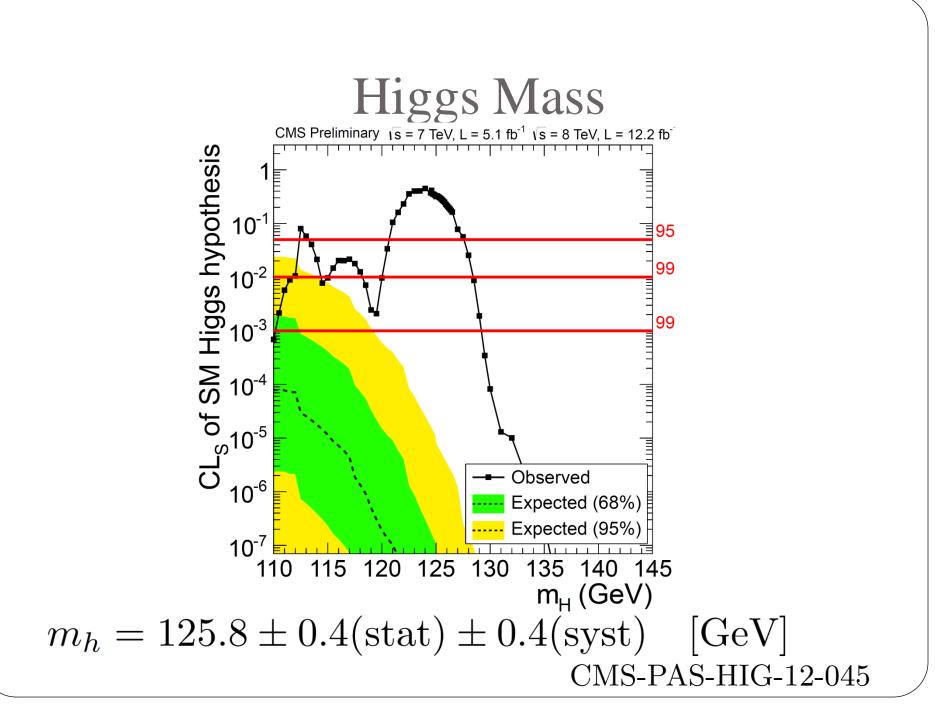
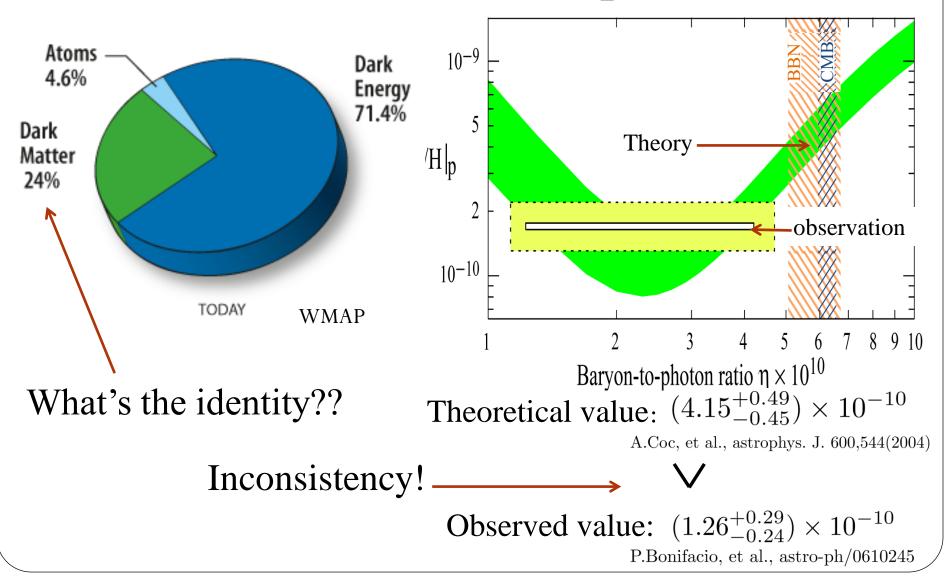
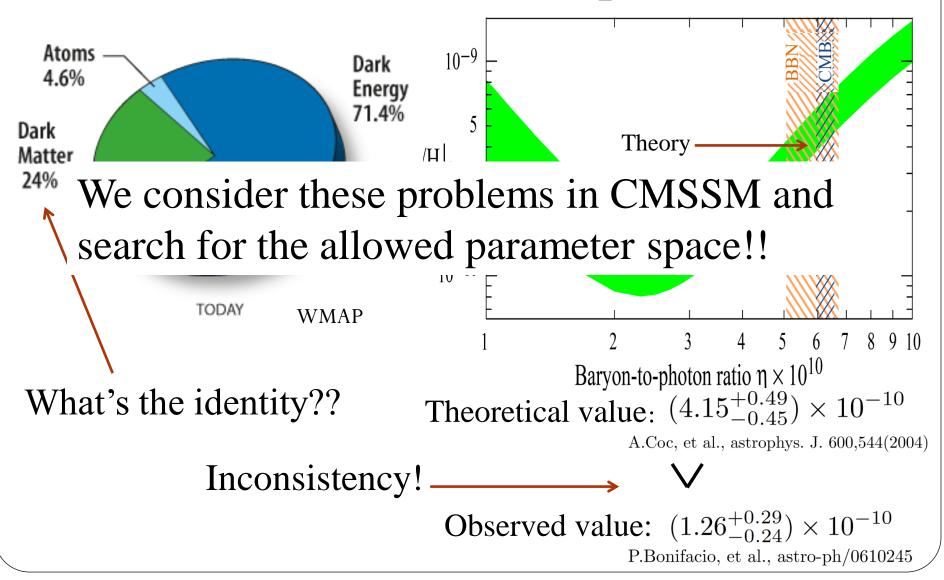
A first evidence of the CMSSM is appearing soon


