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Part I: Analytic construction of FJRW invariants

(with Jarvis and Ruan)
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1. Superpotential

Definition 0.1
A quasi-homogeneous polynomial W(x1, · · · , xN) satisfies

W(λq1
1 x1, · · · , λ

qN
N xN) = λW(x1, · · · , xN),

where qi are the weights of xi.

W is called nondegenerate if

(1) W contains no monomial of the form xixj for i , j and

(2) the hypersurface defined by W is non-singular in projective space.
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Theorem 0.2 (K. Saito)
If W is a non-degenerate quasi-homogeneous polynomial, then the weights
qi ≤

1
2 and are uniquely determined.

Theorem 0.3 (Fan-Jarvis-Ruan, CPAM 2008)
Let W ∈ C[x1, . . . , xN] be a non-degenerate, quasi-homogeneous polyno-
mial with weights qi := wt(xi) < 1 for each variable xi, i = 1, . . . ,N. Then for
any t-tuple (u1, . . . , uN) ∈ CN we have

|ui| ≤ C

 N∑
i=1

∣∣∣∣∣∂W
∂xi

(u1, . . . , uN)
∣∣∣∣∣ + 1


δi

,

where δi =
qi

minj(1−qj)
and the constant C depends only on W. If qi ≤ 1/2

for all i ∈ {1, . . . ,N}, then δi ≤ 1 for all i ∈ {1, . . . ,N}. If qi < 1/2 for all
i ∈ {1, . . . ,N}, then δi < 1 for all i ∈ {1, . . . ,N}.

Proof.
Use algebraic geometry and matrix analysis. �
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Lemma 0.4
If W is non-degenerate, then the group

GW := {(α1, . . . , αN) ∈ (C∗)N | W(α1x1, . . . , αNxN) = W(x1, . . . , xN)}

of diagonal symmetries of W is finite.

Definition 0.5

We write each element γ ∈ GW (uniquely) as

γ = (exp(2πiΘγ
1), . . . , exp(2πiΘγ

N)),

with Θ
γ
i ∈ [0, 1) ∩ Q.

J := (exp(2πiq1), . . . , exp(2πiqN)),

The cyclic group 〈J〉 will play important roles.
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2. W structure and W curve

Definition 0.6
Orbicurve (C , p1, · · · , pk): possible orbifold structure at pi or nodal points; A
uniformizing system is given by z→ zmi ; Local group Gpi � Zmi .
If L is a orbifold line bundle and (z, s) is the local coordinates
of the uniformizing system near pi, the action of Gpi is (z, s) →

(exp(2πi/mi)z, exp(2πiv/mi)s).
We can naturally define the group action at the nodal points.

Definition 0.7
A W-curve C = (C , p1, · · · , pk,L1, · · · ,LN , ϕ1, · · · , ϕs) is a genus
g orbicurve C , having k marked points and with the W-structure
(L1, · · · ,LN , ϕ1, · · · , ϕs). A W structure means that the orbifold line bun-
dles L1, · · · ,LN should satisfy the isomorphisms:

ϕi : W(L1, · · · ,LN)→ Klog = KC ⊗ (O(p1)) ⊗ · · · (O(pk)),∀i = 1, · · · , s.
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broad line bundles and narrow line bundles: If the orbifold action of
a line bundle Li at a marked (or nodal) marked point p is trivial, i.e.,
Θ
γ
i = 0, then Li is called a broad line bundles at p; Otherwise it is

called the narrow line bundle at p.

If all the line bundles at a marked (or a nodal) point p are narrow line
bundles, then p is called a narrow point; otherwise it is called a broad
marked (or nodal) point.

Let γ ∈ G be the generator of the local group at p, then it has the action
to CN . Define Wγ = W |CN

γ
.

(explain here why one needs ”orbifold” structure and do a summary)
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3. Moduli space of W curves

M g,k := {(C , p1, · · · , pk)}: moduli space of genus g curves with k
marked points.

