SUSY in the light of the Higgs discovery

Graham Ross, IPMU, December 2013

SUSY in the light of the Higgs discovery

Introduction

Derivation of fine tuning measure

Scalar and gluino focus points - the CMSSM and the ©MSSM

Beyond the MSSM - operator analysis and singlet extensions

Discrete R-symmetries

The GNMSSM (and Dirac NMSSM)

Introduction

Low energy SUSY ?

Low energy SUSY ?

Unification:

Only log sensitivity to SUSY scale

1

Low energy SUSY?

Unification:

The (SUSY) Standard Model as an EFT: A_uν, ΨνΗν?

 $M_{Higgs}, M_{W.Z} \ll M_{Planck}, M_{GUT}, \dots$

Solves the big hierarchy problem, $M_{SUSY} < O(1TeV)$

... completes the "Standard Model"

Higgs discovery!

... completes the "Standard Model"

Higgs discovery!

"Light", weakly interacting SUSY 🖌

... completes the "Standard Model"

WΖ

10²

Higgs discovery

"Light", weakly interacting SUSY 🗸

"Heavy", no evidence for sparticles SUSY X

$$m_h^2 = M_Z^2 + \frac{3m_t^2 h_t^2}{4\pi^2} \left(\ln\left(\frac{M_s^2}{m_t^2}\right) + \delta_t \right) + \dots \approx 126 \, GeV$$
$$\delta m_{H_u}^2 \approx -\frac{3y_t^2}{4\pi^2} \left(m_{stop}^2 + \frac{g_s^2}{3\pi^2} m_{gluino}^2 \log\left(\frac{\Lambda}{m_{gluino}}\right) \right) \log\left(\frac{\Lambda}{m_{stop}}\right) ?$$

SUSY under pressure

"Little hierarchy problem"

 10^{1}

m [GeV]

The fine tuning measure

$Little hierarchy problem \implies definite SUSY structure$

MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$$
$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}_{i}^{2}}{M_{Z}^{2}} \sim 100$$

(Unless light stop $m_{\tilde{t},LHC} > 250 \text{ GeV}$)

⇒ Correlations between SUSY breaking parameters and/or additional low-scale states

$Little hierarchy problem \implies definite SUSY structure$

MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$$
$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}_{i}^{2}}{M_{Z}^{2}} \sim 100$$

(Unless light stop $m_{\tilde{t},LHC} > 250 \text{ GeV}$)

⇒ Correlations between SUSY breaking parameters and/or additional low-scale states

Fine Tuning measure:

$$\Delta(a_i) = \left| \frac{a_i}{M_Z} \frac{\partial M_Z}{\partial a_i} \right|,$$

$$\Delta_{\rm m} = Max_{a_i} \Delta(a_i), \quad \Delta_q = \left(\sum \Delta_{\gamma_i}^2\right)^{1/2}$$

Ellis, Enquist, Nanopoulos, Zwirne**r** Barbieri, Giudice

Fine tuning from a likelihood fit:

.

"Nuisance" variable

$$L(\operatorname{data} | \gamma_i) \propto \int d\mathbf{v} \delta(m_Z - m_Z^0) \delta\left(\mathbf{v} \cdot \left(-\frac{m^2}{\lambda}\right)^{1/2}\right) L(\operatorname{data} | \gamma_i; \mathbf{v})$$
$$= \frac{1}{\Delta_q} \delta(n_q(\ln \gamma_i - \ln \gamma_i^S)) L(\operatorname{data} | \gamma_i; \mathbf{v}_0)$$
Fine tuning not optional!

