MUTLILEPTON SIGNALS OF GAUGE MEDIATED SUSY @ LHC

Diego Redigolo

Université Libre de Bruxelles (ULB) & International Solvay Institutes (ISI)

Tokyo, 2/12/2013

CREDITS:

- P. Grajek, A. Mariotti and D.R. arXiv:1303.0870 [hep-ph]
- K. De Causmaecker, J. D'Hondt, B. Fuks, A. Mariotti, K. Mawatari, C. Petersson and D. R. arXiv:1310.0018 [hep-ph]
- L. Calibbi, A. Mariotti, C. Petersson and D. R. work in progress

SUSY BREAKING AND GAUGE MEDIATION

- Hidden sector: with spontaneous (dynamical) susy breaking
- Visible sector: MSSM
- MSSM gauge interactions connect the two sectors:
- $G_{SM} = U(1) \times SU(2) \times SU(3)$ with gauge couplings (g_1, g_2, g_3)
- Interactions lead to susy breaking soft terms in the MSSM
- Predictive framework for the susy breaking terms
- Gauge interactions are flavour blind: No flavour problem

$m_h = 125 \text{ GeV}$: An un-natural solution

J. L. Feng, P. Kant, S. Profumo, D. Sanford 1306.2318

HIGGS MASS \Rightarrow Heavy Stops!

MAP OUT ALL the regions accessible at LHC!

- The parameter space is highly constrained
 - \Rightarrow A complete mapping might be feasible
- Are there poorly explored regions?
- Are there extra constraints coming from model building?
- Understanding to what extent minimal SUSY can be falsifiable at LHC can be also useful for non-minimal models.

• Gauge mediation definition:

When $(g_1, g_2, g_3) \rightarrow 0$ No susy breaking in MSSM

 $\bullet \Rightarrow Soft masses in GGM$

$$m_{\lambda_i} = \frac{g_i^2}{(4\pi)^2} \Lambda_{G_i} \qquad i = 1, \dots 3$$

$$m_{sf}^2 = 2 \sum_{i=1}^3 C_i k_i \frac{g_i^4}{(4\pi)^4} \Lambda_{S_i}^2 ; \qquad C_i = \text{Casimir} \qquad k_i = (3/5, 1, 1)$$

- $(\Lambda_{G_i}, \Lambda_{S_i})$ for each gauge group factor U(1), SU(2), SU(3)
- *M_{mess}* sets length of the RG-flow
- 3 + 3 + 1 independent parameters: $(\Lambda_{G_i}, \Lambda_{S_i}, M_{mess})$
- 1 extra parameter to determine the EWSB: μ

Covers all possible models of gauge mediation

UNIVERSAL PROPERTIES OF GAUGE MEDIATION

- Predictive framework for soft terms
- Gravitino LSP:

the NLSP has a two body decay to gravitino + SM partner

$$\Gamma(\tilde{Y} \to Y + \tilde{G}) = \frac{m_{\tilde{Y}}^5}{48\pi M_{planck}^2 m_{3/2}^2} \left(1 - \frac{m_Y}{m_{\tilde{Y}}}\right)^4$$

- A-terms are suppressed at the UV scale
- Phenomenology (final state in the collider) dictated by NLSP-type

GENERAL GAUGE MEDIATION

- Model-independent parametrization of the complete parameter space of gauge mediated models
- Generic type of NLSP can be obtained
- Powerful generator of Supersymmetric Spectra
 - ⇒ Simplifed Models + Collider Signatures

An Intriguing example

GGM AFTER LHC8

- Heavy Stops \Rightarrow all the squarks decoupled
- Gluino production strongly constrained: $m_{ ilde{g}} \geq 1 {
 m TeV}$ Evans, Kats, Shih, Strassler '13
- One important question: How light the stops can be in GGM after LHC8?

Knapen, D.R., Shih work in progress

• Any uncolored sparticle can be the NLSP in some region of the parameter space Grajek, Mariotti, D.R. '13

Focusing on EW production:

? Poorly explored SUSY spectra with interesting LHC phenomenology ?

 \Rightarrow Selectron/Smuon co-NLSP & simplified Models for Slepton pair prod. CMS SUS 13 002;

D'Hont et al. '13; Calibbi, Mariotti, Petersson, D.R. to appear

SLEPTONS AND STAU (N)NLSP IN GAUGE MEDIATION

- · Simplified model with only right sleptons and stau accessible at LHC
- Goldstino LSP
- Different phenomenology depending on mass hierarchy among sleptons

THREE DIFFERENT REGIONS:

QUESTIONS:

Theory: Embedding all the regions of the simplified model in GGM

- Colored sector can be made independently heavy
- Stau NLSP from two distinct effects:
 - $y_{\tau} \gg y_{\mu,e}$ stau mass is lowered by Yukawa RG effects.
 - In the stau mass matrix

What about about selectron/smuon co-NLSP?

PHENO: WHAT ARE THE TYPICAL SIGNATURES AT LHC?

