LHC physics prospects

SUSY: Model Building and Phenomenology 2-4 December, 2013 @ Kavli IPMU

Naoko Kanaya (ICEPP, The University of Tokyo)

Outline of this talk

LHC upgrade & environment
Detector upgrade & physics impact
'New' Physics prospect
Summary

Only talk about LHC14 and HL-LHC. Results for snowmass and ECFA 2013.

LHC approved program

ln 2011+2012	
Total delivered luminosity	: 28.3 fb ⁻¹
Total recorded luminosity	: 26.4 fb ⁻¹
Luminosity for physics	: 24.9 fb ⁻¹ (94%!)

Higgs 5σ discovery on 4 July 2012

Use L=10.7 fb⁻¹ data in total collected till June 18!

р3

LHC approved program

We're here: Long Shutdown 1 (2013-2014) for RUN2

LS1 (Phase-0 upgrade) for increasing of the beam energy and repairing/replacement of some detector elements.

- The 4th pixel layer (IBL) with new beam pipe.
- **ATLAS** Fast Tracker trigger (FTK)...

р4

LHC approved program

Phase-I upgrade (2018)

- Trigger upgrade. Maintain lower threshold
- finer granularity for calorimeter trigger
- new muon trigger detector in the endcap

for lepton trigger with p_T >20-35 GeV

р5

High-luminosity run (HL-LHC)

A few words on Pile-Up...

- :) Great to have more luminosity(L), Rate= σL
- :(More pileup (# of interactions/crossing)

N : # of protons/bunch f : revolution frequency n_b : # of bunches ϵ =emittance β^* =beta function @IP σ_{inel} =81mb

RUN2 ~ LHC design : L=1x10³⁴cm⁻²s⁻¹, μ ~23

	RUN3	HL-LHC
Sqrt(s _{pp})	14	14
n _b	2808	2808
Ν	1.2x10 ¹¹	2x10 ¹¹
β* [m]	0.55	0.15
Peak L [cm ⁻² s ⁻¹]	2x10 ³⁴	5x10 ³⁴
μ (pileup)	~60	~140

Start-up 2015: under discussion

- <µ>=25, *L*/year=24 fb⁻¹
- < μ >=52, *L*/year=45 fb⁻¹

. . . .

L.Ponce LHC-France 2013

Need to adopt the detector, trigger and analysis for this hash environment!

A few words on Pile-Up...

Jet/mET systematic uncertainty is often the largest detector-related uncertainty in most of BSM searches.

of pileups $\langle \mu \rangle \sim 21$ @ LHC8.

Also take some high brightness fill with $\langle \mu \rangle$ up to 69.

Detector upgrade & Physics Impact A few examples

(RUN2 ATLAS) Insertable B-Layer (IBL) 4th inner pixel-layer + new beam pile

Current inter-most B-layer (R=51mm) First hit @ 55mm -> 33mm! Significant improvement for b-tagging performance

p<u>9</u>

Detector upgrade & Physics Impact A few examples

(CMS HL-HLC) muon/trackers up to |eta|<4

- Lepton acceptance
- pileup jet/partilces subtraction, MET
- Lepton veto for background rejection

e.g. W(Iv)+jets for mono-jet analysis

p10

Events/1.0 GeV

Detector upgrade & Physics Impact

Maintain or even improve the performance by phase1/2 upgrade despite of high pile-up!

Not only detector, but DAQ/Trigger is also very important. Maintain efficiency for low p_T objects as in RUN1...

LHC 'New' Physics Prospect LHC back to Physics in April 2015 with $\sqrt{S_{pp}}=13$ TeV

- ECFA HL-LHC workshop, Aix-les-Bains 2013

- Snowmass on the Mississippi 2013

Reference : Upgrade and Future physics

ATLAS

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

SUSY Cross-section @ 14TeV

SUSY Analysis

- Categorize by production x final state wth multiple SRs.
- Optimization based on available luminosity.

e.g. 0-lepton analysis for gluino/squark search, nJet=2-6 (~5x3 SRs)

Gluino production

Most interesting channel at the beginning of RUN2!

6Jet HT (= \Sigma |p_T|) Analysis <u>SR for High gluino mass</u>

HT>2100GeV, HT>700 GeV(300 fb⁻¹) HT>2500GeV, HT>1000 GeV(3000 fb⁻¹)

CMS Simulation, $\sqrt{s} = 14$ TeV 1000 (GeV) 900 (GeV) 1000 (GeV) 1000 (GeV) 1000 pp → $\tilde{g} \, \tilde{g}, \tilde{g} \rightarrow q \, \bar{q} \, \tilde{\chi}_1^0 \, 5\sigma$ Discovery Reach --- L = 300 fb⁻¹, Phase I, <PU>=140 - L = 3000 fb⁻¹, Phase II Conf3, <PU>=140 CMS FTR-13-014 700 3000fb⁻¹ 600 500 400 300fb 300 8TeV 200F Exclusion 100 600 800 1000 1200 1400 1600 1800 2000 2200 2400 $m_{\tilde{a}}$ (GeV)