W g,k(γ) := {(C)}: moduli space of W-curves C.It is a stratified space

Natural maps

st : W g,k(γ)→M g,k , (forgetting map)θ : W g,k+1,W(γ, J)→ W g,k(γ)

and other cutting-gluing operations.
taughtological ring in H∗(W g,k(γ)). ψi, κi classes and etc.

Theorem 0.8
For any non-degenerate, quasi-homogeneous polynomial W, the stack
W g,k is a smooth, compact orbifold (Deligne-Mumford stack) with projec-
tive coarse moduli. In particular, the morphism st : W g,k → M g,k is flat,
proper and quasi-finite (but not representable).
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Rigidified W curve

W g,k(γ) is not an appropriate working space for analysis, We need con-

sider the moduli space of the rigidified W curves, W
rig
g,k(γ). It is a branched

covering space of W g,k(γ).

Definition 0.9
A rigidification ψ at a marked point p is a local trivialization of the orbifold
structure such that it preserves the W-structure, i.e., the diagram commutes

j∗p

 N⊕
m=1

Lm

 ψ - [CN/Gp]

j∗p(Klog)

φ` ◦W`

? residue - C

W`

?

(1)

where the residue map takes dz
z to 1.
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Definition 0.10
A rigidified W-curve is defined as C :=
{C , p1, · · · , pk,L1,LN , ϕ1, · · · , ϕs, ψ1, · · · , ψk}, where ψi are rigidifica-
tion at marked point pi. The moduli space of the rigidified W-curves is the

equivalence of those C, and is denoted by W
rig
g,k(γ).
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4. Witten map and its perturbation

Metric choices: Choose cylindric metric near a marked or nodal point, i.e.,
let |dz

z | = 1. This metric will induce metrics of line bundles Li by W-structure.
Let C = (C ,L ,Ψ) be a rigidified W-curve with the cylindrical metric. We
can define a metric-preserving map:

Ĩ1 : Ω(Σ̃, L̄ −1
j ⊗ Λ0,1)→ Ω(Σ̃,Lj ⊗ Λ0,1).

Now the Witten equation on orbifolds is defined as

W̃M(C,u) := ∂̄ui + Ĩ1

∂W
∂ui

 = 0,∀i = 1, · · · ,N.
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Stratified Orbifold Fréchet bundles B0 and B0,1 over W
rig
g,k(γ): The fiber

spaces at C are:

C∞(C ,Lj) := {(uj,ν) ∈ ⊕νC∞(Cν,Lj)|uj,ν(pν) = uj,µ(pµ), if πν(pν) = πµ(pµ)}.

C∞(C ,Lj ⊗ Λ0,1) := {(uj,ν) ∈ ⊕νC∞(Cν,Lj ⊗ Λ0,1)}.

Now the Witten map W̃M is viewed as a section from B0 to π∗B0,1.
Some difficulties:

In uniformizing system, the Witten map is G-equivariant.

W is a highly degenerate Hamiltonian function

Can’t perturb W̃M directly.
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Perturbed Witten map as multisection

We can modify the Witten map near each broad marked or nodal point such
that it looks like

∂̄ui + Ĩ1

∂W + W0,γ

∂ui

 = 0, if ui is broad variable.

Where W0,γ is a linear perturbation of Wγ such that W0,γ + Wγ is a holo-
morphic morse function. The perturbation depends on the parameter b =

(b1, · · · , bN).
Since the perturbation will break the G-equivariance, the perturbed Witten
section WI : B0 → B1,0 is a multisection!.

The perturbation parameters for the two components connecting at a
nodal point p should satisfy some compatibility condition.

Define the perturbed Witten map globally over W
rig
g,k by partition of

unity.
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5. Nonlinear analysis for the perturbed Witten equation

Note: This system is a non-conformal nonlinear Cauchy-Riemann system.
So the analysis here is different to that for 4d Yang-Mills equation and
pseudo-holomorphic curves. It is also different from the Seiberg-Witten
equation, whose solutions have C0-norm estimate.
Near the marked points, it is same as the trajectory equation in Floer’s
theory, but in the interior it is like the semilinear elliptic equations.

