# Status Report: at MEMPHYNO

Inomonoto, Sashima and Izumiyama 6 Mar. 2020 mPMT-Japan meeting

# Update

- Development of analysis framework
- Gain tuning
- Fixed light leak

#### Fitter development

- Developed the fitter to calculate gain (ped. and 1 pe position):
  - Used 3 component: ped. gaussian, 1pe gaussian and exp. curve 0
    - 1. Fit the shoulder and the peak with only one gaussian for each region (red / blue)
    - 2. Using the 1st result, fit with 3 components in region of [second bin from maximum bin, 1000.] (pink and green)
- Gain and 1pe position are shown in the plots
  - The values are calculated 0 with red and blue gauusian
  - Hits / bin / TS The values between "()" are 0 calculated by the result of fitting with 3 components
- Two are not consistent: difficulty of fitting of the ped.
  - $\rightarrow$  Decided to align the 1pe positions for ch. by ch.



# Gain tuning

- Took data with 3 different HVs:
  - 1300, V1 (different by ch.), 1450 [V]
- Plotted 1pe position
  Q vs HV and fitted with

 $Q = A \times V^k$ 

- Estimated the proper HV for Q in order to be aligned for each ch.
   and applied estimated HV
   → 1 pe positions are aligned for all channels at
  - 430 within 15 precision



# Investigation for leak points

 Took the data with flashing light around the corner of the tank by smart phones in last week



# First fixing: only one corner

- Correlation between the direction of light and the channel having increase.
  - $\rightarrow$  Covered the corner with sheet



6

8

13

3

the leak for  $x^{\text{H}}_{\text{H}} = 4$   $x^{2.7}$ ch 2 & 8!  $y^{\text{H}}_{\text{O}} = 4$   $x^{1.2}$ But: still high  $x^{\text{H}}_{\text{O}} = 4$   $x^{1.2}$ for ch 5,16,18  $x^{\text{O}}$   $x^$ 

16

18

#### Second fix: edge of the tank

- Further investigation: spotlight of phones along the gap between top and side wall of the water tank
  - We confirmed the dark rate increased significantly (below spikes) for all ch.
- Reason: there are only one layer of the black tape for binding the gap  $\rightarrow$  not enough to block light
  - Need 4 or more layers of the black tape
- Added new 4 layers of the sheets of the tapes on all edge of the tank





#### After second fix

• Some channels have been improved, but there are still the effect of light ON/OFF: blue, brown, green



#### Third fix: drainage pipe on bottom

- · Found another leak point: a drainage pipe on the bottom
  - Saw spikes when turn the spotlight on
  - Covered the pipe with the sheets







#### After all fix

• Succeeded to fix all light leak except for ch. 18



#### Summary

- There were some light leak:
  - Gap between the plate of top and the barrel wall
  - Connection of drainage pipe on the bottom
- Covered with black tape and sheets
  - 1 layer of the tape is not enough to block the light leak
    nood 4 or more layers
    - $\rightarrow$  need 4 or more layers
- After all covering, the difference of light ON/OFF was suppressed significantly and it became negligible except for ch. 18
  - Now under investigation
- Started taking data for long term test (~ 1 week), yesterday

# Backup

# Goal at MEMPYNO test

- To understand behaviour of the darkrate
  - Decreasing the dark rate along time
  - Dependencies with the temperature of the environment



↑Slide of MEMPHYNO status from 10th HKPCM

#### **MEMPHYNO** setup

 1 Italian mPMT (and 1 KM3Net dom) in MEMPYNO water tank of 2 x 2 x 2 m with hodo-scope



# Light leakage

- At last HKPCM, the dark rate is correlated with day/night time → seems to be the light leakage
- Checking the light leakage point with light source.
  - Investigating the light leakage from the 4 corners of MEMPHYNO.
- Took the date, then we are analyzing it.



Light source directions

