Towards an (un)Natural Weak Scale

Josh Ruderman UC Berkeley @IPMU, 12/3

Michal Czakon, Alexander Mitov, Michele Papucci, JTR, Andreas Weiler, to appear.

Lawrence Hall, David Pinner, JTR, to appear.

I. killing the stealth stop

Michal Czakon, Alexander Mitov, Michele Papucci, JTR, Andreas Weiler, to appear.

state of stops

state of stops

top background

why it is hard to look for light stops:

stealth stop

JiJi Fan, Matt Reece, JTR, 1105.5135

stealth stop $m_{\tilde{t}_R} \approx m_t$

 $m_{LSP} \approx 0$

Han, Katz, Krohn, Reece 1205.5808

where is SUSY?

• we usually look for SUSY by separating signal from background (MET/HT tails, ...)

instead, what about using precision SM measurements?

top σ

$ag{top } \sigma$ $ag{TeV}$ σ $\sigma_{t\bar{t}} \approx 172 ext{ pb}$ $\sigma_{\tilde{t}\tilde{t}^*}(m_{\tilde{t}} = m_t) \approx 26 ext{ pb}$

theory error

NLO: $\delta \sigma_{\rm th} \approx 20 \ {\rm pb}$

experimental error

$$\delta \sigma_{\rm exp} \approx 7 \ {\rm pb}$$

top σ

7 TeV

The total top quark pair production cross-section at hadron colliders through $\mathcal{O}(\alpha_S^4)$

 $\sigma_{t\bar{t}} \approx 172$ D Michał Czakon and Paul Fiedler $m_{t\bar{t}} \approx 26$ pb Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany

> Alexander Mitov Theory Division, CERN, CH-1211 Geneva 23, Switzerland (Dated: March 26, 2013)

theory error

 $\delta \sigma_{\rm th} \approx 20 \text{ pb}$ NNLO+NNLL $\sigma_{t\bar{t}} = 172^{+4.4}_{-5.8} (\text{scale})^{+4.7}_{-4.8} (\text{pdf}) \text{ pb}$

experimental error

NLO:

 $\delta\sigma_{\rm exp} \approx 7 ~{\rm pb}$

top o 7 TeV σ $\sigma_{t\bar{t}} \approx 172 \text{ pb}$ $\sigma_{\tilde{t}\tilde{t}^*}(m_{\tilde{t}}=m_t) \approx 26 \text{ pb}$ theory error NNLO: NLO: $\delta\sigma_{\rm th} \approx 8 \ {\rm pb}$ $\delta \sigma_{\rm th} \approx 20 \ {\rm pb}$

experimental error

 $\delta \sigma_{\rm exp} \approx 7 \ {\rm pb}$

top σ

stop + top

CMS dilepton @7TeV:

stop + top

CMS dilepton @7TeV:

neutralino mass dependence

top mass

stop + top

varying the top mass:

LHC top mass (5/fb) $173.3 \pm 0.5 \pm 1.3$ GeV (assuming stops have no effect)

where are the stops?

multiverse?

2. the weak scale from BBN

Lawrence Hall, David Pinner, JTR, to appear.

is SUSY split?

$$\tilde{m}_s \gg \tilde{m}_f \sim m_h$$

- gauge coupling unification
- dark matter
- natural EWSB

Predicted range for the Higgs mass

Wells 0306127 Arkani-Hamed, Dimopoulos 0405159

lots of recent attention:

spread, pure gravity mediation, mini-split, simply unnatural, ...

Giudice and Strumia, 1108.6077

is SUSY split?

how can we understand the failure of technical naturalness to describe mh?

an alternative: anthropic selection in the multiverse

dangers of a variable weak scale

- Agrawal, Barr, Donoghue, Seckel 9707380
- Damour, Donoghue 0712.2968

unknown structure of the multiverse

• which parameters scan? v, \ldots

• what are their distributions?

$$\int dp_i f(p_i)$$

$$f(v) \propto v^2 ?$$

- what are the dangerous wall in parameter space?
 no atoms, ...
- models are refutable

$$P_{v < v_{\text{obs}}} = \frac{\int_0^{v_{\text{obs}}} dv f(v) w(v)}{\int_0^\Lambda dv f(v) w(v)}$$

which parameters scan?

assuming only dimensionful parameters scan,

Arkani-Hamed, Dimopoulos, Kachru 0501082

$$n \to p + e + \bar{\nu}$$
$$m_n - \left|\frac{B}{A}\right| = m_p + m_e$$

$$p + e \rightarrow n + \nu$$

 $m_p + m_e = m_n$

 $m_e = 5 m_e^0$

$$m_e = 10 \, m_e^0$$

$$m_e = 15 \, m_e^0$$

runaway to large v?

scan: (y_u, y_d, v)

• nuclear physics depends on the quark masses

runaway: increase v, fixing quark masses,

$$y_{u,d} \to \frac{m_{u,d}}{v}$$

"Weakless Universe," Harnik, Kribs, Perez 0604027

weak-scale physics in our Universe

 $p + \bar{\nu}_e \rightarrow n + e^+$

2. pp chain in stars

$$p + p \rightarrow d + e^+ + \nu_e$$

3. supernovae

$$e^{-} + e^{+} \rightarrow \nu + \bar{\nu}$$
$$\bar{\nu} + p \rightarrow n + e^{+}$$

BBN and He4

 $p + \bar{\nu}_e \longleftrightarrow n + e^+$

decouples: $T_{\rm fr} \sim \frac{v^{4/3}}{M_p^{1/3}} \approx 1 \,\,{\rm MeV}$

$$\frac{n}{p} = e^{-(m_N - m_P)/T_{\rm fr}} \qquad m_N - m_P \approx 1.3 \text{ MeV}$$

$$Y_4 \approx \frac{2(n/p)}{1+n/p} \approx 0.25$$

BBN and He4

 $m_N - m_P \sim T_{\rm fr}$ $(m_N - m_P)^3 M_p \sim v^4$

dangers of a helium universe

primordial hydrogen is important for:

- galactic halo cooling
- stars powered by pp chain
- water

quantifying how much hydrogen is needed for observers is hard and we leave it for future work...

BBN and the weak scale

• in a multiverse where (y_u, y_d, v) scan, all three parameters are bounded by requiring stable Hydrogen, complex nuclei, and not too much Helium from BBN

• but what if other parameters scan too?

varying the baryon density

varying the baryon density

possible implications:

- I. the baryon density does not scan
- other dangerous walls are important and depend on the baryon density

take away

I. the stealth stop window can be probed using the top σ and mass

2. BBN may determine the weak-scale in the multiverse

13 TeV awaits!