Interior estimate: ||u||Ck ≤ C.(Use the crucial inequality in Lemma 0.3)

Convergence at marked or nodal points: u = (u1, · · · , uN) → κi as
z→ p, where κi is one of the critical points of Wγ + W0,γ.

Exponential convergence
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6. Soliton space

Consider the equation on (R1 × S1,−∞, 0,+∞, γ, ∗, γ−1, ψ). (In cylinder co-
ordinates ζ = s + iθ)

∂̄ui

∂ξ̄
− 2

∂(W + W0,γ)
∂ui

= 0.

Definition 0.11
The nontrivial solution is called Soliton solution, and if the solution is also
independent of the angle, then it is called BPS-Soliton.

Notice: The BPS soliton is S1-invariant solution (bring the cone structure
near the possible boundary).
If u is a solution, then

(Wγ + W0,γ)(κ−) − (Wγ + W0,γ)(κ+) = 2
∫ +∞

−∞

∫
S1

∑
i

∣∣∣∣∣∣∂(W + W0,γ)
∂ui

∣∣∣∣∣∣2 .
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Conclusions:

Only if we choose the perturbation parameter b for γ such that for two dif-
ferent critical points κ+ and κ− for Wγ + W0,γ, the following holds

Im(Wγ + W0,γ)(κi) = Im(Wγ + W0,γ)(κj).

there exists soliton solutions.

Definition 0.12
If b is chosen such that for all γ ∈ G, Wγ + W0,γ is a holomorphic morse
function, the perturbation is called regular; for regular b, if for any γ the
above equality does not hold, the perturbation is called strongly regular.

Theorem 0.13
The regular but not strongly regular parameters b consists of a generic set
in finite real codimension 1 hypersurfaces which separate CN into cham-
bers.
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7. Moduli space of stable W sections W
rig
g,k(γ, κ)

Compactness Loss: If the moduli space W
rig
g,k,W(γ, κ) is strongly regular

perturbed, then there is no loss of compactness. If it is regular perturbed
but not strongly regular perturbed, then there is compactness loss phe-
nomena due to the existence of soliton solutions. In the latter case, we
need add the ”soliton W sections” into our moduli space. So We need to

consider a larger space W
rig,s
g,k (γ, κ).

W
rig,s
g,k (γ, κ)

is a stratified space stratified by the decorated dual graphs.

We can define the Gromov-Hausdorff topology such that W
rig,s
g,k (γ, κ) is

a compact Hausdorff space.
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If W
rig,s
g,k (γ, κ) = W

rig
g,k(γ, κ) (strongly regular perturbed), then it is a

space ”without boundary”.

If the perturbation is regular but not strongly regular perturbed, then

W
rig,s
g,k (γ, κ) is a space ”with boundary” and the boundary is related to

BPS soliton. Solitons but not BPS solitons appear in the interior of the
moduli space(with finite automorphism group).
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8. Fredholm theory and the virtual dimension

For any C ∈ W
rig
g,k(γ) we have the Witten map:

WIC : Lp
1(C ,L1 × · · · ×LN)→ Lp(C ,Li ⊗ Λ0,1),

which has the following form:

WIC(u) = (∂̄C u1 + Ĩ1

∂(W + W0,β)
∂u1

 , · · · , ∂̄C uN + Ĩ1

∂(W + W0,β)
∂uN

).
Here the perturbation term W0,β has the form $(ζ)βiW0,γ which is deter-
mined by the combinatorial type of C and the group element γ and the
cut-off section βi.
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We will always set p > 2 in our discussion.
We have the linearized operator DC,uWI of WIC at u:

DC,uWI(φ) := DC,uWI(φ1, · · · , φN) :=∂̄C φ1 +
∑

j

Ĩ1

∂2(W + W0,β)
∂u1∂uj

φj

 , · · · , ∂̄C φN +
∑

j

Ĩ1

∂2(W + W0,β)
∂uN∂uj

φj


 .
(2)

DC,uWI is a map from Lp
1(C ,L1×· · ·×LN) to Lp(C ,L1⊗Λ0,1)×· · ·Lp(C ,LN⊗

Λ0,1).