- We expect multileptons in final states
- Pure EW production \Rightarrow Low Cross Section but clean signal
- EW production studied for LEP and Tevatron e.g.: Ruderman, Shih '10

Re-interpreting the CMS analysis

UV CONDITIONS FOR $m_{ ilde{\ell}_R}^2 < m_{ ilde{ au}_1}^2$

- Trace back the IR requirement on mass splitting to a UV condition
- RG equation for mass splitting

$$16\pi^2 \frac{d}{dt} (m_{\tilde{\tau}_R}^2 - m_{\tilde{\ell}_R}^2) = 2X_\tau = 4|y_\tau^2| (m_{H_d}^2 + m_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2)$$

• \Rightarrow Moderate to large tan β to enhance y_{τ}

NEGATIVE X_{τ} :

• GGM:
$$m_{H_d}^2 = m_{E_L}^2 \implies (2m_{E_L}^2 + m_{\tilde{\tau}_R}^2) < 0$$

- **3** GGM+ Deflections: $m_{H_d}^2 = m_{E_L}^2 + \Delta_d^2 \implies \Delta_d^2 < 0$
 - Intuitively the presence of tachyonic scalars along the RG-flow reverse the Yukawa effects.

$$\Rightarrow m_{ ilde{\ell}_R}^2 < m_{ ilde{ au}_1}^2$$
 as a consequence of $y_\ell < y_ au$

LOW ENERGY CONSTRAINTS:

- GGM: tachyonic sleptons
- GGM+ Deflections: tachyonic CP-odd Higgs

$$m_A^2 = 2\mu^2 + m_{H_u}^2 + m_{H_d}^2 \simeq -m_{H_u}^2 + m_{H_d}^2 < \mu^2$$

EXISTENCE PROOFS (in progress)

IR constraints in the scans:

•
$$m_{ ilde{ au}_1} - m_{ ilde{l}_R} \ge 20 \; {
m GeV}$$

● *m_h* = 125 GeV

- direct searches bounds on m_A CMS PAS HIGH-12-05
- Blue: tree level Orange: radiative Green: intermediate

Scan over $\Lambda_G, \Lambda_{S_{1,2}}, \Lambda_{S_3}$

- Large stops in the UV
- Long running: $M_{mess} > 10^4$ TeV

 \Rightarrow Benchmarks for long-lived NLSP: $2l + 2\tau + 2$ charged tracks in the final states
$$\begin{split} W &= \lambda_t Q_3 U_3 \Phi_{H_u} + \mu' \Phi_{H_u} H_d \\ \Rightarrow \Delta_d^2 &\simeq -\mu'^2 \frac{\Lambda^2}{M_{mess}^2} \text{ Evans, lbe, Yanagida '11} \end{split}$$

- Large A-terms in the UV
- Short running: $M_{mess} < 10^3$ TeV

 \Rightarrow Benchmarks for promptly decaying NLSP: $4l + 2\tau$ in the final states

• The stops can be light and accessible

LIGHT SLEPTONS IN GAUGE MEDIATION AT LHC

- Different mass hierarchy in right-sleptons realizable in GGM (or extensions)
- From now on Sleptons $\equiv \tilde{\ell}_R = \tilde{e}_R, \tilde{\mu}_R \qquad \neq \qquad$ Stau $\equiv \tilde{\tau}_R$
- Pure EW production of sleptons/staus at LHC

NLSP BOUNDS

- $m_{\tilde{l}_R} \ge 230$ GeV from ATLAS and CMS 2I+MET searches
- $m_{\tilde{\tau}_R} \ge 90 \text{ GeV from LEP}$

Two models of light sleptons/stau in Gauge Mediation

Two body decay to Goldstino vs Three body decay via virtual Bino

• Two representative BR plots for both M.I and M.II

- For m_{3/2} ≥ 1 eV three body decay dominates except in mass degenerate region where m_{ℓ̃_R} ∼ m_{τ̃_R}
- Robust result under variations of Bino mass up to O(TeV)

MULTILEPTON SIGNALS FROM NNLSP DECAY

- For: $1 \text{ eV} \le m_{3/2} \le 10 \text{ eV}$
- $\bullet \ \Rightarrow \mbox{NNLSP}$ three body decay dominates
- $\bullet \ \Rightarrow \text{Prompt NLSP decay into goldstino}$
- Leptons + Taus + MET in final state
- Final number of τ 's and ℓ 's depends on hadronic or leptonic τ decay
- $\bullet \Rightarrow$ Study multileptons in Gauge Med at 8 TeV and prospects for 13 TeV

CMS SUS-13-002

- CMS search for three or four leptons signals at $\sqrt{s} = 8$ TeV and 19.5 fb⁻¹
- Here table for

