On the Fukaya-Seidel categories of surface Lefschetz fibrations

SUGIYAMA Satoshi

The University of Tokyo

SUGIYAMA Satoshi (The University of Tokyo)

Contents

2 LF and exact LF

- Fukaya-Seidel categories
 - Proof of Theorem 2
- 5 Further developements

• A Lefschetz fibration (LF) is a fibration with singularities. (The precise definition is given later.)

《口》《聞》《臣》《臣》

- A Lefschetz fibration (LF) is a fibration with singularities. (The precise definition is given later.)
- An exact Lefschetz fibration (exact LF) is a Lefschetz fibration equipped with an exact symplectic structure.

- A Lefschetz fibration (LF) is a fibration with singularities. (The precise definition is given later.)
- An exact Lefschetz fibration (exact LF) is a Lefschetz fibration equipped with an exact symplectic structure.
- Seidel defined the Fukaya-Seidel category $\mathcal{F}(\pi)$ for an exact LF π .

A B + A B +

- A Lefschetz fibration (LF) is a fibration with singularities. (The precise definition is given later.)
- An exact Lefschetz fibration (exact LF) is a Lefschetz fibration equipped with an exact symplectic structure.
- Seidel defined the Fukaya-Seidel category *F*(*π*) for an exact LF *π*.
 And he shows that a derived category *DF*(*π*) is an invariant of *π*.

A B + A B +

- A Lefschetz fibration (LF) is a fibration with singularities. (The precise definition is given later.)
- An exact Lefschetz fibration (exact LF) is a Lefschetz fibration equipped with an exact symplectic structure.
- Seidel defined the Fukaya-Seidel category *F*(*π*) for an exact LF *π*.
 And he shows that a derived category *DF*(*π*) is an invariant of *π*.
- The Fukaya-Seidel categories are studied in the context of the Homological Mirror Symmetry.

- A Lefschetz fibration (LF) is a fibration with singularities. (The precise definition is given later.)
- An exact Lefschetz fibration (exact LF) is a Lefschetz fibration equipped with an exact symplectic structure.
- Seidel defined the Fukaya-Seidel category *F*(*π*) for an exact LF *π*.
 And he shows that a derived category *DF*(*π*) is an invariant of *π*.
- The Fukaya-Seidel categories are studied in the context of the Homological Mirror Symmetry.
- We show that we can define the Fukaya-Seidel category for some LF (not necessarily exact!),

ヘロト 人間 ト 人造 ト 人造 トー

- A Lefschetz fibration (LF) is a fibration with singularities. (The precise definition is given later.)
- An exact Lefschetz fibration (exact LF) is a Lefschetz fibration equipped with an exact symplectic structure.
- Seidel defined the Fukaya-Seidel category *F*(*π*) for an exact LF *π*.
 And he shows that a derived category *DF*(*π*) is an invariant of *π*.
- The Fukaya-Seidel categories are studied in the context of the Homological Mirror Symmetry.
- We show that we can define the Fukaya-Seidel category for some LF (not necessarily exact!), and prove the invariance of its derived category.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is defeomorphic to $\Sigma_{g,1}$

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating.

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. Then there exists a structure of exact Lefschetz fibration.

Theorem 1.2 (S.)

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating.

Theorem 1.2 (S.)

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. \to There exist structures of exact LF of π , and fix one of them.

Theorem 1.2 (S.)

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is defeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating.

- \rightarrow There exist structures of exact LF of π , and fix one of them.
- \rightarrow We can define the Fukaya-Seidel category $\mathcal{F}(\pi)$ of π .

Theorem 1.2 (S.)

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. \to There exist structures of exact LF of π , and fix one of them. \to We can define the Fukaya-Seidel category $\mathcal{F}(\pi)$ of π . Then, the derived Fukaya-Seidel category $D\mathcal{F}(\pi)$ is an invariant of π ,

Theorem 1.2 (S.)

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. \to There exist structures of exact LF of π , and fix one of them. \to We can define the Fukaya-Seidel category $\mathcal{F}(\pi)$ of π . Then, the derived Fukaya-Seidel category $D\mathcal{F}(\pi)$ is an invariant of π , *i.e.* the equivalent class of $D\mathcal{F}(\pi)$ as triangulated category is independent of the choice of the structure of exact Lefschetz fibration. Fukaya-Seidel category for closed LF with boudary data

Theorem 1.3 (S.)