Kenichi Sugai (Saitama University)

Yasufumi Konishi, Shingo Ohta, Joe Sato (Saitama University) Takashi Shimomura (Niigata University) Masato Yamanaka (Nagoya University)


arXiv:1309.2067

Tuesday, December 3, 2013, IPMU


Introduction

Dark Matter & Li problem

Dark Matter & Li problem

Model & Constraints

Model

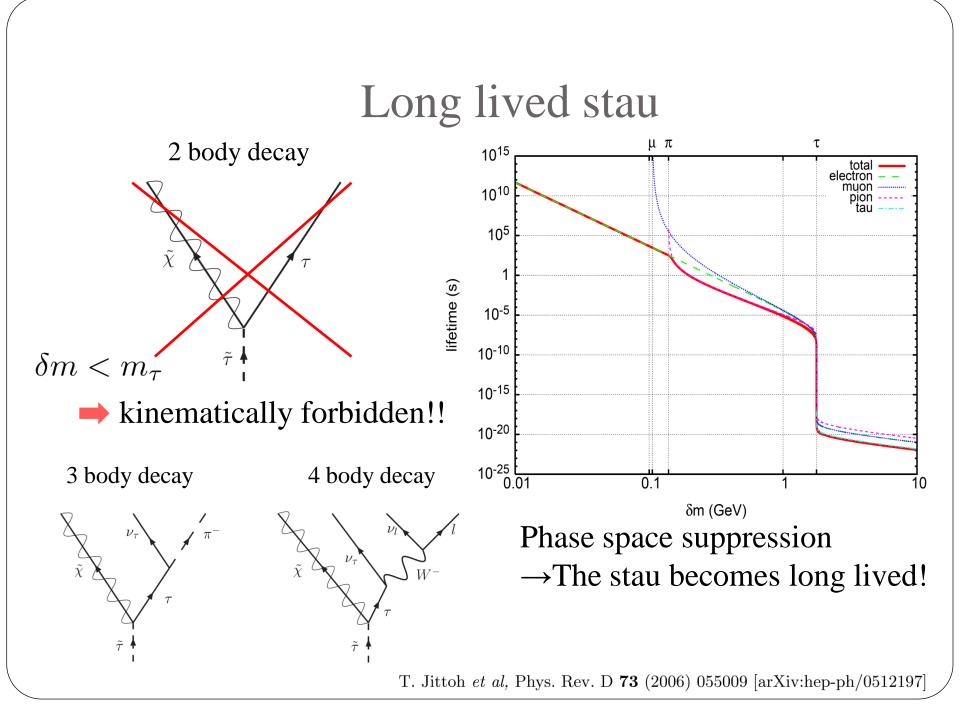
• CMSSM+ R-parity

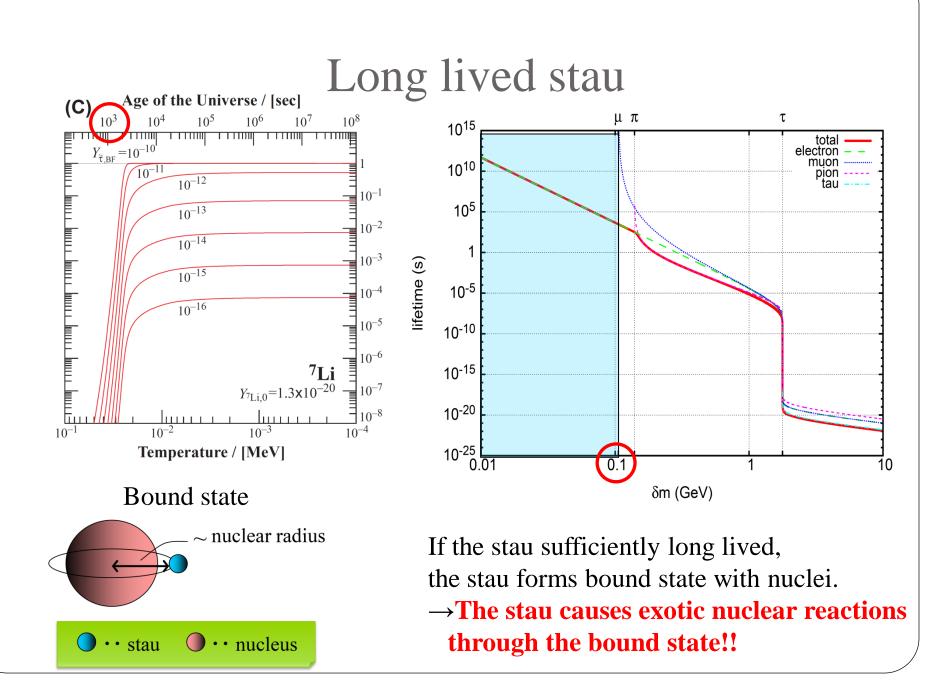
free parameter : m_0 , $M_{1/2}$, A_0 , tan β , sign(μ)