The broad marked points and the narrow marked points have different
contribution to the index !
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Theorem 0.14

Let (C,u) ∈ W
rig,s
g,k,w(γ, κ) and assume that C is connected. Then its lin-

earized operator DC,uWI : Lp
1(C ,L1 × · · · ×LN)→ Lp(C ,L1 ⊗Λ0,1) × · · · ×

Lp(C ,LN ⊗ Λ0,1) is a real linear Fredholm operator of index 2ĉW(1 − g) −∑
τ 2ι(γτ) −

∑k
τ=1 Nγτ , where ĉW =

∑
i(1 − 2qi), ι(γτ) =

∑
i(Θ

γτ
i − qi) and

Nγτ = dimCN
γτ

( if CN
γτ

= {0}, we set Nγτ = 0).

Corollary 0.15

Let (uj1,j2 , γ) ∈ Sγ(κj1 , κj2). Then the linearized operator Duj1 ,j2
(WI) is a real

linear Fredholm operator of index 0 on R × S1.
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9. Orientable Kuranishi structure and virtual fundamental
cycles: Fukaya-Ono’s machinery (developed later by
Fukaya-Oh-Ono-Ota)

Remark: many other virtual constructions by Li-Tian, Ruan, Siebert,Hofer,Bohui
Chen....
Construction of the interior Kuranishi neighborhood: (Uσ,Eσ, sσ,Ψσ).
By modified Implicit functional theorem and a priori estimates for the
solutions. (No transversality)
Construction of the Kuranishi nbhd. on boundary: Study the BPS
soliton carefully including computation of the obstruction bundles (2
cases: Tree and Loop cases).
Gluing Glue the K-nbhd from the lower strata and choose the suitable
obstruction bundle on the overlaps.
orientation Show that the Kuranishi structure is orientable and coher-
ent, i.e., the orientation should respect the gluing operation. It is much
the same to the treatment of Floer’s Hamiltonian trajectory.
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10. Virtual fundamental cycle

By Fukaya-Ono’s machinery, we can get the virtual fundamental cycle

[W
rig
g,k(γ, κ)]vir ∈ H∗(W

rig
g,k(γ, κ)) if the perturbation is strongly regular.

Its (real) dimension is 6g − 6 + 2k − 2D −
∑k

i=1 Nγi = 2((ĉW − 3)(1 − g) +

k −
∑k
τ=1 ι(γτ)) −

∑k
i=1 Nγi .

We can define the boundary cycles [W
rig
g,k(Γ)]vir w.r.t. the decorated

dual graph Γ.

If two perturbation parameter b and b′ are in the same chamber of
CN , then the corresponding virtual cycles are the same. Hence the
virutal cycles actually depends on the vanishing cycles (or Lefschetz
thimbles) of Wγ + W0,γ.
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Quantum Picard-Lefschetz theory:Wall-crossing formula

If take a path b(λ) go through the wall of the chamber, then the virtual cycles
will transform in the same way as the corresponding vanishing cycles (Lefschetz
thimbls) change in the classical Picard-Lefschetz theory.
Let (b1(λ), · · · , bNγ̃

(λ)), λ ∈ [−1, 1] be a generic crossing path in CNγ̃ .
Let {κ1(±), · · · , κi(±), κi+1(±), · · · , κµNγ̃ (±)} be the set of ordered critical points at
λ = ±1. We can assume that κj(±) = κj is fixed for j , i, κi(±) = κi(λ = ±1) and
Im(αi(λ = 0)) = Im(αi+1).
If the perturbation satisfies Reαi(λ) < Reαi+1, we have the left-transformation:

[W
rig
g,k,W (γ′, γ̃; κ′, κj(+))]vir = [W

rig
g,k,W (γ′, γ̃; κ′, κj(−))]vir, ∀j , i, i + 1 (3)

[W
rig
g,k,W (γ′, γ̃; κ′, κi(+))]vir = [W

rig
g,k,W (γ′, γ̃; κ′, κi+1(−))]vir+

Ri,i+1 · [W
rig
g,k,W (γ′, γ̃; κ′, κi(−))]vir (4)

[W
rig
g,k,W (γ′, γ̃; κ′, κi+1(+))]vir = [W

rig
g,k,W (γ′, γ̃; κ′, κi(−))]vir, (5)

where Ri,i+1 is the intersection number defined as above.
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Wall-crossing formula

If the perturbation satisfies Reαi(λ) > Reαi+1, we have the right-transformation:

[W
rig
g,k,W (γ′, γ̃; κ′, κj(+))]vir = [W

rig
g,k,W (γ′, γ̃; κ′, κj(−))]vir, ∀j , i, i + 1 (6)

[W
rig
g,k,W (γ′, γ̃; κ′, κi(+))]vir = [W

rig
g,k,W (γ′, γ̃; κ′, κi+1(−))]vir, (7)

[W
rig
g,k,W (γ′, γ̃; κ′, κi+1(+))]vir = [W

rig
g,k,W (γ′, γ̃; κ′, κi(−))]vir+

Ri,i+1 · [W
rig
g,k,W (γ′, γ̃; κ′, κi+1(−))]vir (8)
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Definition of the virtual cycle [W
rig
g,k(γ)]vir

Fix γ = {γ1, · · · , γk} and choose the moduli space W
rig
g,k(γ, κ) to be strongly regular.

For each γ ∈ G, choose the basis {S−j (γ), j = 1, · · · , µγ} in HNγ
(CN

γ , (Wγ+W0,γ)−∞,Q)
corresponding to the critical points of Wγ + W0,γ and the dual basis {Sj(γ), j =

1, · · · , µγ} in HNγ
(CN

γ , (Wγ+W0,γ)∞,Q). Then each combination
(
S−j1 (γ1), · · · , S−jk (γk)

)
corresponds to the combination of k critical points, κj1···jk :=

(
κ−j1 (γ1), · · · , κ−jk (γk)

)
.

We obtain the virtual cycle [W
rig
g,k(Γ;γ, κj1···jk )]

vir

=: [W
rig
g,k(Γ;γ, S−j1 (γ1), · · · , S−jk (γk))]vir. Now we fix a strongly regular parameter (b0

i );
the Gauss-Manin connection provides the isomorphisms

GM(b0
i ) : HNγ

(CN
γ , (Wγ + W0,γ)±∞,Q)→ HNγ

(CN
γ , (Wγ)±∞,Q)

Using the isomorphisms we can identify HNγ
(CN

γ , (Wγ + W0,γ)±∞,Q)
with HNγ

(CN
γ , (Wγ)±∞,Q).
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Define [
W

rig
W (Γ)

]vir
:=

∑
j1,··· ,jk

[W rig
g,k,W(Γ;γ, κj1···jk )

]vir
⊗

k∏
i=1

Sji(γi)

 (9)

∈ H∗(W
rig
g,k(Γ)) ⊗

∏
τ∈T(Γ)

HNγτ
(CN

γτ
,W∞γτ ,Q) (10)

By the Wall-crossing formula, We have

Proposition 0.16

The virtual cycle
[
W

rig
W (Γ)

]vir
is independent of the choice of the basis

{Sji(γi)} of HNγ(C
N
γ , (Wγ)±∞,Q) at each marked point pi.