Probabilistic interpretation:

$$\chi_{new}^2 = \chi_{old}^2 + 2\ln\Delta_q \qquad \Delta_q \ll 100$$

Scalar and gluino focus points -

The CMSSM and the ©MSSM

assumes correlation between SUSY breaking parameters

• Fine tuning in the CMSSM

$$V = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 - (m_3^2 H_1 \cdot H_2 + h.c.) + \frac{1}{2} \lambda_1 |H_1|^4 + \frac{1}{2} \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1 \cdot H_2|^2 + \left[\frac{1}{2} \lambda_5 (H_1 \cdot H_2)^2 + \lambda_6 |H_1|^2 (H_1 \cdot H_2) + \lambda_7 |H_2|^2 (H_1 \cdot H_2) + h.c. \right]$$

Minimisation conditions:

$$\Delta \equiv \max \left| \Delta_p \right|_{p = \{\mu_0^2, m_0^2, m_{1/2}^2, A_0^2, B_0^2\}}, \qquad \Delta_p \equiv \frac{\partial \ln v^2}{\partial \ln p}$$

Couplings and masses evaluated to two loop (leading log) order ...enhanced sensitivity due to small tree-level $\lambda = \frac{1}{8} (g_1^2 + g_2^2) \cos^2 2\beta$

> Cassel, Ghilencea, GGR c.f. earlier work : Dimopoulos, Giudice Chankowski, Ellis, Olechowski, Pokorski

Scalar focus point

$$m_{H_{u}}^{2}\left(Q^{2}\right) = m_{H_{u}}^{2}\left(M_{p}^{2}\right) + \frac{1}{2}\left(m_{H_{u}}^{2}\left(M_{p}^{2}\right) + m_{Q_{3}}^{2}\left(M_{p}^{2}\right) + m_{u_{3}}^{2}\left(M_{p}^{2}\right)\right) \left(\frac{Q^{2}}{M_{p}^{2}}\right)^{\frac{3y_{t}^{2}}{4\pi^{2}}} - 1$$

Feng, Matchev, Moroi Chan, Chattopadhyay, Nath

The CMSSM - after LHC

The CMSSM - after LHC

$$\Delta_{Min} > 350, \quad m_h = 125.6 \pm 3 GeV$$

• New focus points?

Gauginos: $M_{\tilde{g}, \tilde{W}, \tilde{B}}$ Non-universal gaugino correlations

Reduced fine tuning (the ©MSSM)

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

Abe, Kobayashi, Omura Horton, GGR

Reduced fine tuning (the ©MSSM)

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

Abe, Kobayashi, Omura Horton, GGR

Natural ratios? e.g.:

String:

 $SU(5): \Phi^{N} \subset (24 \times 24)_{symm} = 1 + 24 + 75 + 200; \quad SO(10): (45 \times 45)_{symm} = 1 + 54 + 210 + 770$ GUT:

	$\eta_3 \cdot \cdot \cdot \eta_1$	$2.7\eta_3 \cdot 1.0.0\eta_1$
Representation	$M_3: M_2: M_1$ at M_{GUT}	$M_3: M_2: M_1$ at M_{EWSB}
1	1:1:1	6:2:1
24	2:(-3):(-1)	12:(-6):(-1)
75	1:3:(-5)	6:6:(-5)
200	1:2:10	6:4:10

Younkin, Martin

(OII, also mixed moduli anomaly)

Ibanez et al Choi et al Badziek et al

$$\eta_{_{3}}$$
 : 1 : $\eta_{_{1}}$

 $(3+\delta_{GS}):(-1+\delta_{GS}):(-\frac{33}{5}+\delta_{GS})$

 $2.7n \cdot 1 \cdot 0.5n$

Reduced fine tuning (the ©MSSM)

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

 $M_3: M_2: M_1 = 1: b: a$

Reduced fine tuning : nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

$$\Delta_{Min}^{CMSSM} = 60 \ (500), \quad m_h = 125.6 \pm 3 GeV$$

LHC8 SUSY bounds DM relic abundance DM searches × Beyond the MSSM -

operator analysis and singlet extensions

+ dim 5 operators

Even for $M_*=65 \mu_0$ a significant shift of m_h for constant Δ

...effect mainly comes from ς_1 term ... origin?

