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DAEJALUS / IsoDAR Program 2

« DAESALUS is a program to develop a new resource for Neutrino
Physics.

— The goal is to produce small sized and relatively inexpensive
cyclotron-based decay-at-rest neutrino sources.

« This frees the program from being forced to match detectors to
accelerator sites and opens up interesting new physics
opportunities.

 This is a phased program with physics output at each stage

— IsoDAR experiment is the second phase.
— Full DAESALUS for CP measurements as the final phase
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Daedalus and IsoDAR Experiments .
(“Cyclotrons as Drivers for Precision Neutrino Measurements” - arXiv:1307.6465)

IsoDAR Setup: [sotope decay-at-rest
Very short baseline search for sterile neutrinos

A. Bungau et al., PRL 109, 141802 (2012)
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Daedalus Setup: Antincutrino Energy (MeV)

A new way to search for CP violation in the v-sector
J.M Conrad and M. H. Shaevitz, PRL 104, 141802 (2010)
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DAESDALUS High Power (~1 MW) 800 MeV Cyclotron System 4
(Under Development with Lab and Industrial Partners)

Daedalus
DAR Target-Dump
(about 6x6x9 m3)

H,* lon
Source

IsoDAR Multimegawat
Daedalus
Cyclotron
’ \In' ector Cyclotron for
J . .
Cyclotron Nutrmo Physics
(Resistive arXiv:1207.4895
Isochronous) -

Superconducting
Ring Cyclotron (SRC)

“Isochronous cyclotron” where
mag. field changes with radius,
but RF does not change with time.
This can accelerate many bunches
at once.
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Physics Output at
Each Stage

Phase :
| Produce 50 mA H2+ source | Begt Inc. Teststand, | Accelerator Science
inflect, captute 5 mA and . . ,
sccelerate Catania Experiment | Physics: 2014-15
II IsoDAR Buildgthe injector cyclotron, SBL v, physics
extraet, produce antinu flux KamLAND Engineering, 2015
via 8L (WATCHMAN) | Start of run, 2018
III Build the first SRC, Super K, SBIT ;u physics
Run this as a “near accel.” Engineering, 2017
L NOvVA i
at existing large detector Start of run 2021
IV DAESALUS cp
Build the high power SRC, HyperK | Eng: 2020
Construct DAESALUS Start 2025

We are here




DAEODALUS Cyclotron Accomplishments and Status ¢

International Partnership Between Universities, Labs, and Industr

* lon source developed by collaborators at INFN Catania
— Reached adequate intensities for the system

» lon Source Beam and capture currently being characterized
at Best Cyclotrons, Inc, Vancouver with INFN-Catania and MIT

“Cyclotron”

Diagnostics Box

Ion Source : .
\ Beam Stop
HV Cage / ' <G

* Engineering study of SRC magnet completed

— Engineering design, Assembly plan,
Structural analysis, Cryo system design
(see arXiv:1209.48806)




The DAESDALUS Experiment

Search for CP Violation using v, Appearance
with Pion Decay-at-Rest Neutrino Beams



Use L/E Dependence of \7“—> v, to Measure d.p

P (‘—/M — \—/e) = (SiIl2 923 Sill2 2013) (Sin2 ABI)
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terms depending on  terms depending on
mixing angles mass splittings

We want to see
if O 1s nonzero

Aij = AmeL/4E,,



Use Multiple Neutrino Sources at Different
Distances to Map Out v,— v, Appearance Rate

Each source produces
Cyclotron (~800 MeV KE proton) Vi a pure WU decay-at
Pump ? -rest beam at a different
distances to the detector

v

Osci%ons?

Flux [Arb. units]

30 40 50

0 10 20

Energy MeVv]

Very small v, contamination in the beam so ideal to search for \7”—> v, oscillations



Detect v, Events using Inverse Beta Decay (IBD)
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* Prompt positron followed by * IBD Cross section known very accurately

delayed coincidence from n capture
= For water detector need Gd doping  « Very small systematic uncertainty for

* Antineutrino energy well measured a neutrino oscillation analysis

= E 5o = Egompt + 0.78 MeV
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1.5 km

Accelerator —

8 km
Accelerators

20 km
Accelerators

Beam Off 13

Beam Off
1ms < 4 ms |1 ms < 4 ms ’|1ms
Tms |« dms Pl1ms | 4ms 1 ms
Tms | 4 ms pl1ms | o 4 ms >|1ms
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Need to know which source
produced a given event =
Use timing with sources
turning on/offt.



DAEJOALUS Measurement Strategy

Using the near neutrino source
measure absolute flux normalization with v_-e events to ~1%,
Also, measure the (v_O) event rate.

