SUSY: Model-building and Phenomenology

SUSY results from the ATLAS experiment

Shimpei Yamamoto (ICEPP, Univ. of Tokyo)

December 2-4, 2013 @Kavli IPMU

Outline

Introduction

- General search strategy
- Data up to LHC long shutdown I
- Detector & basic performances
- Search programs
 - Inclusive searches for squark/gluino production
 - 3rd generation squark production
 - Electroweak gaugino/slepton production
 - Searches with odd tracks/signatures
 - RPV decays

Summary

General search strategy

- Lots of SUSY models on market (or arise every day!)
 - Dedicated analysis for each model (top-down approach) may give the best search sensitivity, but experimentalists cannot do that..
- We then adapt the bottom-up approach:
 - Identify event topologies/signatures that could be much distinctive when compared to SM and capture essential features of SUSY particle decays.
 - Develop an analysis (way to control background) for each signal topology.

 Our job in the experiment: "develop analyses to access signal event topologies that are expected to appear in all possible sparticle decays"

Data up to LHC long shutdown

- Could accumulate 21.3 fb⁻¹ of 8TeV pp collision data in 2012 thanks to increased luminosities.
- The price to pay for this is pileup:
 - ~20 pp interactions per bunch crossing.
 - Lots of effort to fully understand detector responses and better physics performances.

ATLAS detector

• General purpose detector: designed for the detection of SUSY decay products.

 Superb performance in Run-I, providing excellent reconstruction performances for electrons, muons, taus, photons, (b-)jets and MET.

Performance

- Pileup effect: severe especially for calorimeter energy measurement.
 - Electron response stability: OK
 - Bunch-integrated pileup contribution cancels thanks to bipolar pulse shape
 - Less pileup dependence on jet/MET measurement due to corrections to compensate pileup noise etc.

Triggers in 8TeV run

Signature	Offline selection	Trigger L1	selection EF	L1 Peak (kHz) L _{peak} = 7×10 ³³	EF Ave (Hz) L _{ave} = 5×10 ³³
Single leptons	Single muon p_{τ} > 25 GeV	15 GeV	24 GeV	8	45
single leptons	Single electron $p_T > 25 \text{ GeV}$	18 GeV	24 GeV	17	70
	2 muons $p_T > 6$ GeV	2 × 6(4 _{EOF}) GeV (also 2mu4 barrel only)	2 × 6 GeV	3	2
Two leptons	2 muons p_{τ} >15 GeV 2 muons p_{τ} > 20,10 GeV	2 × 10 GeV 15 GeV	2 × 13 GeV 18,8 GeV	1 8	5 8
	2 electrons, each $p_T > 15$ GeV	2 × 10 GeV	2×12 GeV	6	8
	2 taus p_{T} > 45, 30 GeV	15,11 GeV	29,20 GeV	12	12
Two photons	2 photons, each p_T > 25 GeV 2 loose photons, p_T > 40,30 GeV	2 × 10 GeV 12,16 GeV	2 × 20 GeV 35, 25 GeV	6 6	10 7
Single jet	Jet p_T > 360 GeV	75 GeV	360 GeV	2	5
E_T^{miss}	$E_T^{\text{miss}} > 120 \text{ GeV}$	40 GeV	80 GeV	2	17
Multi-jets	5 jets, each p_{τ} > 60 GeV 6 jets, each p_{τ} > 50 GeV	4×15 GeV	5 × 55 GeV 6 × 45 GeV	1	8
<i>b</i> -jets	b + 3 other jets p_{τ} > 45 GeV	4 × 15 GeV	4 × 45 GeV + <i>b</i> -tag	1	4
TOTAL				< 75	~ 400 (ave)