MSSM

Reduced fine tuning : New heavy states - higher dimension operators

$$\delta L = \int d^2 \theta \frac{1}{M_*} (\mu_0 + c_0 S) (H_u H_d)^2, \quad S = m_0 \theta \qquad \text{Dimension 5}$$

$$\delta V = \varsigma_1 (|h_u|^2 + |h_d|^2) h_u h_d + \varsigma_2 (h_u h_d)^2; \quad \varsigma_1 = \frac{\mu_0}{M_*}, \quad \varsigma_2 = \frac{c_0 m_0}{M_*}$$

$$\overset{\mu_q >> m_{3/2}}{=} \frac{M_0 + M_0}{M_*} = (H_u H_d)^2 H_u H_d + \frac{\mu_S}{2} S^2 + \frac{\kappa}{3} S^3 + \xi S \qquad \text{GNMSSM}$$

$$\mu_S >> m_{3/2}: \quad W_{eff}^{GNMSSM} = (H_u H_d)^2 / \mu_s + \mu H_u H_d$$

$$\delta V = \frac{\mu}{\mu_s} (|H_u|^2 + |H_d|^2) H_u H_d^{\dagger} \checkmark$$

Reduced fine tuning: New heavy states - higher dimension operators

$$\delta L = \int d^2 \theta \frac{1}{M_*} (\mu_0 + c_0 S) (H_u H_d)^2, \quad S = m_0 \theta \theta \qquad \text{Dimension 5}$$

$$\delta V = \varsigma_1 (|h_u|^2 + |h_d|^2) h_u h_d + \varsigma_2 (h_u h_d)^2; \quad \varsigma_1 = \frac{\mu_0}{M_*}, \quad \varsigma_2 = \frac{c_0 m_0}{M_*}$$

Singlet extensions

$$W = W_{\text{Yukawa}} + \lambda SH_uH_d + \frac{\kappa}{3}S^3 \qquad \text{NMSSM}$$

$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S \qquad \text{GNMSSM}$$

$$\mu_S >> m_{3/2} : W_{eff}^{\text{GNMSSM}} = (H_uH_d)^2 / \mu_s + \mu H_uH_d$$

$$\delta V = \frac{\mu}{\mu_S} (|H_u|^2 + |H_d|^2)H_uH_d \qquad \text{but are } \mu, \mu_s \text{ naturally small?}$$

Discrete R-symmetries

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$ $+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$

 $+\frac{1}{M}\left(QQQL+QQQH_{d}+Q\overline{U}\overline{E}H_{d}+...(\cancel{L})\right)$

R-parity: Z_2 $H_u, H_d + 1$ SUSY states odd $L, \overline{E}, Q, \overline{D}, \overline{U}, \theta$ -1Weinberg, Sakai

$$W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$$
$$+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$$
$$+ \frac{1}{2} \left(Q Q U + Q Q H_{u} + Q \overline{U} \overline{E} H_{u} + \lambda'' \overline{U} \overline{D} \overline{D} \right)$$

 $+\frac{1}{M}\left(QQQL+QQQH_{d}+QUEH_{d}+...(L)\right)$

R-parity: Z_2 SUSY states odd
Weinberg, SakaiBaryon "parity": Z_3 Q1
 \overline{D}, H_u LSP unstable

 $L, \overline{E}, \overline{U}, H_d \quad \alpha^2$

Discrete gauge symmetry -anomaly free

Ibanez, GGR

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$ $+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$

$$+\frac{1}{M}\left(QQQL+QQQH_{d}+QUEH_{d}+...(\mathcal{L})\right)$$

R-parity: Z₂ SUSY states odd

Baryon "parity": Z₃

LSP unstable

Proton hexality: $Z_6 = Z_2^R \times Z_3^B$

LSP stable $\frac{1}{M}LLH_{u}H_{u}$

Dreiner, Luhn, Thormeier

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$ $+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$

 $+\frac{1}{M}\left(QQQL+QQQH_{d}+Q\overline{U}\overline{E}H_{d}+...(\mathbf{1})\right)$

μ	term,	
G	JTs?	