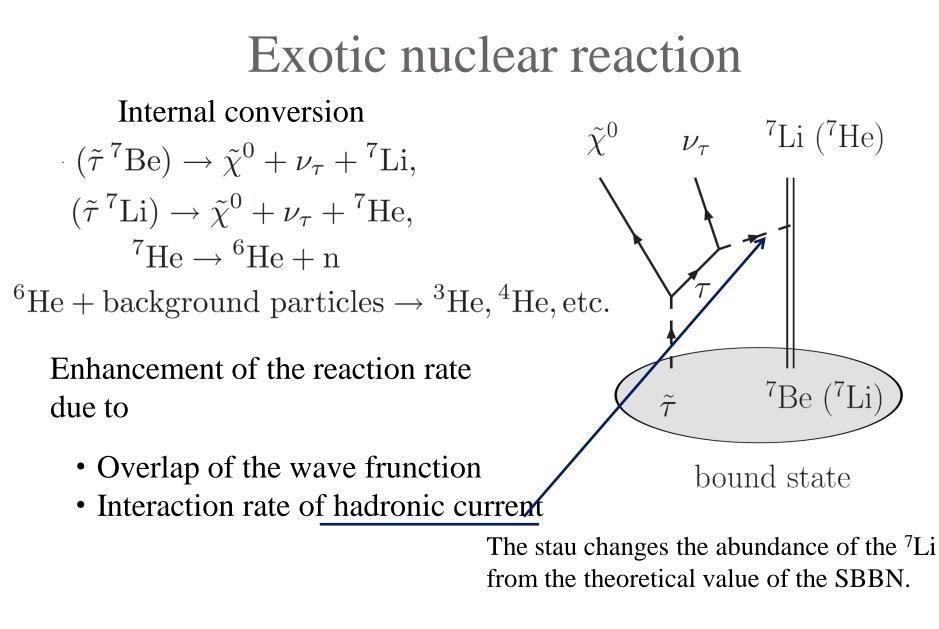
- LSP : Bino-like Neutralino ($\tilde{\chi}$) \leftarrow neutral & stable
- NLSP : Stau ($\tilde{\tau}$)

 $\tilde{\tau}\tilde{\chi}^0 \leftrightarrow SM$ particles

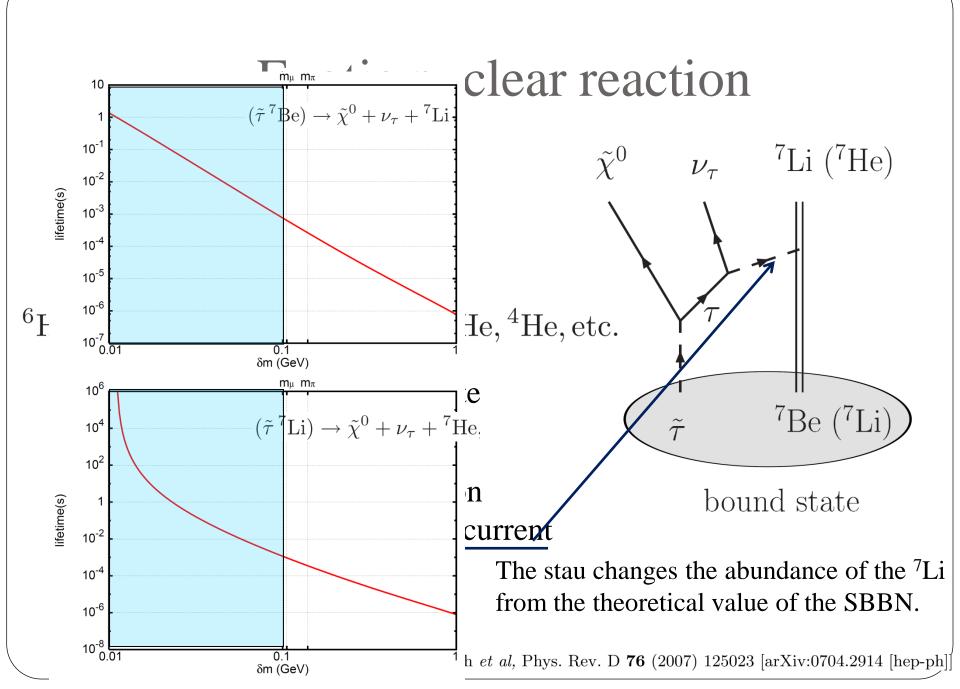
 \rightarrow <u>Coannihilation Mechanism</u>: The neutralino accounts for


the DM abundance.


Requirement of Coannihilation Mechanism


$$\frac{\delta m \equiv m_{\tilde{\tau}} - m_{\tilde{\chi}^0}}{m_{\tilde{\chi}^0}} \sim a \text{ few}\%$$

The stau becomes long lived!!


