Heasurement of Jarge-aperture photo-detectors in a water tank

4th Hyper-Kamiokande open meeting 28/Jan/2014

Installation report

*HPD = Hybrid PhotoDetector

- O8-inch HPDs* and 20-inch high-QE PMTs were installed in a 200-ton water tank in summer 2013.
- Measurement status
 Calibration and monitor are going on.
 Long run will start soon.
- R&D of new 20-inch photo-detectors
 O High-QE box and line PMT
 O High-QE HPD
 Now being developed in Hamamatsu photonics Tested soon in Kamioka

2

Hybrid PhotoDetector (HPD)

- High performance and low cost
- However, factors to consider for viability in Hyper-K are:
 - Dark noise from AD + Amp., HV around 8kV, low gain, thermal dependence of AD gain, No prior experience using

28/Jan/2014

Two options for 1st proof test

avalanche diode (AD)

20-inch High QE PMT

- Same design as R3600 used for Super-K, except for photocathode
- Precalibrate 8 PMTs in advance, installed <u>5 HQE PMTs</u> into tank.
- High QE is upgrade option for all photodetectors

8-inch HPD

- HV module and preamplifier were built-in.
- Precalibrate 10 HPDs, install <u>8 HPDs</u> into tank.

QE of 8 High-QE PMTs at Kamioka

Proof test in a 200-ton tank

• Test new photodetectors in the 200-ton water tank.

28/Jan/2014

Installation flow in 2013 summer

Constructed floating floor on water

Cabling in tank

240 PMT cables + 16 HPD cables into tank

Installation 2. 1. 3. 6. 7. Tank

Assembly for EGADS is based on Super-K. (NOT for Hyper-K) Barrel HPD Top / bottom HPD

28/Jan/2014

Installation into tank

Top, 1st and 2nd barrel

Barrel

Barrel HPD

Bottom HPD

Installation from top to bottom

18 Jul – 8 Aug 2013

28/Jan/2014

Tank closing

Water filling for top installation

Closing hatch

PMT mounting on boat

Finished installation on 13 Aug. First DAQ in the end of Aug.

View of photodetectors in tank

28/Jan/2014

227 Super-K PMT (20") + 5 High-QE PMT (20") + 8 HPD (8")

Slow control and monitor system Developed by Okajima-kun

- Monitor control voltage for 8kV and AD bias, temperature in 4 HPDs, over current status, temperature around DAQ.
 - AD gain and ATM depends on temperature.
 - To study thermal dependence of HPD performance.

Observed 2-6 °C increase in HPD compared to water (13°C)

- O Take 3-4 hours for stabilization
- Design of heat radiator into water
 is required in future for HPD inner

Slow control for HPD

Gain calibration in tank -PMT-

 Gain of normal QE PMT is adjusted by (QE x gain) such that xenon light source makes constant peak in all PMTs.

• Same strategy as pre-calibration in dark box before installation.

- Hit is defined by fixed 1mV for HQE PMT as well as HQE PMT.
 - High-QE (~30%) PMT is calibrated by 1 p.e. peak so that resolution can be comparable with R3600 (~22% QE).
 - Gain of high-QE PMT is adjusted to average gain of normal-QE PMT.

Gain calibration in tank -HPD-

• Gain of HPD was recalibrated in tank (Nov/2013).

O Target gain is set to 7.6 pC /p.e.

▶ 1 HPD gain is set to a little low level due to a low breakdown V.

O Hit threshold is set at 4 mV (0.5 p.e.).

• Total gain is adjusted by AD bias voltage.

28/Jan/2014

Photoelectron peak

Clear peak was observed in both HPD and HQE PMT.

Timing performance

Timing resolution at 1 p.e. is measured with a laser diode.

NOTE

- Lower high voltage is applied for high-QE PMTs because of high gain level and might worse time response.
- Time walk correction by TQ is not applied. (TQ map is under preparation.)
- HPD time response becomes worse in preamplifier. (Upgrade in future?)
- Time walk effect is larger in HPD due to wider signal shape.

Current dark rate

Scanned dark rate by ATM hit threshold in Jan 2014.
 20-inch high-QE PMTs
 8-inch HPDs

• 2 high-QE PMTs (ZP21,12) and 1 HPD are unstable, 1 HPD has high rate.