Let π be a closed LF over S^2

Fukaya-Seidel category for closed LF with boudary data

Theorem 1.3 (S.)

Let π be a closed LF over S^2 and *s* be a section of π that does not pass through the critical points of π . Fukaya-Seidel category for closed LF with boudary data

Theorem 1.3 (S.)

Let π be a closed LF over S^2 and s be a section of π that does not pass through the critical points of π . We can define a Fukaya-Seidel category for a pair (π , s) and its derived category is an invariant of (π , s).

Contents

2 LF and exact LF

- Fukaya-Seidel categories
 - Proof of Theorem 2
- 5 Further developements

Definition 2.1 (Lefschetz fibration)

Definition 2.1 (Lefschetz fibration)

Let *D* be the closed unit disc in \mathbb{C} . π : $E^4 \to S^2$ (resp. *D*) is a Lefschetz fibration over S^2 (resp. *D*) if the following conditions are satisfied.

E is a manifold with boundary (resp. corner).

Definition 2.1 (Lefschetz fibration)

- E is a manifold with boundary (resp. corner).
- Crit(π) → Critv(π) is a bijection between finite sets.
 Crit(π) ⊂ Interior(E).

Definition 2.1 (Lefschetz fibration)

- E is a manifold with boundary (resp. corner).
- Crit(π) → Critv(π) is a bijection between finite sets.
 Crit(π) ⊂ Interior(E).
- 2 $\pi|_{\pi^{-1}(S^2 \setminus Critv(\pi))}$ (resp. $\pi|_{\pi^{-1}(D \setminus Critv(\pi))}$) is a smooth fibre bundle. The fiber *M* is a manifold with boundary.

Definition 2.1 (Lefschetz fibration)

- E is a manifold with boundary (resp. corner).
- Crit(π) → Critv(π) is a bijection between finite sets.
 Crit(π) ⊂ Interior(E).
- 2 $\pi|_{\pi^{-1}(S^2 \setminus Critv(\pi))}$ (resp. $\pi|_{\pi^{-1}(D \setminus Critv(\pi))}$) is a smooth fibre bundle. The fiber *M* is a manifold with boundary.
- Solution The critical point is described by $\pi(z_0, z_1) = z_0^2 + z_1^2$.

Definition 2.1 (Lefschetz fibration)

- E is a manifold with boundary (resp. corner).
- Crit(π) → Critv(π) is a bijection between finite sets.
 Crit(π) ⊂ Interior(E).
- 2 $\pi|_{\pi^{-1}(S^2 \setminus Critv(\pi))}$ (resp. $\pi|_{\pi^{-1}(D \setminus Critv(\pi))}$) is a smooth fibre bundle. The fiber *M* is a manifold with boundary.
- Solution The critical point is described by $\pi(z_0, z_1) = z_0^2 + z_1^2$.
- ∂E is trivial in some sense.

포사 포

æ

≣ ।•

< 口 > < 同 >

exact symplectic manifold

Definition 2.2 (exact symplectic manifold)

A four-tuple (M, ω, θ, J) is called an exact symplectic manifold if the following conditions hold.

- (M, ω) is a compact symplectc manifold with corner.
- 2 θ is a 1-form on M and satisfies $d\theta = \omega$.
- **③** The negative Liouville vector field $X_ heta$ points strictly inwards on ∂M .
- **9** J is an ω -compatible almost complex structure on M.
- **(5)** ∂M is weakly *J*-convex.

Definition 2.3 (exact Lefschetz fibration)

Definition 2.3 (exact Lefschetz fibration)

We call $\pi: E^4 \to D$ an exact Lefschetz fibration if the following conditions are satisfied.

• $E = (E, \omega, \theta, J)$ is an exact symplectic manifold.

Definition 2.3 (exact Lefschetz fibration)

- $E = (E, \omega, \theta, J)$ is an exact symplectic manifold.
- j is a complex structure on D. π is a (J, j)-holomorphic Lefschetz fibration with regular fibre M.

Definition 2.3 (exact Lefschetz fibration)

- $E = (E, \omega, \theta, J)$ is an exact symplectic manifold.
- j is a complex structure on D.
 π is a (J, j)-holomorphic Lefschetz fibration with regular fibre M.
- 2 J is integrable around $Crit(\pi)$.

