Higgs data does not rule out a sequential fourth generation fermion

Ipsita Saha

Kavli IPMU

Phys.Rev. D97 (2018) no.1, 011701 (Rapid Communication) (With D. Das and A. Kundu)

A 125 GeV Higgs

- Production of Higgs at LHC in all four modes.
- LHC is sensitive to Higgs coupling to fermions and bosons and indirectly to gluons and photons.

Higgs Signal Strengths

- Simultaneous fit of Higgs production cross section × Branching Ratio.
- Define signal strengths for production and branching ratio:

$$\mu_i^f \equiv \frac{\sigma_i.BR^f}{(\sigma_i.BR^f)_{SM}}$$

ATLAS-CONF-2018-031

The Deceased SM4

Inclusion of an additional fermion generation to the SM is constrained by several observables.

- Slayers:
 - Electroweak precision observables are affected via loop processes.
 - Flavor observables.
 - Direct searches for the production of the heavy fermions at the LHC and at Tevatron.
 - Higgs production and decay are affected via loop processes.
- Salvation:
 - Mass splitting in the fourth family.
 - Considerable CKM mixing with three generations can accommodate both Flavor and EWPO.
 - Stringent limits from direct searches pushes to non-perturbative regime. However, the results rely on specific decay patterns and thus the mass bounds can be relaxed.

No Savior from Higgs data.

The Deceased SM4

Inclusion of an additional fermion generation to the SM is constrained by several observables.

- Slayers:
 - Electroweak precision observables are affected via loop processes.
 - Flavor observables.
 - Direct searches for the production of the heavy fermions at the LHC and at Tevatron.
 - Higgs production and decay are affected via loop processes.
- Salvation:
 - Mass splitting in the fourth family.
 - Considerable CKM mixing with three generations can accommodate both Flavor and EWPO.
 - Stringent limits from direct searches pushes to non-perturbative regime. However, the results rely on specific decay patterns and thus the mass bounds can be relaxed.

No Savior from Higgs data.

The Deceased SM4

Inclusion of an additional fermion generation to the SM is constrained by several observables.

- Slayers:
 - Electroweak precision observables are affected via loop processes.
 - Flavor observables.
 - Direct searches for the production of the heavy fermions at the LHC and at Tevatron.
 - Higgs production and decay are affected via loop processes.
- Salvation:
 - Mass splitting in the fourth family.
 - Considerable CKM mixing with three generations can accommodate both Flavor and EWPO.
 - Stringent limits from direct searches pushes to non-perturbative regime. However, the results rely on specific decay patterns and thus the mass bounds can be relaxed.

No Savior from Higgs data.

Effect in Higgs Production and Decay

• For a 125 GeV Higgs, the production cross section through gg fusion enhances by factor of 9.

[Phys. Rev. Lett. 109 (2012) 241802]

New direction

- Sign of top Yukawa coupling is precisely measured.
- Sign of bottom Yukawa is hard to predict.
- Coupling modification factor, $\kappa = \lambda_{xxh} / \lambda_{xxhSM}$.
- In the SM, $\kappa_V = \kappa_u = \kappa_d = 1$. 'd' denotes down-type quark and charged leptons.
- $\bullet\,$ The modification factor for the $gg \to h$ production cross section

$$R_{gg} = \frac{\left|\kappa_t F_{1/2}(\tau_t) + \sum_{f=t',b'} \kappa_f F_{1/2}(\tau_f)\right|^2}{\left|F_{1/2}(\tau_t)\right|^2}$$
(1)

• For chiral fermions much heavier than $m_h = 125$ GeV, the loop function, $F_{1/2}$ saturates to a constant value and the new physics (NP) contribution simply becomes proportional to $(\kappa_{t'} + \kappa_{b'})$. Clearly, in the SM-like limit $(\kappa_{t'} = \kappa_{b'} = 1), R_{gg} = 9$.

New direction

- The current LHC data allows a *wrong-sign limit* as $\kappa_V = \kappa_u = -\kappa_d = 1$.
- In the *wrong-sign limit*, enhancement in the ggF channel can be controlled.
- Remember the additional 4G charged leptons that contributes to $h \to \gamma \gamma$ and $Z\gamma$.
- The NP contribution to the $h\to\gamma\gamma$ amplitude, in the heavy mass limit, is proportional to

$$\kappa_{\gamma\gamma} = \sum_{f=t',b',\tau'} Q_f^2 N_c^f \kappa_f , \qquad (2)$$

One can easily check that $\kappa_{\gamma\gamma} = 0$ in the wrong sign limit.

• In the $h \to Z\gamma$ decay as well, the quantity

$$\kappa_{Z\gamma} = \sum_{f=t',b',\tau'} Q_f T_3^f N_c^f \kappa_f , \qquad (3)$$

where T_3^f denotes the isospin projection of f_L , vanishes in the wrong sign limit leaving no trace of extra generations.