Primer of SUSY search

Discriminant used to distinguish signals from SM background

- Missing transverse momentum (MET): calculated based on calorimeter energies and reconstructed muons.
 - LSPs(neutralino, gravitino) escape from detection \Rightarrow large MET
- Jet multiplicity
 - Enhance squark/gluino decays, reduce multijet background
- b-jet: Flavor tagging using 3D tracking impact parameter (e.g., 60% efficiency, <1% mis-tag rate)
 - 3rd gen. squark decays, top, ...
- Transverse mass (m_T)
 - Separate from W+jets
- Scalar sum of visible objects (H_T), effective mass ($m_{eff}=H_T+MET$)
 - Large values expected when heavy particles are produced

• Contraverse mass (m_{CT}) $m_{CT}^2 = (E_T^{b_1} + E_T^{b_2})^2 - |\mathbf{p}_T^{b_1} - \mathbf{p}_T^{b_2}|^2$

- Separate from ttbar
- ••••

Primer of SUSY search

Search programs

 Again, topology-based analyses developed to cover all possible decay signatures by adopting given triggers and discriminants (previously listed).

squark/gluino production

Inclusive searches with jets+MET+X

- Can start by broad and inclusive searches in jets+MET+X final states to explore squark/gluino production.
 - Large production cross section via strong interaction
 - Excesses expected to appear in large MET & m_{eff} regions where few SM background expected.
- Very powerful analyses!
 - Can address with early data sample, statistics does not help because the cross section steeply drops when squark/gluino mass increases.
 - Performed with several signal search regions that are (nearly) orthogonal.

0-lepton + 2-6 jets + MET
0-lepton + 7-10 jets + MET Sig.
1-2 leptons + jets + MET
2-lepton + jets + MET
1-2 taus + jets + MET

MSUGRA/CMSSM exclusion: 2013 summer

• Gluino masses below ~I.3 TeV for any squark mass

Accessing the corner of parameter space

- The inclusive searches are powerful, but there could be the corners of parameter space that they cannot address..
 - Compressed mass spectrum leads to softer kinematics.

3rd gen. squark production

Stop decays

- Many possible decay modes depending on stop-LSP mass relation:
- Dedicated analyses to explore each decay/signal topology.

0-leptons + 6-jets (2 b-jets) + MET I-lepton + 4-jets (2 b-jets) + MET 2-leptons (+ 2 b-jets) + MET charm / mono-jet + MET Z(II) + 2 b-jets + MET ...

Summary: stop to t/b/c+LSP

Could extend the reach along the diagonal by adopting the ISR jet tag & charm tag techniques!

Summary: stop to b+chargino

Direct stop search summary

gaugino/slepton production

M_1 , M_2 , and μ

and μ

Decay mode/cross section determined by the order of M₁, M₂,

- In natural SUSY scenarios (Bino LSP), EW gaugino decays lead to high lepton multiplicities.
 - Dedicated analyses performed depending on the lepton multiplicity

Summary: EW gaugino production

- Constraint on NI-CI(N2) masses by searches with multilepton final states
 - Weakly constrained in the case that gauginos decay via gauge bosons

Wino-LSP case

- Wino-LSP scenarios (AMSB, PGM,...) predicts the massdegenerate C1 that could have a significant lifetime.
 - Decaying C1 could be reconstructed as a "high-pT disappearing track"
 - Explored in the events having ISR jet + disappearing track

Slepton production

Searches with odd tracks/ signatures

Odd signatures

Stopped R-hadron

- Gluino_could be meta-stable (split-SUSY) and form Rhadrons, can get stuck in the calorimeter and decay much later.
- Look for energetic jets via gluino decays in empty bunches.

Stopped R-hadron

Stopped R-hadron

- Gluino_could be meta-stable (split-SUSY) and form Rhadrons, can get stuck in the calorimeter and decay much later.
- Look for energetic jets via gluino decays in empty bunches.

Long-lived stau

• In GMSB, signal topology characterized by sparticle-type of NLSP.

- GMSB staus could have a significant lifetime and be observed as heavy muons.
- Mass can be reconstructed and used as the discriminant:

Displaced photon

- Neutralino NSLP could a significant lifetime (GMSB), then decays to gravitino+photon.
- Use timing and shower direction to distinguish photons from displaced decays.