Four leptons & Small Hadronic Activity: $H_T < 200 \text{GeV}$

OSSFn indicates number of opposite sign same flavour leptons pair

	Selection		$E_{\rm T}^{\rm miss}$	$N(\tau_h)$	=0, N _{b-jets} =0	$N(\tau_h)=1, N_{b-jets}=0$		$N(\tau_h)=0, N_{b-jets} \ge 1$		$N(\tau_h)=1, N_{b-jets} \ge 1$	
	4 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
	OSSF0 $H_T < 200$	NA	(100,∞)	0	0.11 ± 0.08	0	0.17 ± 0.1	0	0.03 ± 0.04	0	0.04 ± 0.04
	OSSF0 $H_T < 200$	NA	(50, 100)	0	0.01 ± 0.03	2	0.7 ± 0.33	0	0 ± 0.02	0	0.28 ± 0.16
	OSSF0 $H_T < 200$	NA	(0,50)	0	0.01 ± 0.02	1	0.7 ± 0.3	0	0.001 ± 0.02	0	0.13 ± 0.08
⇒	OSSF1 $H_T < 200$	off-Z	(100,∞)	0	0.06 ± 0.04	3	0.6 ± 0.24	0	0.02 ± 0.04	0	0.32 ± 0.2
	OSSF1 $H_T < 200$	on-Z	(100,∞)	1	0.5 ± 0.18	2	2.5 ± 0.5	1	0.38 ± 0.2	0	0.21 ± 0.1
⇒	$OSSF1 H_T < 200$	off-Z	(50, 100)	0	0.18 ± 0.06	4	2.1 ± 0.5	0	0.16 ± 0.08	1	0.45 ± 0.24
	$OSSF1 H_T < 200$	on-Z	(50,100)	2	1.2 ± 0.34	9	9.6 ± 1.6	2	0.42 ± 0.23	0	0.5 ± 0.16
\Rightarrow	OSSF1 $H_T < 200$	off-Z	(0,50)	2	0.46 ± 0.18	15	7.5 ± 2	0	0.09 ± 0.06	0	0.7 ± 0.31
	OSSF1 $H_T < 200$	on-Z	(0,50)	4	3 ± 0.8	41	40 ± 10	1	0.31 ± 0.15	2	1.5 ± 0.47
	$OSSF2 H_T < 200$	off-Z	(100,∞)	0	0.04 ± 0.03	-	-	0	0.05 ± 0.04	-	-
	$OSSF2 H_T < 200$	on-Z	(100,∞)	0	0.34 ± 0.15	-	-	0	0.46 ± 0.25	-	-
	$OSSF2 H_T < 200$	off-Z	(50, 100)	2	0.18 ± 0.13	-	-	0	0.02 ± 0.03	-	-
	OSSF2 $H_T < 200$	on-Z	(50, 100)	4	3.9 ± 2.5		-	0	0.5 ± 0.21	-	-
	OSSF2 $H_T < 200$	off-Z	(0,50)	7	8.9 ± 2.4	-	-	1	0.23 ± 0.09	-	-
	OSSF2 $H_T < 200$	on-Z	(0,50)	*156	159 ± 34	-	-	4	2.9 ± 0.8	-	-

Anomalous number of events in $N(\tau) = 1$, $N_{b-jets} = 0$, off-Z category Observed 22; Expected 10.2 ± 2.1

SIGNIFICATIVE REGIONS FOR THE SIGNAL

- Three (leptons+taus) channels has large background compared to our signal
- $\bullet \Rightarrow$ We populate only the Four (leptons+taus) channel
- We populate only bins with $H_T < 200$ GeV and at least one OSSF

4 Leptons, $N(\tau) = 0$ results

• Lower half plane M.I, upper half plane M.II

• Agreement with data provided $m_{\tilde{\tau}_R} \ge 150 \text{ GeV}$ in M.II

4 Leptons, $N(\tau) = 1$ results

- Agreement with data in on-Z channels (left panel)
- Both models M.I and M.II can accommodate the CMS excess in *off-Z* bin (right panel)
- Most interesting region of M.II excluded by direct searches
- Preferred point in M.I to fit data is at the border of excluded $m_{\tilde{\tau}_R}$ region

$$m_{\tilde{\ell}_P} \simeq 145 \text{ GeV} \qquad m_{\tilde{\tau}_R} \simeq 90 \text{ GeV}$$

FROM THEORY:

- Both M.I and M.II can be realized in gauge mediation.
- The flavor hierarchies are induced by the hierarchies in the Yukawa coupling. \Rightarrow No new constraints from flavor!
- M.I/M.II is obtained in the absence/presence of tachyons at high-energy.
- To have promptly decaying NLSP in M.II deflections are needed.

FROM COLLIDER:

- The best point of M.I is not constrained by other searches:
 - RPV multi lepton CMS search CMS SUS-13-010
 - ATLAS RPV search ATLAS CONF-2013-036
 - ATLAS di-tau search ATLAS CONF-2013-028
- Prospects for multi-lepton events
 - M.I gives many events with 2 hadronicaly decaying tau's and 2 leptons
 - ATLAS analogous multi-lepton search ?
 - Important to improve the mass bound on the EW produced NLSP τ̃_R

Thank you!