Realizing the Wrong-sign limit

- Not possible to acquire in the SM with one Higgs doublet ⇒ Problem with unitarity.
- A second Higgs doublet can ameliorate.
- Simplest possible BSM \Rightarrow Type-II 2HDM.

In the context of low energy SUSY: Wagner et al, Phys.Rev. D97 (2018) no.11, 115028.

Type-II 2HDM

- One Higgs doublet couples to the up-type quark and neutral leptons while the other higgs doublet to down type quark and charged leptons.
- The Higgs Potential

$$V = m_{11}^{2}\phi_{1}^{\dagger}\phi_{1} + m_{22}^{2}\phi_{2}^{\dagger}\phi_{2} - \left(m_{12}^{2}\phi_{1}^{\dagger}\phi_{2} + \text{h.c.}\right) + \frac{\lambda_{1}}{2}\left(\phi_{1}^{\dagger}\phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\phi_{2}^{\dagger}\phi_{2}\right)^{2} + \lambda_{3}\left(\phi_{1}^{\dagger}\phi_{1}\right)\left(\phi_{2}^{\dagger}\phi_{2}\right) + \lambda_{4}\left(\phi_{1}^{\dagger}\phi_{2}\right)\left(\phi_{2}^{\dagger}\phi_{1}\right) + \left\{\frac{\lambda_{5}}{2}\left(\phi_{1}^{\dagger}\phi_{2}\right)^{2} + \text{h.c.}\right\}$$

• Parameters $(m_h, m_H, m_A, m_{H^{\pm}}, \tan \beta, \alpha, m_{12}^2)$.

• After EWSB,

$$\phi_1 = \begin{pmatrix} c_{\beta}G^+ - s_{\beta}H^+ \\ \frac{1}{\sqrt{2}}(c_{\beta}v - s_{\alpha}h + c_{\alpha}H + i(c_{\beta}G^0 - s_{\beta}A)) \end{pmatrix}$$
$$\phi_2 = \begin{pmatrix} s_{\beta}G^+ + c_{\beta}H^+ \\ \frac{1}{\sqrt{2}}(s_{\beta}v + c_{\alpha}h + s_{\alpha}H + i(s_{\beta}G^0 + c_{\beta}A)) \end{pmatrix}$$

Wrong-sign limit in Type-II 2HDM

• The Higgs coupling modification factors are

$$\begin{aligned} \kappa_V &= \sin(\beta - \alpha), \quad (V = W, Z) \\ \kappa_u &= \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha), \quad \text{(for up type quarks)} \\ \kappa_d &= \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha), \quad \text{(for down type quarks and charged)} \end{aligned}$$

• The Wrong-sign limit reaches at

$$\cos(\beta - \alpha) = \frac{2}{\tan\beta}$$
, with, $\tan\beta \gg 2$

• If one demands $\kappa_u = -\kappa_d$ only,

$$\cos(\beta - \alpha) = \sin 2\beta \,.$$

which is the same as above for large $\tan \beta$.

The undying 4G chiral fermions

- Charged scalar mass has to be > 500 GeV from $b \rightarrow s\gamma$.
- Additional scalars and fermions contribute to oblique parameters and one should verify $\Delta T = (0.08 \pm 0.12), \Delta S = 0.05 \pm 0.10.$
- Recent direct search bound $m_{q'} > 700 \text{GeV}$ depending on decay channel.
- For a benchmark point,

$$\begin{split} m_{t'} &= 550 \ {\rm GeV} \,, \, m_{b'} = 510 \ {\rm GeV} \,, \, m_{\tau'} = 400 \ {\rm GeV} \,, \, m_{\nu'} = 200 \ {\rm GeV} \,, \\ m_{H} &= 400 \ {\rm GeV} \,, \, m_{A} = 810 \ {\rm GeV} \,, \, m_{H+} = 600 \ {\rm GeV} \,. \end{split}$$

Conclusion

- The 4G chiral fermions are severely disfavored from Higgs data in the SM.
- We invoke the *Wrong-sign limit* to cancel the additional fermion contribution in Higgs production.
- The limit can only be achieved with an additional Higgs doublet.
- We show that such limit can be realized in a Type-II 2HDM in accordance with electroweak precision constraints.
- Lower bound on $\tan \beta$.