Displaced vertex

• Displaced vertices having a large mass & large track multiplicity could arise in:

- GMSB: long-lived NLSP neutralino decay into Z/h + graviton
- GMSB: long-lived stau that decays in the inner detector
- Split-SUSY: long-lived gluino decays
- Provide background-free searches, no candidate events observed yet..
- At the moment, results interpreted in displaced neutralino decays via RPV coupling (mentioned later).

RPV signature

– RPV terms are allowed in the superpotential:

$$W = W_{MSSM} + \underline{\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \kappa_iL_iH_u} + \lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k$$

Lepton number violating

Baryon number violating

- All terms cannot appear simultaneously, protons become unstable...
- Part of them need not to be zero, leading to variety of signatures.
- LSP could decay..
- Assume that λ has non-zero value >> large lepton multiplicity
- Assume that λ ' has non-zero value >> neutralino LSP could have a significant lifetime when $\lambda' << 10^{-5}$ (decay width proportional to $(\lambda')^2$)

$$LQ\bar{D}(\lambda'): \ \tilde{\chi}_1^0 \to \begin{pmatrix} e, \mu, \tau \\ \nu \end{pmatrix} + 2 \text{ jets}$$

 Assume that λ" has non-zero value >> neutralino could hadronically decay (into 3 quarks)

Large jet multiplicity (w/o MET)

- Hadronic RPV decay of LSP (to 3 quarks) leads to large jet multiplicity + diluted MET.
- Analysis carried out by requiring ≥6 and ≥7 jets with and without b-jet requirements

Searches for all possible SUSY decays... may complete the job for 8TeV data hopefully this winter.

Mass limit

ATLAS SUSY Searches* - 95% CL Lower Limits

e. μ . τ . γ Jets E_{-}^{miss} [\mathcal{L} dt[fb⁻¹]