SUSY states odd

Baryon "parity": Z_3

R-parity:

LSP unstable

Proton hexality: $Z_6 = Z_2^R \times Z_3^B$

 Z_{2}

LSP stable $\frac{1}{M}LLH_{u}H_{u}$

Dreiner, Luhn, Thormeier

$$W = h^{E} LH_{d} \overline{E} + h^{D} QH_{d} \overline{D} + h^{U} QH_{u} \overline{U} + \mu H_{d} H_{u}$$

+ $\lambda LL\overline{E} + \lambda' LQ\overline{D} + \kappa LH_{u} + \lambda'' \overline{U}\overline{D}\overline{D}$
+ $\frac{1}{M} (QQQL + QQQH_{d} + Q\overline{U}\overline{E}H_{d} + ...(\cancel{L}))$
R-parity: Z_{2} SUSY states odd

Baryon "parity": Z_3 LSP unstable

Proton hexality: $Z_6 = Z_2^R \times Z_3^B$ LSP stable Z_N^R R-symmetryN=4,6,8,12,24LSP stable $\frac{1}{M}LLH_uH_u$

Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg, Vaudrevange Babu, Gogoladze, Wang

A unique solution : Z_4^R discrete **R** symmetry

MSSM spectrum No perturbative μ term Commutes with SO(10) Anomaly cancellation

N	q_{10}	$q_{\overline{5}}$	q_{H_u}	q_{H_d}	$q_{\scriptscriptstyle N}$
4	1	1	0	0	2

$$A_{\mathrm{SU}(3)-\mathrm{SU}(3)-\mathbb{Z}_{N}} = \frac{1}{2} \sum_{i} \left[3 \cdot q_{\mathbf{10}_{i}} + q_{\overline{\mathbf{5}}_{i}} - 4R \right] + 3R$$

$$A_{\mathrm{SU}(2)-\mathrm{SU}(2)-\mathbb{Z}_{N}} = \frac{1}{2} \sum_{i} \left[3 \cdot q_{\mathbf{10}_{i}} + q_{\overline{\mathbf{5}}_{i}} - 4R \right] + 2R + \frac{1}{2} \left(q_{H} + q_{\overline{H}} - 2R \right)$$

$$A_{\mathrm{U}(1)_{Y}-\mathrm{U}(1)_{Y}-\mathbb{Z}_{N}^{R}} = \frac{1}{2} \sum_{g=1}^{3} \left(3q_{\mathbf{10}}^{g} + q_{\overline{\mathbf{5}}}^{g} \right) + \frac{3}{5} \left[\frac{1}{2} \left(q_{H_{u}} + q_{H_{d}} \right) - 11 \right] \qquad (R = 1)$$

 $\Rightarrow N = 3, 4, 6, 8, 12, 24$

Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg, Vaudrevange

A unique solution : Z_4^R discrete **R** symmetry

MSSM spectrum No perturbative μ term Commutes with SO(10) Anomaly cancellation

N	q_{10}	$q_{\overline{5}}$	q_{H_u}	$q_{\scriptscriptstyle H_d}$	$q_{\scriptscriptstyle N}$
4	1	1	0	0	2

$$\underbrace{\text{D=5 operators}}_{3q_{10} + q_{\overline{5}} + q_{H_u} + q_{H_d}} = 4 \quad \text{Mod N} \implies 3q_{10} + q_{\overline{5}} = 0 \quad \text{Mod N} \implies \frac{1}{M} \mathcal{QQL} \quad \frac{1}{M} LLH_u H_u$$
Weinberg operator

SUSY breaking

 $\langle W \rangle, \langle \lambda \lambda \rangle$ R=2 non-perturbative breaking

Domain walls safe Tadpole safe

$$Z_{4R} \rightarrow Z_2^R$$
 $R - parity$
 $\mu \sim m_{3/2}, O(\frac{m_{3/2}}{M^2}QQQL)$

M_{higgs} ≈ M_{SUSY}

 $\mu, \mathcal{B}, \mathcal{L}$

The GNMSSM (and Dirac NMSSM)