Gluino/Squark production

Very optimistic case ? squark is also light, $m_{LSP} \sim 0$ GeV (no pileup suppression for mET, use mET/ \sqrt{HT})

Very characteristic, 4-tops in the final state. ttbar background is highly suppressed by nbjet>=4 requirement

Gluino production $\tilde{g} \rightarrow tt \tilde{\chi}_1^0$ (3body-decay)

1Lep+6Jet (n_b==3, >=4)

p17

<u>8TeV result (95% excl)</u> 1L6J (CMS/8TeV) < 1.2TeV 3B (ATLAS/8TeV) < 1.4TeV

5σ discovery 1.9-2.0TeV (300 fb⁻¹) 2.2-2.3TeV (3000 fb⁻¹)

Pileup effect due to degraded b-tagging performance

Stop production

Stop mass with 500-600GeV was excluded by RUN1. (m_{LSP}~100-200GeV, large mass difference)

p18

 $\tilde{t} \rightarrow t \tilde{\chi}$

EWKino production $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow (W^{\pm}\tilde{\chi}_{1}^{0})(X^{\pm}\tilde{\chi}_{1}^{0})$

3Lepton analysis is a golden channel for EWKino searches.

Long-lived charged particle

Heavy stable charged particles can be identified by

- ToF measurement (β <1) by the muon trigger
 - → RUN2~ : Lower efficiency due to narrower trigger window (50->25ns)
- Large dE/dx by silicon trackers

→ HL-LHC~ : not-available

 N_b (instrumental bkg) signal acceptance are scaled by luminosity.

Higgs, other BSM...

BSM Higgs?

. 28/11/2013 ATLAS-CONF-3013-108

Higgs Naturalness problem?

ATLAS/CMS 8TeV measurements are consistent with the SM prediction, but the error is still large.

HL-LHC is Higgs factory!

Higgs@3000fb ⁻¹	
H->WW->lvlv	1M
H->ZZ->4I	20K
Η->γγ	400K

(1) non SM-like couplings?(2) Heavy Higgs?

New Higgs channels...

ttH,H $\rightarrow\gamma\gamma$: clean signature S/B \sim 20%

Background

60

m_{llv}-m_{ll} [GeV]

55

SM Signal

Higgs signal strength

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt}=300 \text{ fb}^{-1}; \int \text{Ldt}=3000 \text{ fb}^{-1}$

Signal strength $\mu = \sigma_{obs} / \sigma_{SM}$

 $\frac{\Delta \mu / \mu (H->bb) \text{ from CMS}}{300 \text{ fb}^{-1} : 7-11\%}$ 3000 fb⁻¹ : 5-7% NB: not comparable with the ATLAS result

with 3000 fb⁻¹
$$H \rightarrow \mu \mu : 15\%$$

 $H \rightarrow Z\gamma : 57\%$

Theory uncertainty also dominates

(comb)	total	w/o thr.
H->WW	9%	5%
H->ZZ	10%	4%
Η->γγ	10%	4%

Higgs coupling ratios

Extract Higgs couplings

ratio of H-couplings to aa/bb

$$\lambda_{ab} = \kappa_a / \kappa_b$$

$$\sigma \cdot Br(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$
$$\kappa_a^2 = (\sigma_{obs} / \sigma_{obs})_a = (\Gamma_{obs} / \Gamma_{obs})_a$$

 $\tau\tau$ is used to fix H->fermions.

Coupling ration becomes better by a factor 2~3 with HL-HLC run.

p24

ATLAS PHYS-PUB-2013-014

Vector boson scattering

significance	3σ	5σ
SM VBS	75 fb -1	185fb ⁻¹
$f_{T1}/\Lambda^4 (300 {\rm fb}^{-1})$	0.8TeV ⁻⁴	1.0TeV ⁻⁴
f_{T1}/Λ^4 (3000fb ⁻¹)	0.45TeV ⁻⁴	0.55TeV ⁻⁴

 $W^{\pm}W^{\pm}$ is also sensitive.. Main (conservative) background is SM WZ/W γ with mis-identified lepton. (2x N_b from RUN1 result)

Summary

Successful operation of LHC at 7-8TeV in 2009-2012. No sign of the existence of NP/SUSY... **But**, many inputs for SUSY model building and hope SUSY driven into a corner...

We hope to(should) find SUSY-like signature in RUN2! Even SUSY within the LHC reach, the discovery could be tough. Make doubly sure!!

Great sensitivity is expected in RUN2

LHC8 95%	CL exclusion	LHC1	<u>4 5σ discovery (300fb⁻¹)</u>
Gluino	:~1.4TeV		~1.8TeV
Stop	:~600GeV		~1TeV
Chargino	:~300GeV	\longrightarrow	~500GeV