite ⌧i and ⌧f , and we expect that it disappears for �⌧i, ⌧f ! �1. On the other hand, the
modes with smaller k are not a↵ected by the change of the initial condition, and hence are
expected to be intact in the limit �⌧i, ⌧f ! 1. We have checked that the result in Fig. 1 is
not a↵ected by the change of the initial condition, and hence we expect that it provides good
estimation of f� in the limit �⌧i, ⌧f ! 1. This issue is related to the choice of the initial
condition at ⌧ = ⌧i. If we could carefully choose the initial conditions of ↵k and �k at ⌧ = ⌧i
so that they match the solution with ↵k = 1 and �k = 0 at ⌧ = �1, the ⌧i dependence
would be gone.
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