K. Griest and D. Seckel, Phys. Rev. D 43 (1991) 3191.



T. Jittoh *et al*, Phys. Rev. D **76** (2007) 125023 [arXiv:0704.2914 [hep-ph]]

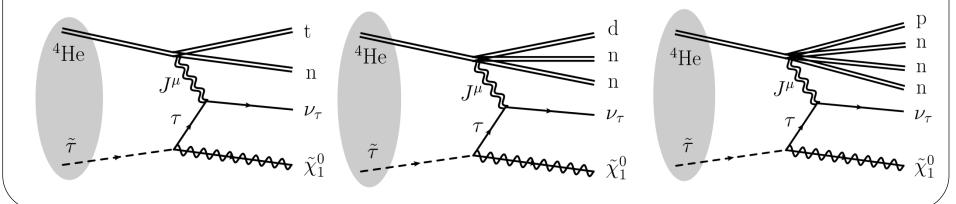
Exotic nuclear reaction

Stau catalyzed fusion

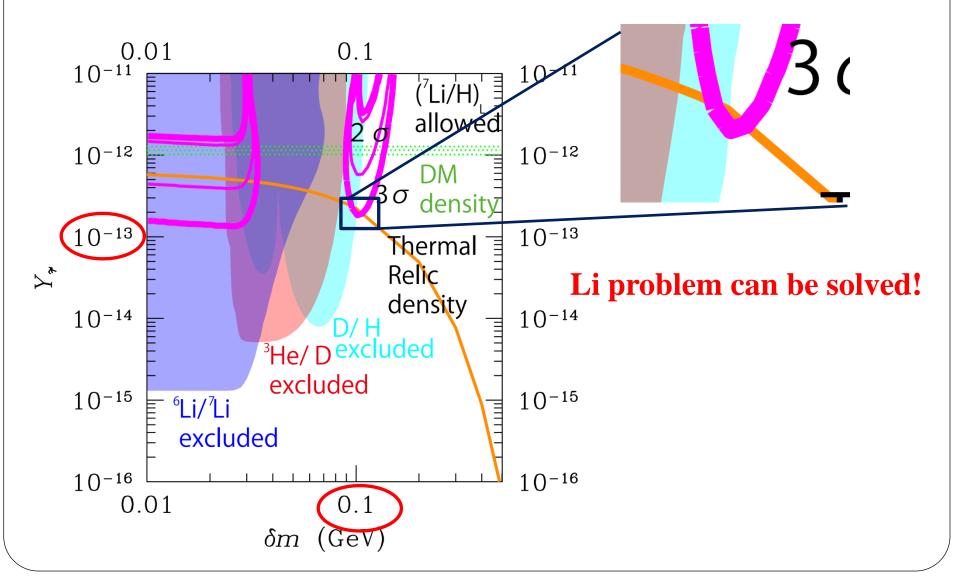
The stau can causes over production of ${}^{6}Li$ Upper bound for lifetime(δm) not to produce much ${}^{6}Li$

[M. Pospelov, PRL. 98 (2007)]

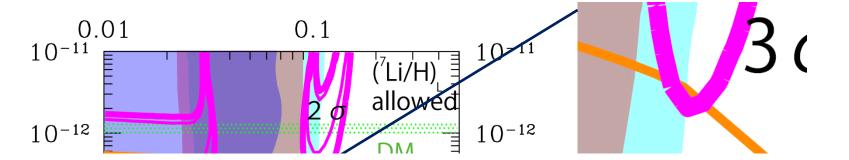
Exotic nuclear reaction

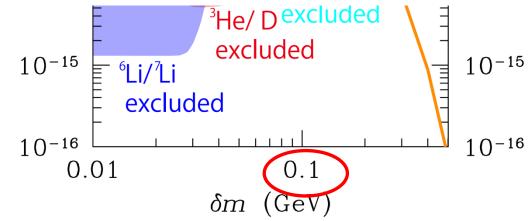

⁴He Spallation Processes

$$\begin{split} &(\tilde{\tau}^{4}\text{He}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + \text{t} + \text{n}, \\ &(\tilde{\tau}^{4}\text{He}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + \text{d} + \text{n} + \text{n}, \\ &(\tilde{\tau}^{4}\text{He}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + \text{p} + \text{n} + \text{n} + \text{n}, \end{split}$$


Enhancement of the reaction rate due to

- Overlap of the wave function
- Interaction of hadronic current


Upper bound for lifetime(δm) not to produce much d/t


Allowed region in "MSSM"

Allowed region in "MSSM"

We consider the allowed region [∽] In the CMSSM parameter space!!

Constraint ~DM & Light Elements abundance~

• Constraint from DM & light elements abundance Calculation of the DM relic abundance (MicrOmegas2.4.5)

constraint:
$$0.089 \le \Omega_{DM} h^2 \le 0.136(3\sigma)$$

WMAP G. Hinshaw et al. arXiv:1212.5226 [astro-ph.CO]

Calculation of SUSY mass spectrum(SPheno3.2.3)

 $\delta m \equiv m_{\tilde{\tau}} - m_{\tilde{\chi}} \le 0.1(1.0) [\text{GeV}]$

Constraint from the stau lifetime.

Uncertainty of Public code $\sim 2 \text{GeV}$

Constraint ~DM & Light Elements abundance~

• Constraint on the stau mass 339 [GeV] $< m_{\tilde{\tau}} < 450$ [GeV]

Sufficient bound state = Enough stau@BBN

Strongly correlated with number density of the DM

DM abundance(fixed) = number density × mass

- Requirement of the sufficient number density of the stau $Y_{\tilde{\tau}} \ge 1.0 \times 10^{-13}$
- Relation between number density of the stau and neutralino.

$$n_{\rm DM} = 2s_0(1 + e^{\delta m/T_{\rm f}})Y_{\tilde{\tau}}$$

• Upper bound for the DM relic abundance $\Omega_{\rm DM}h^2 = \frac{2s_0(1 + e^{\delta m/T_f})Y_{\tilde{\tau}}m_{\tilde{\chi}_1^0}h^2}{\rho_c} \le 0.136$

$$m_{\tilde{\chi}_1^0} \le \frac{\rho_c}{2s_0 h^2 (1 + e^{\delta m/T_f})} \frac{0.136}{1.0 \times 10^{-13}}$$

Constraint ~Higgs mass~

• Experimental Value $m_h = 125.8 \pm 0.4(\text{stat}) \pm 0.4(\text{syst}) \quad [\text{GeV}]$ CMS-PAS-HIG-12-045 $m_h = 125.2 \pm 0.3(\text{stat}) \pm 0.6(\text{syst}) \quad [\text{GeV}]$ ATLAS-CONF-2012-170

• Constraint

Calculation of the Higgs mass spectrum (FeynHiggs)

Constraint:
$$m_h = 125.0 \pm 3.0 [{\rm GeV}]$$

We take into account the uncertainty of input parameters.