Since the parallel transport induced by the Gauss-Manin connection pre-
serves the inner product of the homology bundle, the above proposition

justifies the definition of the virtual cycle
[
W

rig
W (Γ)

]vir
.
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Definition of the virtual cycle [W g,k(γ)]vir

Define
[W W(Γ)]vir :=

1
deg soΓ

(soΓ)∗[W
rig
W (Γ)]vir,

where
soΓ : W

rig
W (Γ)→ W W(Γ)

is the soften map. In particular, one has

[W W(γ)]vir :=
1

deg so
(so)∗[W

rig
W (γ)]vir.

Theorem 0.17

The virtual cycle [W g,k(γ)]vir satisfies the CohFT axioms.
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12. Some words about algebraic construction

Algebraic construction of virtual cycle for purely narrow case. Contri-
bution by many mathematicians:

For broad case, it is still mysterious. People must understand how to
use Hironaka’s resolution of singularity and understand the totally real
structure appeared in the picture.

Real structure should be understood as the Z2 symmetry of algebraic
structure, after modulo such Z2 equivalence, can one get the right in-
dex formula and algebraic construction.

A challenge for algebraic geometers, but doable.

Geometry and topology of W g,k stack is a very interesting object to be
studied.
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Part II: Gauged Linear Sigma Model via gauged Witten
equation

(with Jarvis and Ruan)
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1. Symplectic quotient (GIT) and W-structure

V � Cn, C∗R action (z1, · · · , zn) 7→ (λc1z1, · · · , λ
cnzn)

G ⊂ GL(V ,C) reductive algebraic group such that G and C∗R is com-
patible, i.e., they satisfy

1 C∗R ⊂ N(G),G ⊂ N(C∗R);
2 G ∩ C∗R = 〈J〉.

gauge group Γ = G · C∗R and canonical homomorphism ζ : Γ 7→ C∗ by

g · (λc1 , · · · , λcn) 7→ λd.

Superpotential W : V 7→ C is of degree d w.r.t. C∗R-action and invari-
ant under the action of G. Then W is well-defined on the symplectic
quotient Vτ = V//τΓ, where τ ∈ η := Lie(Γ) lying on possible different
phase separated by the critical value of the moment map µ : V 7→ η.

W-structure on a orbicurve C is a Γ-principle bundle P : C → BΓ

such that (1) this map to the classifying stack is representale;(2)∃ iso-
morphism ε : ζ∗(P) � P(ωlog,C ).
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2. Gauged Witten equation and interior compactness

Take a representation ρ : Γ → V. We have the associated bundle
E = P ×Γ V and the dual bundle E ∗. Fix a hermitian metric on E
which provide an isomorphism I : E ∗ → E .

Since W : V → C is Γ-equivariant and G-invariant, it provides a bundle
homomorphism W : E → ωlog,C . the differential duW(u) along the
section u is a linear map duW(u) : E → ωlog,C , i.e., duW(u) ∈ E ∗ ⊗
ωlog,C , =⇒ I(duW(u)) ∈ E ⊗ωlog,C . Hence we have the first equation of
the Gauged Witten equation:

∂̄Au + I(duW(u)) = 0,

where A is any connection.

On the other hand, Given any Γ-connection A on E , the curvature FA

is the η-valued 2-form and we have the connection equation:

∗FA = µ(u)

Huijun Fan (Peking Univ.) virtual cycle February 13, 2014 32 / 45



Hence we have the Gauged Witten equation:∂̄Au + I(duW(u)) = 0
∗FA = µ(u)

It is different to the symplectic vortex equation.

GWE is invariant under the gauge group provided by the structure
group Γ.

(Interior compactness theorem) Assume that Γ ⊂ U(n) and µ(u) has at
most polynomial growth. Under an extra gauge condition d∗A = 0, all
the solution (A, u) of the gauged Witten equation satisfying the gauge
condition have uniform Cm bound in the interior of C away from the
orbifold points.
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Proof.
A brief proof. Using the technique from FJRW theory, from equation (1) one
obtain the estimate(local):

||u||W1,2 ≤ C||A||L2 + C

By the second and the third equation, essentially using the Hodge
decomposition(d + d∗), one obtain

||A||W1,2 ≤ C(||µ(u)||L2 + ||A ∧ A||L2 + ||A||L2).