Definition 2.3 (exact Lefschetz fibration)

- $E = (E, \omega, \theta, J)$ is an exact symplectic manifold.
- *j* is a complex structure on *D*.
 π is a (*J*, *j*)-holomorphic Lefschetz fibration with regular fibre *M*.
- 2 J is integrable around $Crit(\pi)$.
- **3** ω is canonical one around $\partial_h E := \partial M \times D \subset U \cong (\bigsqcup S^1) \times [0, \varepsilon) \times D$
Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating.

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. Then there exists a structure of exact Lefschetz fibration.

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. Then there exists a structure of exact Lefschetz fibration.

Proof.

• A symplectic form ω is constructed by Gompf's method.

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. Then there exists a structure of exact Lefschetz fibration.

Proof.

- A symplectic form ω is constructed by Gompf's method.
- We can construct an exact symplectic form if all vanishing cycles are non-separating.

Theorem 1.1

Let $\pi: E^4 \to D$ be a Lefschetz fibration whose regular fibre is deffeomorphic to $\Sigma_{g,1}$ and all vanishing cycles are non-separating. Then there exists a structure of exact Lefschetz fibration.

Proof.

- A symplectic form ω is constructed by Gompf's method.
- We can construct an exact symplectic form if all vanishing cycles are non-separating.
- We can also construct θ , J, j that makes π an exact LF.

П

Contents

2 LF and exact LF

- Fukaya-Seidel categories
 - Proof of Theorem 2
- 5 Further developements

Fukaya-Seidel categories: objects

Let $\pi: E \to D$ be an exact LF.

э

< 口 > < 同 >

Fukaya-Seidel categories: objects

- Let $\pi: E \to D$ be an exact LF.
- \rightarrow gather vanishing cycles L_1, L_2, \dots, L_N to a regular fibre *M* in some coherent way. (We use the symplectic form on *E* in this procedure.)

Fukaya-Seidel categories: objects

Let $\pi: E \to D$ be an exact LF.

 \rightarrow gather vanishing cycles L_1, L_2, \ldots, L_N to a regular fibre *M* in some coherent way. (We use the symplectic form on *E* in this procedure.) Then, we set $Ob(\mathcal{F}(\pi)) := \{L_i\}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Fukaya-Seidel categories: morphisms

We assume that $L_i \pitchfork L_j$ if $i \neq j$. Then we define:

$$\operatorname{Hom}(L_i, L_j) \coloneqq \begin{cases} \bigoplus_{p \in L_i \cap L_j} \mathbb{K}[p] & (i < j) \\ \mathbb{K}e_i & (i = j) \\ 0 & (i > j) \end{cases}$$

Here, \mathbb{K} is an arbitrary coefficient field. $\bigoplus_{p \in L_i \cap L_j} \mathbb{K}[p]$ is also written as $CF(L_i, L_j)$. We can give $Hom(L_i, L_j)$ a grading when we fix grading datum of L_i 's.

Fukaya-Seidel categories: A_{∞} -structure

The A_{∞} -structure is a collection of maps $\{\mu^d\}_{d\geq 1}$:

 $\mu^{d} \colon \operatorname{Hom}(L_{i_{d-1}}, L_{i_{d}}) \otimes \operatorname{Hom}(L_{i_{d-2}}, L_{i_{d-1}}) \otimes \cdots \otimes \operatorname{Hom}(L_{i_{0}}, L_{i_{1}}) \to \operatorname{Hom}(L_{i_{0}}, L_{i_{d}}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fukaya-Seidel categories: A_{∞} -structure

The A_{∞} -structure is a collection of maps $\{\mu^d\}_{d\geq 1}$:

 $\mu^{d} \colon \operatorname{Hom}(L_{i_{d-1}}, L_{i_{d}}) \otimes \operatorname{Hom}(L_{i_{d-2}}, L_{i_{d-1}}) \otimes \cdots \otimes \operatorname{Hom}(L_{i_{0}}, L_{i_{1}}) \to \operatorname{Hom}(L_{i_{0}}, L_{i_{d}}).$

These are defined by counting such discs.

$$\mu^{d}([y_{d}], [y_{d-1}], \dots, [y_{1}]) \coloneqq \sum_{u} \pm [y_{0}]$$

Fukaya-Seidel categories: A_{∞} -relation

The A_{∞} -structure $\{\mu^d\}_{d\geq 1}$ satisfies the A_{∞} -relation:

$$\sum \pm \mu^{l}(y_{d}, y_{d-1}, \dots, y_{j+k+1}, \mu^{k}(y_{j+k}, \dots, y_{j+1}), y_{j}, \dots, y_{1}) = 0.$$

(We omit the brackets of y's.)