Constraints

- Higgs mass: $m_h = 125.0 \pm 3.0 [\text{GeV}]$
- DM abundance: $0.089 \le \Omega_{DM} h^2 \le 0.136(3\sigma)$
- Mass difference: $\delta m \equiv m_{\tilde{\tau}} m_{\tilde{\chi}} \leq 0.1(1.0) [\text{GeV}]$
- Stau mass: 339 [GeV] $< m_{\tilde{\tau}} < 450$ [GeV]

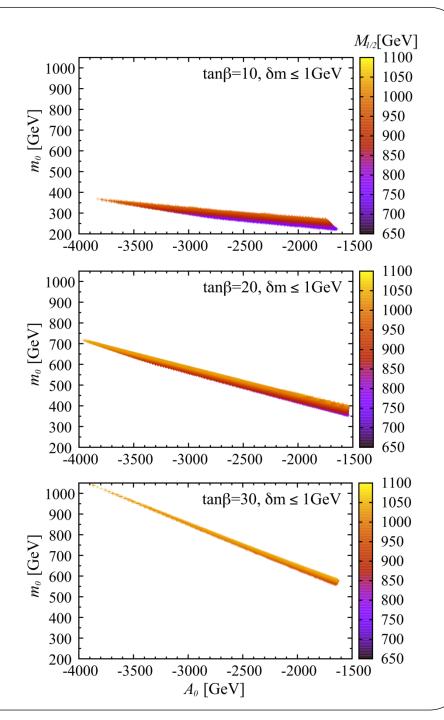
We put these 4 constraints on the calculated value, and obtain the allowed parameter space in the CMSSM!!

Then we give predictions to

- the mass spectra of the SUSY particles,
- the direct detection of the neutralino dark matter,
- the number of SUSY particles produced in a 14TeV run at the LHC experiment.

Results

 $A_0 - m_0$ plane


Almost in a line

 $m_0 = \begin{cases} (-5.5 \times 10^{-3} A_0 + 5.15) \tan \beta + 67.67 \\ \text{for lower line,} \\ (-5.5 \times 10^{-3} A_0 + 4.65) \tan \beta + 140.67 \\ \text{for upper line,} \end{cases}$

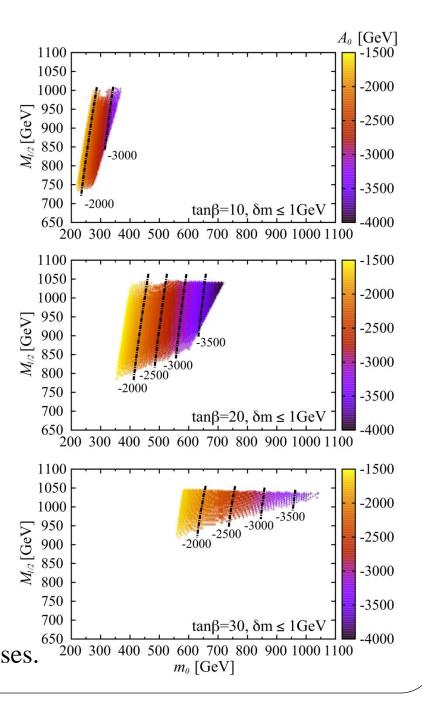
- Small δm relate $M_{1/2}$ and (m_0, A_0)
- With fixed $m_{\tilde{\chi}_1^0} \simeq 0.43 M_{1/2}$ increasing m_0 means increasing $m_{\tilde{\tau}_1}$
- Need to increase $|A_0|$ to decrease $m_{\tilde{\tau}_1}$ by raising off-diagonal element of stau mass matrix.

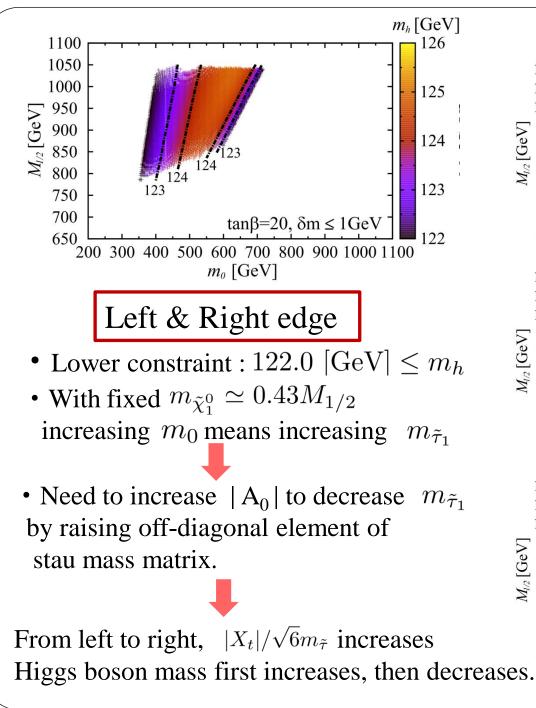
Upper & Lower edge

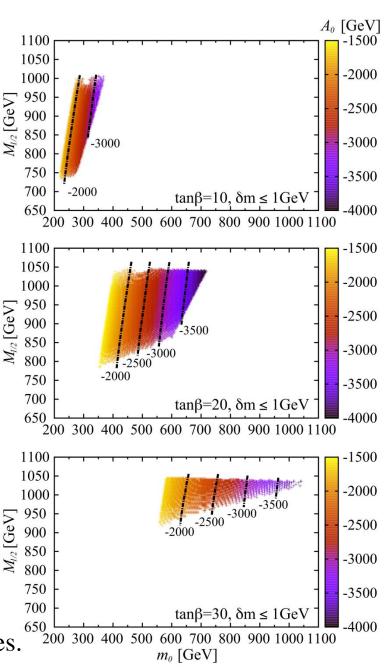
- 339 [GeV] $< m_{\tilde{\tau}} < 450$ [GeV]
- Large RGE effect for large tan $\boldsymbol{\beta}$
 - Large m_0 for large $\tan \beta$

