

DAQ Plans for Hyper-Kamiokande

Giles Barr¹, Francesca Di Lodovico², Helen O'Keeffe³ ¹ = University of Oxford, ² = Queen Mary University of London, ³ = Lancaster University Hyper Kamiokande Open Meeting January 2014

Outline

- Contributions to T2K
- Interested institutions
- Interests in HK DAQ

T2K DAQ systems

- UK institutions designed majority of near detector DAQ systems
- Used MIDAS framework
- Incorporated several pieces of custom software for data readout
- Readout of voltage, temperature of electronics boards and interface with global slow control
- Wrote online monitoring software

Continue to play a major role in on-site support, operations, maintenance etc.

 Data from electronics boards is retrieved using custom programs written by experts at STFC Rutherford Appleton Laboratory/Oxford

Interested institutions

T2K DAQ group was Oxford and Rutherford, for HK several new institutions will participate:

- Lancaster University
- Queen Mary, University of London
- STFC Rutherford Appleton Laboratory
- University of Oxford
- University of Warwick

Small amount of bridging funds to spend between January 2014 and September 2014

UK interests

Interests are in the following areas

- Design and development of DAQ for Hyper-Kamiokande (and Intermediate Detector). In this talk studies mainly focussing on Hyper-K.
- Readout of electronics and design of backend systems
- Triggering
- Participation in 1 kT prototype
- Online monitoring of data

Work has so far focused on

- Assessing data rates
- Triggering

Important to consider rate in full detector volume

- Background rates based on SK levels
- 10 kHz dark noise per PMT
- Assume 12 bytes per PMT hit, 100,000 PMTs in whole detector, 10 hits per background event

Event class	(estimated) rate (Hz)	Estimated data rate
PMT noise	$10 imes 10^3$ (per PMT)	12 GB/s
²³⁸ U chain	158	20 MB/s
²³² Th chain	475	57 MB/s
²²² Rn	2772	332 MB/s

External events have been ignored Dark noise may be more optimistic

Accidentals

Expression from SNO technical report SNO-STR-90-036

$$A = \frac{\tau^{-1} k^{n_t} e^{-k}}{(n_t - 1)!}$$

where

 n_t = number of tubes firing

- $N = \text{total number of PMTs} \rightarrow 10,000 \text{ per compartment}$
- R = Dark noise rate of the tubes = 10 kHz
- $au = {
 m discriminator time width} = 100 \ {
 m ns}$

 $k = NR\tau$

Nhit threshold	Accidental rate			
10	12.5 MHz			
15	5.2 MHz			
20	373 kHz			
25	7.3 kHz			

Reducing accidentals

- Dark noise affects where the data-taking threshold is
- Are there ways to reduce the effect of dark noise, allowing us to access more low energy physics for a small cost?
- Could use following
 - Timing dark noise hits are random within a trigger window
 - Charge
 - Angular distributions dark noise more isotropic in detector (experience from SNO)

Low E event Average angle between hits is small Noise "event" Average angle between hits is larger

Event readout + triggering

- Main trigger strategy like Super-K: Nhits
 - Good enough for atmospheric events, proton decay, beam neutrinos
- Dominated by dark noise coincidences
 - Limits threshold for low energy physics
- Additional "smarter" trigger to separate low energy neutrino events from random dark noise coincidences
 - Important to attempt to reduce solar neutrino threshold
 - Helps with supernova physics

Nhits trigger overview

Step 1	 Calculate quantities in local pad e.g. 6x4=24 PMT or 8x8=64 PMT (depending on readout board) Linear (additive) variables, simple to compute 	 Close coupled to readout, handshake ≈ 1usec Ideal for FPGA design
Step 2	 Aggregate local pads into pads "Displaced pads" concept Duplicate steps 2 and 3 to avoid spatial boundary inefficiencies 	 Transfer step 1 to step 2 over Ethernet. Canadian redundant path idea. Algorithm easy if step 1 quantities are additive
Step 3	 Now have ≈ 50-200 pads in each compartment of HK Physics motivated cuts: Always accept if Nhits > N Accept more events with low energy signatures Local coincidence Trilateration reconstruction, localize vertex and reduce time coincidence window 	 Step 2 to step 3 over separate Ethernet network, Parallel processing farm Designated node for each 10usec window in time (+0.5usec for overlap) Trilateration may be suitable for SIMD or GPU

Data buffer could be extended to store Super Nova Cached data: 1 hour = 400TB

Step 1: On Board Coincidence (OBC)

Nhits

Spatial moments

Timing

Compute for each local pad, for time bins of O(100ns).

Send local-pad#, overall time, overall PH, Nhits, x and y spatial moment, x and y time moment to trigger

Step 2: Regional Processing Node (RPN)

Local Pads from step 1

Pads for step 3

Displaced pads for step 3

Step 3: Trigger Algorithm Node (TAN)

- Processor assigned for each 10usec time interval.
 - Include data from last 0.5usec of previous time interval to avoid problems with time boundaries
- Events passing Nhits criteria always pass
- Collect additional low-energy events with cuts to select clusters and not random noise combinations
- Sliding window in time:
 - Impose local coincidence requirement
 - Sort pads by NHITS starting with highest
 - Use parallel processing to consider best pad combinatorics
 - Reconstruct vertex with 4 big pads, consider if other pads are consistent

Remember: We don't need to consider the most complicated combinations - they are accepted by the simple Nhits trigger

Event readout + Triggering

Stage 1: On Board Coincidence (OBC) Collect hits from 24 channels						Approximately 420 of these On Board Coincidence, OBCs					
Nhits	Time	ა -Х	ა -ү	X	Y			(number determined by channels read out on			
				,		-	-	electronics board)			
Stage 2: Regional Processing Node (RPN)							Combine data from 4 OBCs. Approximately 105 RPNs + 105 RPNs from				
Compline information from 4 x 24 channels (OBCS)											
Nhits	Time	ა -Х	ઈ -Υ	х	Y			RPNs in total			
				1		-		-			
Stage 3: Trigger Algorithm Node (TAN) Combine information from RPNs and divide data into time slices.					Data from RPN sent to TAN. Approximately 210 nodes required. 18						

Event readout + Triggering

Work package 2: On Board Coincidence (OBC) Local threshold requirement, implement on xylinx type chip.

Work Package 3: Regional Processing Node (RPN) Basic algorithm to decide if something interesting has happened.

Work Package 4: Trigger Algorithm Node (TAN) More complex algorithms to regain low energy events.

Work Package 5: Event Builder and communication with offline storage. Data monitoring.

Work Package 1: Event readout and backend systems

Queen Marv

Conclusions

- Significant fraction of HK UK institutes are interested in developing DAQ systems.
- Small amount of money to spend on technical support between Jan. and Sept. 2014.
- Focus on design of data readout systems and triggering
- We can adapt the current schema to deal with more detailed information when known (eg occupancy - the number of PMT hits in a board - for low energy events vs dark rate)
- Participation in 1kT prototype useful to test algorithms

Backup slides