Now by Sobolev embedding theorem, one get the W1,2 norm estimate of A
and then u. By bootstrapping technique, one obtain any Cm norm estimate.

�
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3. Virtual cycle for the narrow sector

In this case, all the marked points are narrow. then duW(u) will provide
extra vanishing information such that the second term of the first equation
of GWE lying on E ⊗ ωC . Now by Witten lemma, this equation is decouple
into

∂̄Au = 0, duW(u) ≡ 0,

which shows that u is A-holomorphic section whose image is in the criti-
cal locus of W. The second equation of GWE become the Hitchin system,
which by Hitchin-Kobayashi correspondence, should correspond to the sta-
ble bundle structure on C . Hence in narrow case, we are in the situation
of quasi-map,cosection, and etc. by Ciocan-Fontanine and B, Kim, B. Kim,
Kiem-Li, Li-Zhang, Li-Li-Zhang,...

Theorem 0.18
The virtual cycle for the narrow sector can be constructed algebraically.
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Part III: LG B model: study by analytic method

(by H. Fan)
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1 Aim: Using P. D. E. technique to understand LG B model, in particular
Saito’s flat structure for singularity.

2 This work was based on the pioneer work of Cecotti, Cecotti-Vafa
(around 1990) and Losev (1998).

3 Other method: i) K. Saito’s original way by singularity theory ii) Li-Li-
Saito’s method using polyvector field.

4 Paper: Schrödinger equation, deformation theory and tt∗ geometry,
arxiv.1107.1290, 114 pages

5 I was informed by Si Li in this conference that S. Klimek and A. Lesniewski
has the following paper related to partial of my work:
Local Rings of Singularities and N= 2 Supersymmetric Quantum Me-
chanics, Comm. Math. Phys. 136,327-344 (1991)

Huijun Fan (Peking Univ.) virtual cycle February 13, 2014 37 / 45



1.Differential operators

Initial data: (M, g) non-compact complete K ahler manifold with bounded
geometry. f : holomorphic function on M.

twisted operator: ∂̄f = ∂̄ + ∂f∧, ∂f = ∂ + ∂f∧, ∂̄†f , ∂
†

f ,∆f = ∂̄f ∂̄
†

f + ∂̄†f ∂̄f ...

Locally, ∆f = ∆∂̄ + Lf + |∂f |2 is a matrix-valued Schrödinger operator on
M. Lf depends on ∇∂f linearly.

Strongly tame condition of (M, g, f ): ∀C > 0, |∂f |2 − C|∇∂f | → ∞, as
d(z, z0)→ ∞.

Examples: (Cn, i
2
∑

l dzl ∧ dzl̄,W), ((C∗)n, i
2
∑

l
dzl

zl ∧
dzl̄

zl̄ , f ), where W is
non-degenerate quasi-homogeneous polynomial and f is non-degenerate
and convinient Laurent polynomial. They are strongly tame!. E.g.
f = z1 + · · · + zn + 1

z1···zn
.
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2. Spectrum theorem, variation of Hodge structure and
stability theorem

Theorem 0.19
If (M, g, f ) is strongly tame, then ∆f has purely discrete spectrum.

Theorem 0.20
Hodge theorem, Hard Lefschetz theorem hold and we obtain the Dolbeaut
isomorphism between the space of L2 harmonic forms and the L2 ∂̄f coho-
mology.

Theorem 0.21
If (M, g, f ) is strongly tame and M is stein manifold, then the L2 − ∂̄f co-
homology is isomorphic to the space of Lefschetz thimble of f , and then
isomorphic to the Milnor ring of f
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We can define and study the ”strong deformation” τft, (τ, t) ∈ C∗ × S ⊂
C∗ × Cm.