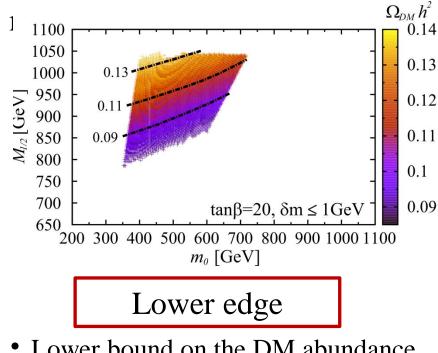
 $A_0 - m_0$ plane m_h [GeV] $|X_t|/\sqrt{6}m$ 126 1000 1000 $\tan\beta=20, \, \delta m \le 1 \text{GeV}$ $\tan\beta=20, \, \delta m \le 1 \text{GeV}$ 1.2 900 900 125 800 800 m_0 [GeV] m_0 [GeV] 1 700 700 124 600 600 0.8 123 124 500 500 1.2123 400 400 124 0.8 123 0.6 300 300 200 122 200-3500 -3000 -2500 -2000 -4000 -3500 -4000 -1500-3000-2500-2000 -1500 A_0 [GeV] A_0 [GeV] Left & Right edge • Lower constraint on $m_h: 122.0 \, [GeV] \le m_h$ $m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{16\pi^2 v^2} \left[\log\left(\frac{m_{\tilde{t}}^2}{m_t^2}\right) + \frac{X_t^2}{m_s^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2}\right) \right] \text{ Maximum @ } |X_t| = \sqrt{6}m_{\tilde{t}}$ $(X_t = A_t - \mu \cot\beta, \quad m_{\tilde{t}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}})$ $|X_t| > \sqrt{6}m_{\tilde{t}}$ Too small From right to left, $|X_t|/\sqrt{6}m_{\tilde{\tau}}$ increases correction to m_h Higgs boson mass first increases, then decreases.

$m_0 - M_{12}$ plane

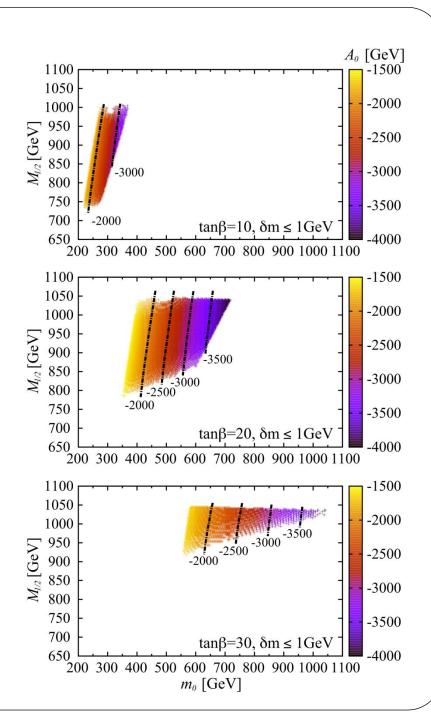

Upper edge


- $m_{\tilde{\chi}^0_1} \simeq 0.43 M_{1/2}$
- 339 [GeV] $< m_{\tilde{\tau}} < 450$ [GeV] $M_{1/2} \le 1050$ [GeV]


Left & Right edge


- Lower constraint : 122.0 $[GeV] \le m_h$
- With fixed $m_{\tilde{\chi}_1^0} \simeq 0.43 M_{1/2}$ increasing m_0 means increasing $m_{\tilde{\tau}_1}$
- Need to increase $|A_0|$ to decrease $m_{\tilde{\tau}_1}$ by raising off-diagonal element of stau mass matrix.

From left to right, $|X_t|/\sqrt{6}m_{\tilde{\tau}}$ increases Higgs boson mass first increases, then decreases.


