Hyper-K Tank

Shoei Nakayama (ICRR)

for the Cavity and Tank WG

January 27, 2014

@ The 4th open Hyper-K meeting

Basic Specification of Hyper-K Tanks

- Size and quantity: 48m(W) x 54m(H) x 250m(L) x 2(N)
- Cavern shape : Egg-shape
- Optically separated compartments: 5 x 2 = 10
- Water volume :
 - Total: 0.496 x 2 = 0.992 Mton
 - ID volume: 0.74 Mton
 - Fiducial volume : 0.056 x 10 = 0.56 Mton (25 x Super-K)
 - Depth of tank water: 48m
- Photodetectors :
 - ID: ~99,000/2tanks, 50cmφ PMTs, 1sensor/1m² (~20% coverage)
 - OD: \sim 25,000/2tanks, 20cm ϕ PMTs, 1sensor/3m² (\sim 1% coverage)

Overall Tank Structure

Tank Lining

Tank lining consists of concrete and High Density Polyethylene (HDPE) sheet linings

- Water permeability of HDPE sheet is very low
- Adjacent HDPE sheets are welded by heating
- Holes in a sheet (including welded part) can be found by pinhole test

Water Leak Detection and Draining

No water leak expected by HDPE(+concrete) lining

Additional lining with a water proof sheet just for accidental water leak

 Drain lines are separated for sump-water and tank-water

Water Leak Detection and Draining

Lining Sheet Testings

Soak test

- In ultra pure water & In 1% Gd₂(SO₄)₃ solution
- Found some dissolution of organic substances, anions, and metal ions
- → Need to evaluate effect on HK

Strength test

- Tension test (normal part & welded part), Creep test
- → Candidate HDPE sheet has enough strength

Absorbance

Lining Sheet Testings

- Pressure Test
 - → Sheet did not break
 No water leak found

HDPE sheet

A slit or a hole to imitate cracks in concrete lining

Penetration Structure

- Spark test and Pressure test (short/long/cycle)
- → No leak found

Welding part

Photodetector Support Structure

- Made of SUS304 shape steels
 - Designed to support the following load

ID PMT + case	27.8kg/PMT		
OD PMT	1.7kg/PMT		
PMT cable (10m)	2kg/PMT		
HUB	5kg/HUB		
Network cable (10m)	2kg/HUB		
Load on the roof	100kg/m²		
Cables on the roof	0.15kg/m ²		
Water system pipes	1.4kg/m (65A PVC)		
Calibration holes	200A SUS		

Wire support options

- PMT supporting by wires has also been studied
 - → Found the construction cost is comparable (even higher)
 - Wire termination requires special works and parts
 - Devices to give initial tensions and additional tensions when a wire stretches afterwards

Geomagnetic Compensation

- Active compensation using coilsUsed in Super-K, but not easy in Hyper-K
 - Long rectangular coils → Not like a Helmholtz coil
 - PMTs in the segmentation wall → Longer distance from coils
 - Detector is not φ-symmetric around a vertical axis
 - \rightarrow Basically need coils for each of (x, y, z) components

- Needs very long coil cables
 - → Many cable connection work

Geomagnetic Compensation

- Active compensation using coils
 - A coil arrangement study for an easier case

Residual B field

⊥ to each PMT facing direction

No component along the tank axis (Candidate placement in the Tochibora site)

Coil configuration providing B_{total}<100mG at most of sensor positions has not yet been established (even for an easier case)

At present I don't think the active compensation is the best solution for Hyper-K

Geomagnetic Compensation

- Passive Magnetic Shielding
 - Used in many experiment Double Chooz, Daya Bay, IceCube, Kamiokande, ...
 - Easy to assemble with PMT case

Many R&D works are necessary (shielding estimation, prototype testing, cost estimation, production period, detection efficiency/acceptance check, anticorrosion, ...)

- Contribution to the magnetic compensation R&D is really helpful
 - May be good for overseas contribution

Other Designing Work

Cable & elec. layout

Calibration holes

Gondola and access to PMTs for maintenance

Cranes

Plug manhole

Lining and Support Construction

- Use a "movable" scaffold for constructing the lining
 - Size of the scaffold is about a compartment (~50m)
- When the lining finished in a compartment, slide/move the scaffold to next compartment
- Construction of support structure begins in the compartment where the lining finished
 - Using long-arm cranes

Photodetector Installation Procedure

- Case 1 : Construct support frame with PMTs
- Case 2: Install PMTs in the compartment where the support construction has just finished
- Case 3: Support construction first in the whole tank, then start PMT installation

	Case 1	Case 2	Case 3
Construction period	0	0	Δ
Cost	0	0	Δ
Safety	Δ	0	0
Cleanness	Δ	Δ	0

At present, case 2 is the first choice

Need to consider antipollution measures

Tank Construction Schedule

~2 years for tank construction

Tank Construction Cost

Remaining Tasks

- Estimate influence of possible bedrock displacement or backwater pressure on the tank design
 - Modifications if needed
- Build more detailed construction procedure
 - Including tank antipollution measures
- Magnetic compensation R&D
- Further cost reduction

Technical Design Document

- Document in Japanese is almost ready
 - Will be completed in early-February
- English version will be available by the end of March

Summary

- Baseline design of the Hyper-K tank has mostly been established
 - Construction period and cost estimated
- Magnetic compensation method has to be established
- Technical document in English will be ready in March
- Need further (drastic) cost reduction
 - Your ideas are very welcome

Supplement

PMT response in a magnetic field

- Parallel to dynode (X)
- Perpendicular to dynode (Y)
- × PMT facing direction (Z)

Magnetic field perpendicular to the PMT facing direction should be < 100mG.

A. Suzuki et al., NIM A329 (1993) 299-313

The result looks good, but ...

- \square The fraction of sensors with 50-100mG B $_{\perp}$ is large.
 - ~30mG in Super-K
- Magnetic field parallel to the PMT facing direction also affect the PMT response
 - depending on position where a photon hits a PMT
- I have tried to find a better configuration, but am not yet successful.
 - due to the very long tank shape
 - more difficult if the tanks are not // nor ⊥ to the horizontal geomagnetic field

Lighting position is at