Fukaya-Seidel categories: A_{∞} -relation

The A_{∞} -structure $\{\mu^d\}_{d\geq 1}$ satisfies the A_{∞} -relation:

$$\sum \pm \mu^{l}(y_{d}, y_{d-1}, \dots, y_{j+k+1}, \mu^{k}(y_{j+k}, \dots, y_{j+1}), y_{j}, \dots, y_{1}) = 0.$$

(We omit the brackets of y's.)

Remark 3.1

Because of exactness, the A_{∞} -structure starts from μ^1 .

Contents

2 LF and exact LF

- Fukaya-Seidel categories
 - Proof of Theorem 2
- 5 Further developements

Let π be a Lefschetz fibration, and we give it two structures of exact LF: (ω, θ, J, j) and $(\omega', \theta', J', j')$.

3

Let π be a Lefschetz fibration, and we give it two structures of exact LF: (ω, θ, J, j) and $(\omega', \theta', J', j')$. \rightarrow We obtain two collections of vanishing cycles $\boldsymbol{L} \coloneqq (L_1, L_2, \dots, L_N), \boldsymbol{L}' \coloneqq (L'_1, L'_2, \dots, L'_N)$.

イロト (得) (ヨト (ヨト) ヨ

Let π be a Lefschetz fibration, and we give it two structures of exact LF: (ω, θ, J, j) and $(\omega', \theta', J', j')$. \rightarrow We obtain two collections of vanishing cycles $\boldsymbol{L} := (L_1, L_2, \dots, L_N), \boldsymbol{L}' := (L'_1, L'_2, \dots, L'_N)$.

Fact 4.1

Let π be a Lefschetz fibration, and we give it two structures of exact LF: (ω, θ, J, j) and $(\omega', \theta', J', j')$. \rightarrow We obtain two collections of vanishing cycles $L := (L_1, L_2, \dots, L_N), L' := (L'_1, L'_2, \dots, L'_N)$.

Fact 4.1

•
$$\int_{L_i} \theta = \int_{L'_i} \theta' = 0.$$

Let π be a Lefschetz fibration, and we give it two structures of exact LF: (ω, θ, J, j) and $(\omega', \theta', J', j')$. \rightarrow We obtain two collections of vanishing cycles $L := (L_1, L_2, \dots, L_N), L' := (L'_1, L'_2, \dots, L'_N)$.

Fact 4.1

•
$$\int_{L_i} \theta = \int_{L'_i} \theta' = 0.$$

•
$$M \setminus L_i, M \setminus L'_i$$
 are connected.

Let π be a Lefschetz fibration, and we give it two structures of exact LF: (ω, θ, J, j) and $(\omega', \theta', J', j')$. \rightarrow We obtain two collections of vanishing cycles $L := (L_1, L_2, \dots, L_N), L' := (L'_1, L'_2, \dots, L'_N)$.

Fact 4.1

•
$$\int_{L_i} \theta = \int_{L'_i} \theta' = 0.$$

- $M \setminus L_i, M \setminus L'_i$ are connected.
- We can assume that $[L_i] = [L'_i] \in [S^1, M]$.

Theorem 4.2 (S.)

Let $M := (\Sigma_{g,1}, \omega, \theta, j)$ be an exact smplectic manifold, and L, L' be Lagrangian S^1 's satisfying the following conditions.

•
$$\int_L \theta = \int_{L'} \theta.$$

- $M \setminus L, M \setminus L'$ are connected.
- $[L] = [L'] \in [S^1, M].$

Then, there exists a Hamiltonian diffeomorphism $\phi \in Ham(M, \partial M, \omega)$ s.t. $\phi(L') = L$

Proposition 4.3 (S.)

In general case, there exist L''_i 's satisfy the following conditions.

•
$$[L_i''] = [L_i] = [L_i'] \in [S^1, M].$$

▲ 문 ▶ ▲ 문 ▶ ...

• Let us denote $(L''_1, L''_2, \dots, L''_N)$ by L''.