• Lower bound on the DM abundance

 $0.089 \le \Omega_{\rm DM} h^2$

 \bullet Increasing $\tan\beta$ means increasing stau-tau-higgsino coupling

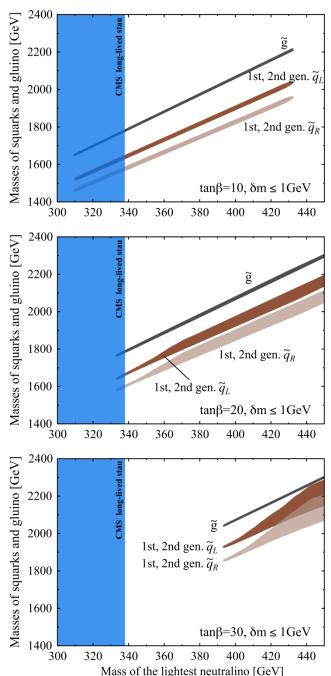
• Increasing coannihilation rate

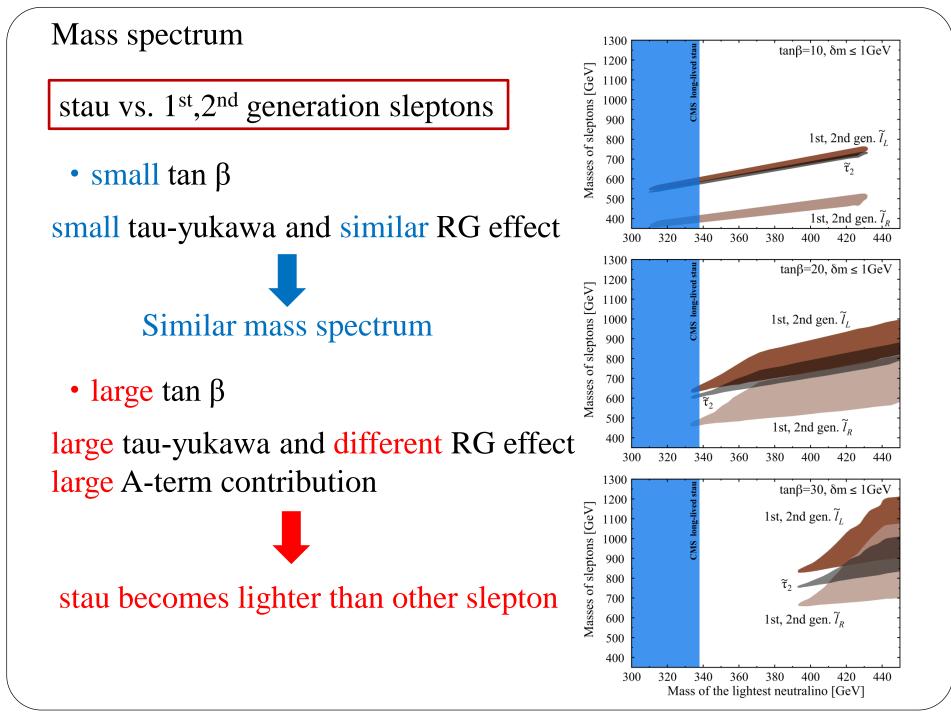
Increasing DM mass

Mass spectrum

Gauginos

 $M_3: M_2: M_1 \simeq 6: 2: 1$ $M_1 \simeq m_{\tilde{\chi}^0_1} \simeq 0.43 M_{1/2}$ $M_2: 2^{nd}$ neutralino $M_3:$ gluino

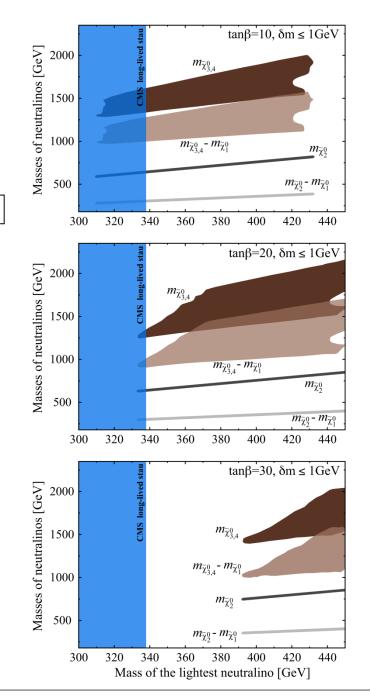

1st,2nd generation scalars


$$\begin{split} m_{\tilde{q}_L}^2 &\simeq m_0^2 + 4.7 M_{1/2}^2 \\ m_{\tilde{q}_R}^2 &\simeq m_0^2 + 4.3 M_{1/2}^2 \\ m_{\tilde{e}_L}^2 &\simeq m_0^2 + 0.5 M_{1/2}^2 \\ m_{\tilde{e}_R}^2 &\simeq m_0^2 + 0.1 M_{1/2}^2 \end{split}$$

In our parameter region

$$m_{\tilde{q}_L} \simeq 2.2 M_{1/2}$$
$$m_{\tilde{q}_R} \simeq 2.1 M_{1/2}$$

5 times larger than DM


Mass spectrum

Higgsinos, heavy Higgs

Electroweak Sym. Br.

$$|\mu|^2 = \frac{1}{2} \left[\tan 2\beta \left(M_{H_u}^2 \tan \beta - M_{H_d}^2 \cot \beta \right) - m_Z^2 \right]$$

For $\tan \beta \gg 1$ $|\mu|^2 \simeq -M_{H_u}^2$

Numerically, $m_{H_u}^2 \simeq -3.5 \times 10^3 \cot^2 \beta m_0'^2$ $+ 87 \cot \beta M_{1/2} m_0' - 2.8 M_{1/2}^2$ $m_0' \equiv m_0 - b$ $b \simeq \begin{cases} 5.15 \tan \beta + 67.67 & \text{for lower line,} \\ 4.65 \tan \beta + 140.67 & \text{for upper line.} \end{cases}$

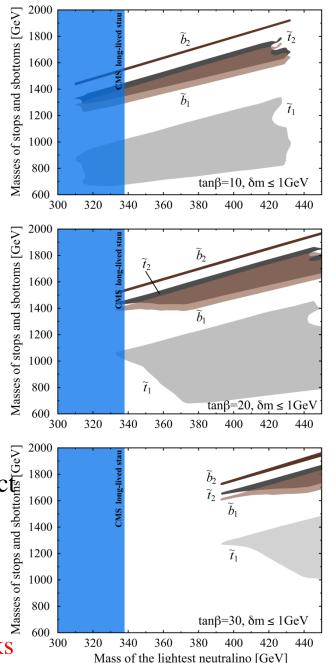
Mass spectrum

3rd generation squarks

stop
$$m_{\tilde{t}_1,\tilde{t}_2}^2 \simeq \frac{1}{2} \left(m_{Q_3}^2 + m_{U_3}^2 \right)$$

 $\mp \frac{1}{2} \sqrt{(m_{Q_3}^2 - m_{U_3}^2)^2 + 4(m_{\tilde{t}_{LR}}^2)^2},$
 $m_{\tilde{t}_{LR}}^2 = m_t (A_t - \mu \cot \beta),$

Large A term and Large RGE effect \rightarrow Lighter stop generally pretty light though still above LHC constraint


sbottom

small tan β •

• large tan β

11 tan β small bottom-yukawa and similar RG effect \longrightarrow Similar sbottom mass spectrum e tan β large tau-yukawa and different RG effect large A-term contribution \implies sbottom is lighter than other squarks