Backup

T parameter

The scalar contribution to T parameter [Branco et al.' 2011]

$$\begin{split} \mathbf{T}_{\text{Scalar}} &= \frac{1}{16\pi \sin^2 \theta_W M_W^2} \bigg[\sin^2 (\beta - \alpha) F_T \left(m_{H^+}^2, m_H^2 \right) + \cos^2 (\beta - \alpha) F_T \left(m_{H^+}^2, m_H^2 \right) + F_T \left(m_{H^+}^2, m_A^2 \right) \\ &- \cos^2 (\beta - \alpha) F_T \left(m_h^2, m_A^2 \right) - \sin^2 (\beta - \alpha) F_T \left(m_A^2, m_H^2 \right) + \\ &3 \left\{ \cos^2 (\beta - \alpha) \left(F_T \left(M_Z^2, m_H^2 \right) - F_T \left(M_W^2, m_H^2 \right) \right) + \sin^2 (\beta - \alpha) \left(F_T \left(M_Z^2, m_h^2 \right) - F_T \left(M_W^2, m_H^2 \right) \right) \right\} \right]; \end{split}$$

The fermion contribution to T-parameter [Dighe et al.' 2012]

$$\begin{split} \mathbf{T}_{\text{Fermion}} &= \frac{1}{8\pi \sin^2 \theta_W \cos^2 \theta_W} \left[3F_T \left(\frac{m_{t'}^2}{M_Z^2}, \frac{m_{b'}^2}{M_Z^2} \right) + F_T \left(\frac{m_{E'}^2}{M_Z^2}, \frac{m_{N'}^2}{M_Z^2} \right) \right]; \quad (6) \\ \Delta T &= \mathbf{T}_{\text{Scalar}} + \mathbf{T}_{\text{Fermion}} \cdot \\ \text{with,} &F_T \left(x, y \right) = \begin{cases} \frac{x+y}{2} - \frac{xy}{x-y} \ln \left(\frac{x}{y} \right) & x \neq y , \\ 0 & x = y . \end{cases} \end{split}$$

S parameter

$$S_{\text{Scalar}} = \frac{1}{24\pi} \left[(\sin^2 \theta_w - \cos^2 \theta_w)^2 G_S \left(\frac{m_{H^+}^2}{M_Z^2}, \frac{m_{H^+}^2}{M_Z^2} \right) + \cos(\beta - \alpha)^2 G_S \left(\frac{m_h^2}{M_Z^2}, \frac{m_A^2}{M_Z^2} \right) + \sin(\beta - \alpha)^2 G_S \left(\frac{m_h^2}{M_Z^2} \right) + \sin(\beta - \alpha)^2 G_S \left(\frac{m_h^2}{M_Z^2} \right) + \cos(\beta - \alpha)^2 G_S' \left(\frac{m_H^2}{M_Z^2} \right) + \sin(\beta - \alpha)^2 G_S' \left(\frac{m_h^2}{M_Z^2} \right) - G_S' \left(\frac{m_h^2}{M_Z^2} \right) + \ln \left(\frac{m_H^2}{m_{H^+}^2} \right) \right];$$

$$S_{\text{Fermion}} = \frac{3}{6\pi} \left[1 - 2 \left(\frac{1}{6} \right) \ln \left(\frac{m_{H^+}^2}{m_{B^+}^2} \right) \right] + \frac{1}{6\pi} \left[1 - 2 \left(\frac{-1}{2} \right) \ln \left(\frac{m_{N'}^2}{m_{E'}^2} \right) \right];$$

$$\Delta S = S_{\text{Scalar}} + S_{\text{Fermion}}.$$

$$\left(10 \right) \left[-\frac{16}{6} + 5(x + y) - 2(x - y)^2 + 3 \left(\frac{x^2 + y^2}{x^2} - x^2 + y^2 + \frac{(x - y)^3}{x^2} \right) \ln \left(\frac{x}{5} \right) \right]$$

$$G_{S}(x,y) = \begin{cases} -\frac{3}{3} + 3(x+y) - 2(x-y) + 3\left(\frac{-x-y}{x-y} - x+y + \frac{-y}{3}\right) \ln\left(\frac{y}{y}\right) \\ +(1-2(x+y) + (x-y)^{2})F_{S}(x+y-1,1-2(x+y) + (x-y)^{2}) & x \neq y , \\ -\frac{16}{3} + 8(x+y) + (1-2(x+y))F_{S}(x+y-1,1-2(x+y)) & x = y . \end{cases}$$
(11)

$$G'_{S}(x) = -\frac{79}{3} + 9x - 2x^{2} + \left(-10 + 18x - 6x^{2} + x^{3} - 9\frac{x+1}{x-1}\right)\ln(x) + (12 - 4x + x^{2})F_{S}(x, x^{2} - 4x).$$
(12)

$$F_S(z,w) = \begin{cases} \sqrt{w} \ln |\frac{z-\sqrt{w}}{z+\sqrt{w}}| & w > 0\\ 0 & w = 0\\ 2\sqrt{-w} \arctan(\frac{\sqrt{-w}}{z}) & w < 0 \end{cases}$$