The GNMSSM (and Dirac NMSSM)

R-symmetry ensures Singlet extensions natural

GNMSSM

NMSSM spectrum No perturbative μ term Commutes with SO(10) Anomaly cancellation

N	q_{10}	$q_{\overline{5}}$	q_{H_u}	q_{H_d}	q_s
4	1	1	0	0	2
8	1	5	0	4	6
1				1	

R-symmetry ensures singlets light

$$3q_{10} + q_{\overline{5}} + q_{H_u} + q_{H_d} = 4 \quad \text{Mod N} \implies 3q_{10} + q_{\overline{5}} = 0 \quad \text{Mod N} \implies \frac{1}{M} Q Q L \quad \frac{1}{M} LLH_u H_u$$

Weinberg operator

SUSY breaking

D=5 operators

up and down Yukawas allowed

Dirac NMSSM

 $W_{DiracNMSSM} \supset QuH_u, QdH_d, leH_d, NH_uH_d, m_{3/2}N\overline{N}, lv_RH_u$

(reduces F-term decoupling without FT increase)

Lu, Murayama, Ruderman, Tobioka

Discrete R-symmetry e.g.

Qudle H_d H_u N \overline{N} X v_R Z_8^R 11551406205 Z_5 0-10-3301-1112

(Neutrino masses of correct magnitude)

Fine tuning in the CGNMSSM $(\lambda \le 0.7^{\dagger})$

$$\Delta_{Min} = 60 \ (500), \quad m_h = 125.6 \pm 3 GeV$$

LHC8 SUSY bounds DM relic abundance DM searches

GGR, Kaminska, Schmidt-Hoberg

130

Fine tuning in the DiracNMSSM

(1+leading 2-loop Higgs mass determination and full 2-loop RGE) $m_0, m_{1/2}, A_0, \tan \beta, \mu, b\mu, \lambda, A_\lambda, v_s, v_{\bar{s}}, M, b_s, m_{h_u}^2, m_{h_d}^2, m_s^2, m_{\bar{s}}^2, \xi_S, \xi_{\bar{S}}$

> Kaminska, Schmidt-Hoberg, GGR, Staub (Preliminary)

Back to the ©GNMSSM

...fine tuning v/s gaugino mass ratios

 $M_3 = m_{1/2}, M_2 = b.m_{1/2}, M_1 = a.m_{1/2}$

Tag with hard initial QCD radiation

Dreiner, Kramer, Tattersall

Masses v/s fine tuning

M_{gluino}

Dark matter

Summary

- GUTs ⇒ SUSY-GUTS (hierarchy problem)
- Low fine tuning not optional
- Fine tuning sensitive to SUSY spectrum
 ...scalar and gaugino focus points

•
$$\Delta^{CMSSM} > 350$$
 × $\Delta^{(C)MSSM} > 60$ ×
 $\Delta^{CGMSSM} > 60$ × $\Delta^{(C)GNMMS} > 20$ ×
 $c.f. \Delta^{CMSSM}_{Low \, scale} = (10 - 30), \quad m_{\tilde{t}} = (1 - 5)TeV$

Barger et al

Summary

- Low fine tuning not optional
- Fine tuning sensitive to SUSY s ...scalar and gaugino focus poin[.]

$$\Delta^{CMSSM} > 350 \times \Delta^{(C)MSSM} > 60 \times$$

c.f. $\Delta_{Low \ scale}^{CMSSM} = (10 - 30), \quad m_{\tilde{t}} = (1 - 5)TeV$

Barger et al

125

130

Summary

- Low fine tuning not optional
- Fine tuning sensitive to SUSY spectrum ...scalar and gaugino focus points
- $\Delta^{CMSSM} > 350$ $\Delta^{(C)MSSM} > 60$ $\Delta^{CGMSSM} > 60$ $\Delta^{(C)GNMMS} > 20$
- Well motivated SUSY models remain to be tested LHC14?
 - Compressed spectra, TeV squarks and gluinos