Proposition 0.22
1 Strong deformation of a non-deg. quasi-homo. pol. W contains all

marginal and relevant deformation
2 strong deformation of a non-deg. and convenient Laurent pol. contains

all of its subdiagram deformation.
3 universal deformation of all singularities with central charge ĈW ≤ 1.

We go ahead:
after strong deformation, we have ∂̄τft ,∆τft , . . . . =⇒Hodge bundle H →

C∗ × S
Stability theorem: the Green function Gτ,t of ∆τft depends smoothly on
τ, t.
We can endow geometrical structure to H : hermitian metric h, metric
connection ∇, Higgs field C, C̄ and flat connection D = ∇ + C + C̄ =⇒

deformation of holomorphic bundle H after gauge transformation and
a family of Chern connections ∇G + ∂̄.
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Solve D · s = 0 via the Hodge theory, we obtain the period matrix: the
fundamental matrix Π = (Π1, · · · ,Πµ).

the first column vector of Π, denote by Π1 has the form

Π1 =


τ

n
2−1

∫
Γ1

eτft+τft dz1 ∧ · · · dzn

...

τ
n
2−1

∫
Γµ

eτft+τft dz1 ∧ · · · dzn


We call it ”primitive vector”, because we have Πj = ∂jΠ1 for j = 2, · · · , µ.

If dim S = m = µ, then we have an isomorphism Π̂ : TS→H by

X → ιX(B) · Π1.

Then we pull back all the structure from H to TS, and let τ̄ → 0, then
we obtain the Frobenius manifold structure on the holomorphic tangent
bundle TS.
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Remark 0.23
1 I believe Π̂1|τ̄ = 0 corresponds to Saito’s primitive form
2 If we do not let τ̄ → 0, then Π̂1 is only C∞, and in this case, the pull-

back metric has a flat torsion free Chern connection defined on TS, i.e.,
the Kähler flat metric.

3 the hermitian metric h on H is just the residue pairing plus the real
structure, and I believe the pull-back pairing is just Saito’s higher
residue pairing if we expand τ.

4 In another word, Saito’s higher residue pairing is part of a Kähler-Ricci
flat metric, i.e., a Calabi-Yau metric.

5 If we consider the o.d.e w.r.t the coupling constant τ, then we get a
isomonodromic deformtion, which is related to Riemann-Hilbert prob-
lem.
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3. Recent progress and potential applications

Generalize to the operator ∂̄θ twisted with a closed holomorphic 1-form
θ and generalize the ”strong tame condition” to the tame condition:

lim
d→∞

(|θ|2 − C|∇θ|) > 0, for some C > 0.

Spectrum theorem: under the tame condition about (M, g, θ), the con-
tinue spectrum of ∆θ exists but has a positive lower bound.=⇒ Hodge
theory holds and all argument can almost go through.
potential application 1: If consider system (Cn, i

2
∑

l dzl ∧ dzl̄,W), then
one can recover Saito’s flat structure about singularity.
potential pplication 2: if consider system ((C∗)n, i

2
∑

l
dzl

zl ∧
dzl̄

zl̄ , f ), then
one should get the result of GKZ system.
potential application 3: If consider θ be the derivative of the log function
of the hyperplane arrangement in affine space, then one should get KZ
system. (The log system and its cohomology has been considered by
K. Saito also)
potential pplication 4: may apply to some topological insulator in physics.
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4. Heat kernal expansion and analytic torsion of
singularity

Cooperated with Hao Fang (iowa Univ.), we obtained the following results:
Let W be a quasi-homo. pol on Cn satisfies qM − qm < 1/3, then

1 The heat kernel expansion of e−t∆f exists when t → 0
2 Index formula holds for ∂̄f such that the milnor number can be ex-

pressed as a Gaussian type integral over Cn.
3 Thep-th Zeta function of ∆f and the p-th analytic torsion was defined.
4 The first zeta function vanishes.
5 The second torsion is nontrivial and the torsion of z2 is ζ′R(−1). This is

just the BCOV type torsion for LG model.
6 The proof of transgression formula is in progress
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Thanks!
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