- Large noise around pedestal. Still under investigation and try noise reduction.
 Enough low around 1 kHz for 4 HPDs
- High-QE PMTs show a little high rate.
 - Waiting for stabilization with HV applied for a long period.

Dark rate distribution

Pre-calibration, dark rate at 0.8 p.e.

28/Jan/2014

Status and plan of proof test

- Tank have been closed and filled in water since Sep 2013.
 O Photodetectors were put in dark place for 5 months.
- 1 HPD was turned off due to an over current error in HV module.
 HV cannot be applied in a few days after tank was filled in water.
 → New HV module have been developed and upgraded.
- Dark rate of high-QE PMTs is still higher than Super-K PMT.
- High voltage was applied only during calibration and measurement.
 - O Long runs were tested a few times for a few days or a week.
 - Several studies in tank such as QE, water property, TQ correction are still being performed.
- Long continuous run will start since Feb 2014.
 - Now in pure water, Gd will be doped in a few months.
 - ▶ Calibration will be redone before Gd contamination.
- New 20-inch photo-detectors are under development for 2nd proof test.

Development of new 20-inch photo-detectors

20-inch box & line dynode PMT in Kamioka

20-inch HPD display in NNN2013, IPMU

20-inch PMT with box and line dynode

Good photon collection by box shape 1st dynode
 Fast time response by linear-focused dynode

O New design of box and line dynode and High QE on it demands well optimizing and manufacturing process.

New 20-inch photo-detectors

2 prototypes are under development and test in HPK.

PMT	Mounted in Super- Kamiokande Venetian blind dynode	PD New PM Avalanche diode		New Box and line dynode
Model	R3600 (Used for ~30 yrs)	R12850 (Under development)	R12860 (Under	development)
C.E.	80%	95%	93%	
T.T.S. (FWHM)	5.5 ns	0.75ns (w/o Preamp.)	2.7 ns	Calculated
Bias voltage	2 kV bias	8 kV bias, 20mm φ AD	2 kV bias	in simulation
			•	2011

Evaluation will start soon at Kamioka since spring 2014.
Proof test in the 200-ton tank could start in 2014.

Overview of amplification designs

- Box & line dynode PMT : Realistic option based on established technology of PMT, with fast timing and good timing performance
- HPD : Low cost and good performance, but difficulty of electronics in both development and long life. → To be established in proof test

28/Jan/2014 N

AD and amplifier for 20-inch HPD

 Least diameter of avalanche diode (AD) is determined by a spot size of p.e. collections and alignment precision.

> Noise largely depends on input capacitance.

Current pre-amp. of 8" HPD cannot be used for 20" HPD.

• Single p.e. separation is impossible because of noise by large stray capacitance.

Development of new amplifier started by HPK, U.Tokyo, and KEK.

• Start from charge amp with less noise, boot strap, etc.

- Please join us if you are interested.
- AD optimization might be needed.
 - \supset 15mm Φ and 20mm $\Phi/2$ segmentation were also made in test
 - Might try 3x3 segmented AD, optimize depletion layer, backside-illumination, ...

25

HV power supply for HPD

- Long life for tens years and quality control in production are critical in case of HPD.
 - HV and DAQ boards can be replaced on top of tank in Super-K.
 - HV module and preamp. are housed in HPD, cannot be replaced.
 - ▶ 8kV is too high to be supplied by cable in water.
 - Preamplifier is needed near to AD.
- Several problems were found in current HV module.
 - Damage of HV module by discharge in HPD
 - Damage preamplifier by large signal into it.
- New HV module is ready for new 20-inch HPD.
- Less noise, more durability against discharge, low power, ...
 Asked several companies to develop small HV module.
- Will study with DAQ and electronics related.
 - Electronics in water for redundancy and low cost, HV cable, digitization, ...

- Eight 8-inch HPDs and five 20-inch high-QE PMTs were installed in summer 2013.
- Calibration and performance evaluation are going on in the 200-ton tank.
 Quick look at preliminary measurement
- Long run will start soon.
- 20-inch new photo-detectors are being developed.
 OPrototype will be tested and evaluated in a few months.