Status: SUSY 2013

Model

ATLAS Preliminary

Reference

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

				<u> </u>				
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{t}_{1}^{0}$ $\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q}_{1}^{0}$ $\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q}_{1}^{0}$ $\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q}_{1}^{0}$ $\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} (\ell / \ell \nu / \nu \nu) \bar{t}_{1}^{0}$ GMSB ($\bar{\ell}$ NLSP) GGM (bino NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (0 1 e, µ 0 0 1 c, µ 2 e, µ 2 e, µ 1 ·2 r 2 y 1 e, µ + y 7 2 e, µ(Z) 0	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	9.8 1.7 T 8.8 1.2 TeV 8 1.1 TeV 9 740 GeV 8 1.3 TeV 8 1.3 TeV 8 1.18 ToV 8 1.12 TeV 9 1.24 TeV 9 1.07 TeV 8 619 GeV 8 690 GeV 8 690 GeV	eV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ any $m(\tilde{q})$ $m(\tilde{t}_{1}^{0})=0$ GeV $m(\tilde{t}_{1}^{0})=0$ GeV $m(\tilde{t}_{1}^{0})=0$ GeV $m(\tilde{t}_{1}^{0})=0$ GeV $m(\tilde{t}_{1}^{0})=0$ GeV tanS<15 tanS>15 tanS>15 tanS>50 GeV $m(\tilde{t}_{1}^{0})>50$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV $m(\tilde{t}_{1}^{0})>200$ GeV	ATLAS CONF-2013-047 ATLAS-CONF-2013-062 1308-1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-042 ATLAS-CONF-2013-089 1208-4688 ATLAS-CONF-2013-026 1209-0753 ATLAS-CONF-2012-0212-0212-0212-0212-0212-0212-021
3 rd ger	$E \rightarrow DEV_1$ $\vec{k} \rightarrow t\vec{k} V_1$ $\vec{k} \rightarrow t\vec{k} V_1$ $\vec{k} \rightarrow b\vec{k} V_1$	0 0-1 e,μ 0-1 e,μ	7-10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	1.2 TeV ŝ 1.1 TeV ŝ 1.34 TeV ĝ 1.3 TeV	$m(\tilde{t}_1^0) < 350 \text{ GeV}$ $m(\tilde{t}_1^0) < 350 \text{ GeV}$ $m(\tilde{t}_1^0) < 400 \text{ GeV}$ $m(\tilde{t}_1^0) < 300 \text{ GeV}$	1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\tilde{\tau}}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\tilde{\tau}}_1^{-1} \\ \tilde{\tilde{\tau}}_1 \tilde{\tau}_1(\text{light}), \tilde{\tilde{\tau}}_1 \rightarrow b \tilde{\tilde{\tau}}_1^{-1} \\ \tilde{\tilde{\tau}}_1 \tilde{\tilde{\tau}}_1(\text{light}), \tilde{\tilde{\tau}}_1 \rightarrow W b \tilde{\tilde{\tau}}_1^0 \\ \tilde{\tilde{\tau}}_1 \tilde{\tilde{\tau}}_1(\text{medium}), \tilde{\tilde{\tau}}_1 \rightarrow t \tilde{\tilde{\tau}}_1^0 \\ \tilde{\tilde{\tau}}_1 \tilde{\tilde{\tau}}_1(\text{medium}), \tilde{\tilde{\tau}}_1 \rightarrow t \tilde{\tilde{\tau}}_1^0 \\ \tilde{\tilde{\tau}}_1 \tilde{\tilde{\tau}}_1(\text{heavy}), \tilde{\tilde{\tau}}_1 \rightarrow t \tilde{\tilde{\tau}}_1^0 \\ \tilde{\tilde{\tau}}_1 \tilde{\tilde{\tau}}_1(\text{heavy}), \tilde{\tilde{\tau}}_1 \rightarrow t \tilde{\tilde{\tau}}_1^0 \\ \tilde{\tilde{\tau}}_1 \tilde{\tilde{\tau}}_1(\text{natural GMSB}) \\ \tilde{\tilde{\tau}}_2 \tilde{\tilde{\tau}}_2, \tilde{\tilde{\tau}}_2 \rightarrow \tilde{\tilde{\tau}}_1 + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu (SS) \\ 1 - 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu (Z) \end{array}$	2 b 0 3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b tono-jet/c-ta 1 b 1 b	Yes Yos Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	b1 100-620 GeV b1 275-430 GeV i1 110-167 GeV i1 110-167 GeV i1 130-220 GeV i2 225-525 GeV i3 150-580 GeV i1 200-610 GeV i1 320-660 GeV i1 90-200 GeV i2 271-520 GeV	$\begin{split} &m(\tilde{t}_{1}^{0}){<}90~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}2~m(\tilde{t}_{1}^{0}) \\ &m(\tilde{t}_{1}^{0}){=}55~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}m(\tilde{t}_{1}){=}m(W){-}50~\text{GeV}, ~m(\tilde{t}_{1}){<}{<}m(\tilde{t}_{1}^{0}){=}0~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}0~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}0~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}0~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}0~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}0~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}150~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}150~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}150~\text{GeV} \\ &m(\tilde{t}_{1}^{0}){=}150~\text{GeV} \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-027 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{\perp \mathbf{R}} \tilde{\ell}_{\perp \mathbf{R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1} \nu \tilde{\ell}_{1} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{1} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 3 c,μ 1 e,μ	0 - 0 2 b	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} m(\tilde{t}_{1}^{0}) = 0 \; \text{GeV} \\ m(\tilde{t}_{1}^{0}) = 0 \; \text{GeV}, \; m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{t}_{1}^{+}) * m(\tilde{t}_{1}^{0})) \\ m(\tilde{t}_{1}^{0}) = 0 \; \text{GeV}, \; m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{t}_{1}^{+}) * m(\tilde{t}_{1}^{0})) \\ m(\tilde{t}_{2}^{0}) = m(\tilde{t}_{1}^{0}) = 0, \; m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{t}_{1}^{+}) * m(\tilde{t}_{1}^{0})) \\ m(\tilde{t}_{1}^{+}) = m(\tilde{t}_{2}^{0}), \; m(\tilde{t}_{1}^{0}) = 0, \; \text{sleptons decoupled} \\ m(\tilde{t}_{1}^{+}) = m(\tilde{t}_{2}^{0}), \; m(\tilde{t}_{1}^{0}) = 0, \; \text{sleptons decoupled} \\ \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{prod., long-lived} \tilde{\chi}_1^+ \\ \text{Stable, stopped} \tilde{g} \text{R-hadron} \\ \text{GMSB, stable} \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau(e, \\ \text{GMSB}, \tilde{\chi}_1^0 {\rightarrow} \gamma \tilde{G}, \text{long-lived} \tilde{\chi}_1^0 \\ \tilde{q} \tilde{q}, \tilde{\chi}_1^0 {\rightarrow} q q \mu (\text{RPV}) \end{array}$	Disapp. trk 0 , μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	x̂i 270 GeV ŝ 832 GeV x̂i 475 GeV ĝ 1.0 TeV	$\begin{array}{l} m(\tilde{t}_{1}^{+}) \vdash m(\tilde{t}_{1}^{0}) = \!$	ATLAS CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
ЧЧ	$ \begin{array}{l} LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow ee \widetilde{v}_{\mu}, e\mu \widetilde{v}, \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \tau \tau \widetilde{v}_{e}, e \tau \widetilde{v}, \\ \widetilde{g} \rightarrow q q \\ \widetilde{g} \rightarrow \widetilde{t}_{1} t, \ \widetilde{t}_{1} \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ c, \mu \\ 1 \ e, \mu + \tau \\ 1 \ c, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (\mathrm{SS}) \end{array}$	7 jets 6-7 jets 0-3 b	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	F, 1.61 Te F, 1.1 TeV Q. R 1.2 TeV X ₁ ⁴ 760 GeV X ₁ ⁴ 350 GeV Ž 916 GeV Š 880 GeV	$ \begin{array}{c} \chi_{111}^{\prime}=0.10, \lambda_{133}=0.05 \\ \chi_{331}^{\prime}=0.10, \lambda_{1(2)33}=0.05 \\ m(\tilde{q})=m(\tilde{g}), cr_{15}p<1 \text{ mm} \\ m(\tilde{t}_{1}^{0})>300 \text{ GeV}, \lambda_{121}>0 \\ m(\tilde{t}_{1}^{0})>80 \text{ GeV}, \lambda_{133}>0 \\ \text{BR}(t)=\text{BR}(b)=\text{BR}(c)=0\% \end{array} $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	2 e,μ (SS) 0	4 jots 1 <i>b</i> mono-jet	Yes Yos	4.6 14.3 10.5	tegluon 100-287 GeV 800 GeV 800 GeV M* scale 704 GeV	incl. limit from 1110.2693 m(z)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	√s = 7 TeV y full data pa	s = 8 TeV artial data	√s = 8 full d	TeV ata		10 ⁻¹ 1	Mass scale [TeV]	

"Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1\sigma theoretical signal cross section uncertainty.

Summary

- Nothing found yet in 8TeV pp collisions.. but still at the beginning of a long SUSY search program at the LHC energy frontier.
 - The colored sparticle mass reach significantly improves (up to ~3TeV) with increased beam energies.
 - 3rd. gen squarks?? The allowed parameter space has been squeezed, but there's still room that could not be accessed.
 - The sensitivity to EW production still limited by statistics. Could be addressed down to O(0.01)fb.
 - Have developed a number of new analyses that utilize ISR/soft lepton tagging and exotic tracks to cover "holes" of general/traditional searches.
 - Have nearly completed out job for 8TeV data and many search tools in hand to address all possible decays.
- LHC resumes operation in 2015 with the designed collision energy.
 - What comes in next years??