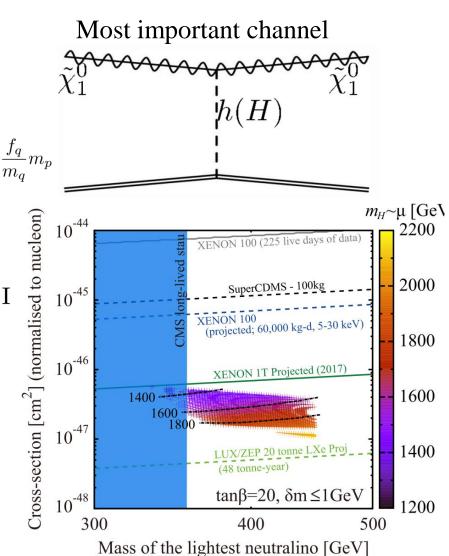
sbottom is lighter than other squarks

Features for spectrum summarized

- All masses are strongly related with $m_{\tilde{\tau}}(\simeq m_{\tilde{\chi}_1^0})$
- Mass of the Squarks, gluino,2nd neutralino, and sleptons is proportional to $m_{\tilde{\tau}}(\simeq m_{\tilde{\chi}_1^0})$
- <u>Our 4 requirements</u> automatically, naturally predicted that the AHC could not observe any signal for SUSY.

Higgs mass, DM relic abundance, BBN(mass diffenrence & mass range)

Direct detection of DM


• Cross section

$$\sigma_{\rm SI} = \frac{4}{\pi} \left(\frac{m_{\tilde{\chi}_1^0} m_T}{m_{\tilde{\chi}_1^0} + m_T} \right)^2 (n_p f_p + n_n f_n)^2$$
$$f_p = \sum_q f_q \langle p | \bar{q} q | p \rangle = \sum_{q=u,d,s} \frac{f_q}{m_q} m_p f_{T_q}^{(p)} + \frac{2}{27} f_{T_G} \sum_{q=c,b,t}$$
$$f_q = m_q \frac{g_2^2}{4m_W} \left(\frac{C_{h \tilde{\chi}_1^0 \tilde{\chi}_1^0} C_{hqq}}{m_h^2} + \frac{C_{H \tilde{\chi}_1^0 \tilde{\chi}_1^0} C_{Hqq}}{m_H^2} \right)$$

• Correlation between $m_H \sim \mu$ and σ_{SI} Heavy Higgs contribution is negligible

 $C_{h\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}} \simeq \frac{m_{Z}\sin\theta_{W}\tan\theta_{W}}{M_{1}^{2}-\mu^{2}}[M_{1}\sin\beta+\mu\cos\beta]$ Smaller μ , larger coupling for $h\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$

Within the reach in the near future!

LHC in near Future

- Testable with 100 fb⁻¹
- 10 % efficiency?

Signals

- Stau track penetrating detector
- Missing energy as same as the stau mass
- Many lighter stop

Input Parameters	Point 1 $[GeV]$	Point 2 $[GeV]$	Point 3 $[GeV]$
$M_{1/2}$	818.6	932.8	1038.0
m_0	452.0	557.7	639.7
A_0	-2264.7	-2918.4	-3397.0
Particle			
h	123.8	124.6	124.9
${ ilde g}$	1822.4	2057.8	2272.6
$ ilde{\chi}_1^0$	349.3	400.9	448.5
$ ilde{ au}_1$	350.3	401.0	449.1
$ ilde{u}_L$	1710.9	1942.2	2149.7
${ ilde t}_1$	945.8	968.6	1016.3
Cross Section	Point1 [fb]	Point2 [fb]	Point3 [fb]
$\sigma(ilde{u}_L, ilde{u}_L)$	2.915	1.277	0.614
$\sigma(ilde{u}_L, ilde{u}_R)$	1.672	0.668	0.296
$\sigma(ilde{u}_R, ilde{u}_R)$	2.970	1.327	0.652
$\sigma(ilde{u}_L, ilde{d}_L)$	3.243	1.335	0.608
$\sigma(ilde{u}_R, ilde{d}_R)$	2.680	1.124	0.522
$\sigma(ilde{g}, ilde{u}_L)$	2.735	0.899	0.330
$\sigma(ilde{g}, ilde{u}_R)$	3.156	1.041	0.391
$\sigma(ilde{t}_1, ilde{t}_1^*)$	4.399	3.662	2.655
$\sigma(\tilde{\chi}_1^+,\tilde{\chi}_1^-)$	2.459	1.274	0.711
$\sigma(ilde{\chi}^+_1, ilde{\chi}^0_2)$	3.514	1.858	1.075
$\sigma(ilde{\chi}_1^-, ilde{\chi}_2^0)$	1.232	0.616	0.341
$\sigma(\text{all SUSY})$	39.798	18.387	8.681
Number of produced			
$N(ilde{ au}_1)$	1802	756	345
$N(ilde{ au}_1^*)$	2469	1091	450
$N(ilde{\chi}^0_1)$	3687	1829	940

- Center of mass energy 14TeV
- Luminosity 100fb⁻¹

Summary

Summary

Constrained minimal SUSY standard model(CMSSM)

with 4 requirement

- 1. Dark matter relic abundance
- 2. Higgs boson mass
- 3. Stau DM mass degeneracy
- 4. 339 [GeV] < $m_{\tilde{\tau}} < 450$ [GeV]
- Very constrained Predictions Lower and upper limit for mass of SUSY particles
 - It is matter of course that the LHC has not observed yet, next LHC must observe SUSY signals!
 - Very strong correlation among SUSY particles
 - DM direct detection in near future must observe DM signal.