3 3

3 &
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DAEJALUS at Hyper-K Event Statistics for 10 yrs

Oscillation
Signal
Events

Beam v, Bkgnd

Non-Beam
Background

Absolute Norm
Relative Norm

Event Type 1.5 km 8km 20 km
IBD Oscillation Events (E,;. > 20 MeV)
Scp = 0%, Normal Hierarchy 2660 4456 4417
", Inverted Hierarchy 1838 3268 4338
dcp = 90°, Normal Hierarchy 2301 4322 5506
", Inverted Hierarchy 2301 4328 5556
Scp = 180°, Normal Hierarchy 1838 3263 4295
", Inverted Hierarchy 2660 4462 4460
Scp = 270°, Normal Hierarchy 2197 3397 3206
" . Inverted Hierarchy 2197 3402 3242
IBD from Intrinsic 7, (E,;s > 20 MeV) 1119 79 31
IBD Non-Beam (E,;s > 20 MeV)
atmospheric v,p “invisible muons” 505 505 505
atmospheric IBD 103 103 103
diffuse SN neutrinos 43 43 43
v—e Elastic (E,;s > 10 MeV) 40025 2813 1123
ve—oxygen (Eyis > 20 MeV) 188939 13281 5305

sin”20,, = 0.10
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DAEJALUS at Hyper-K Event vs Energy for 10 yrs
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Configurations Considered for d.p Sensitivity

Studies
Configuration Source(s) Average | Detector | Fiducial Run
Name Long Baseline Volume Length
| Beam Power .

DAESALUS@Hyper-K | DAESALUS only N/A Hyper-K | 560 kt 10 years
DAESALUS/JPARC DAESALUS Hyper-K | 560 kt 10yrs v DAESALUS +
(nu only)@Hyper-K & JPARC 750 kW 10yrs v-only JPARC
JPARC@Hyper-K JPARC 750 kW Hyper-K | 560 kt | 3 years v +

7 vears i [106]
LBNE FNAL 850 kW LBNE | 35kt 5 years v

5 years 7 [100]
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CP Violation Sensitivity

« Daedalus has good CP sensitivity as a stand-alone experiment.
— Small cross section, flux, and efficiency uncertainties

« Daedalus can also be combined with Hyper-K v-only data to give
enhanced d.p sensitivity

— Long baseline experiments have difficulty obtaining good
statistics for v,— v, which Daedalus can provide

— Daedalus has no matter effects so can help remove ambiguities.
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106 6 Measurement Uncertainty
(degrees)

dcp Sensitivity Compared to Others
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d.p Discovery Potential
(exclude 0° and 180° with o significance in 10yrs)
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Comparison of 6.p Measurement Uncertianties
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DAEOGALUS Top Level Cost Estimate

$130M near accelerator plus $320M for 2nd and 3rd sites.

— Includes various contingencies from 20% to 50%.

— Assumes component costs drop by 50% after prod. of 1st item.
— Does not include site specific cost (buildings)

The cyclotron magnet is the cost driver.

— For this we have: Engineering Study for Daedalus Sector Magnet;
Minervini, et al., arXiv:1209.4886

The RF is based on the PSI design and scaled from those costs.
The strong similarity to RIKEN cyclotron allows cost cross check.

All targets are ~1 MW (similar to existing targets), note each cyclotron
can have more than one target to maintain the power level on each.
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Final Comments

» High-power (~1MW) class cyclotrons are becoming a reality
— For physics, they can provide high intensity neutrino sources
— Important industrial interest for medical isotope production
— Other applications in connection with accelerator driven reactors (ADS)

» |soDAR using the Phase | DAESALUS injector cyclotron can make a
definitive search for sterile neutrinos at KamLAND

« DAEOJALUS is another method to probe for CP violation in the v-sector

— Can provide high statistics v, appearance data with no matter effects
and reduced systematic uncertainties

— Can give enhanced sensitivity when combined with Hyper-K long
baseline v, appearance data

23



Backup
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Accelerator Technologies
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Where can DAESALUS run?

Hyper-K (or initially, Super-K)

(Focus for current studies)

Cavern
height: 115 m, diameter: 50 m
shielding from cosmic rays: ~4,000 m.w.e.

o ; » 2 ; Muon Veto
-’ \ = plastic scintillator panels (on top)
8 \ i : Water Cherenkov Detector
‘ ‘\‘ e \& ¥ o 3,000 phototubes
; . A e N | <5 100 kt of water
) s ! B 0 2

reduction of fast
neutron background

Steel Cylind

height: 100 m, diameter: 30 m
70 kt of organic liquid

30,000 - 50,000 phototubes

Buffer
thickness: 2 m

non-scintillating organic liquid
shielding from external radioactivity

Nylon Vessel
separating buffer liquid

Safety tunnel and liquid scintillator

(under construction) LSM Extension

(Option 2C)

Target Vol

height: 100 m, diameter: 26 m

50 kt of liquid scintillator
Memphys 2

Road tunnel Access to

(existing) Laguna site

Detector needs to have free

protons to capture neutrons

from IBD = liquid argon is
not an option
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