æ

ヘロト 人間 トメヨトメヨト

- Let us denote $(L''_1, L''_2, \dots, L''_N)$ by L''.
- There exist $\phi_i \in \text{Ham}(M, \partial M, \omega)$ s.t. $\phi_i(L_i) = L''_i$.

3

- Let us denote $(L''_1, L''_2, \dots, L''_N)$ by L''.
- There exist $\phi_i \in \text{Ham}(M, \partial M, \omega)$ s.t. $\phi_i(L_i) = L''_i$.
- There exist $\phi'_i \in \text{Ham}(M, \partial M, \omega')$ s.t. $\phi'_i(L'_i) = L''_i$.

3

- Let us denote $(L''_1, L''_2, \dots, L''_N)$ by L''.
- There exist $\phi_i \in \text{Ham}(M, \partial M, \omega)$ s.t. $\phi_i(L_i) = L''_i$.
- There exist $\phi'_i \in \text{Ham}(M, \partial M, \omega')$ s.t. $\phi'_i(L'_i) = L''_i$.
- $L \xrightarrow{\phi} L'' \qquad L'' \xleftarrow{\phi'} L'$

3

・ロト ・ 同ト ・ ヨト ・ ヨト …

- Let us denote $(L''_1, L''_2, \dots, L''_N)$ by L''.
- There exist $\phi_i \in \text{Ham}(M, \partial M, \omega)$ s.t. $\phi_i(L_i) = L''_i$.
- There exist $\phi'_i \in \text{Ham}(M, \partial M, \omega')$ s.t. $\phi'_i(L'_i) = L''_i$.
- $L \xrightarrow{\phi} L'' \qquad L'' \xleftarrow{\phi'} L'$
- Let us denote the FukayaSeidel category associated with *L* and symplectic structure ω by $\mathcal{F}(L)_{\omega}$ and so on.

・ロト・日本・モート ・日本・日本

- Let us denote $(L''_1, L''_2, \dots, L''_N)$ by L''.
- There exist $\phi_i \in \text{Ham}(M, \partial M, \omega)$ s.t. $\phi_i(L_i) = L''_i$.
- There exist $\phi'_i \in \text{Ham}(M, \partial M, \omega')$ s.t. $\phi'_i(L'_i) = L''_i$.
- $L \xrightarrow{\phi} L'' \qquad L'' \xleftarrow{\phi'} L'$
- Let us denote the FukayaSeidel category associated with *L* and symplectic structure ω by *F*(*L*)_ω and so on.
 D*F*(*L*)_ω ≅ D*F*(*L*")_ω by Seidel.

< ロ ト < 同 ト < 三 ト < 三 ト - 三

- Let us denote $(L''_1, L''_2, \ldots, L''_N)$ by L''.
- There exist $\phi_i \in \text{Ham}(M, \partial M, \omega)$ s.t. $\phi_i(L_i) = L''_i$.
- There exist $\phi'_i \in \text{Ham}(M, \partial M, \omega')$ s.t. $\phi'_i(L'_i) = L''_i$.
- $L \xrightarrow{\phi} L'' \qquad L'' \xleftarrow{\phi'} L'$
- Let us denote the FukayaSeidel category associated with *L* and symplectic structure ω by *F*(*L*)_ω and so on.
 DF(*L*)_ω ≅ *DF*(*L''*)_ω by Seidel.
 DF(*L'*)_{ω'} ≅ *DF*(*L''*)_{ω'} by Seidel.

- Let us denote $(L''_1, L''_2, \dots, L''_N)$ by L''.
- There exist $\phi_i \in \text{Ham}(M, \partial M, \omega)$ s.t. $\phi_i(L_i) = L''_i$.
- There exist $\phi'_i \in \text{Ham}(M, \partial M, \omega')$ s.t. $\phi'_i(L'_i) = L''_i$.

•
$$L \xrightarrow{\phi} L'' \qquad L'' \xleftarrow{\phi'} L'$$

Let us denote the FukayaSeidel category associated with *L* and symplectic structure ω by *F*(*L*)_ω and so on.
 DF(*L*)_ω ≅ *DF*(*L''*)_ω by Seidel.
 DF(*L'*)_{ω'} ≅ *DF*(*L''*)_{ω'} by Seidel.
 F(*L''*)_ω ≅ *DF*(*L''*)_ω since the *A*_∞-structure does not depend on the symplectic structure in the case of the Riemann surface.

That completes the proof.

イロト イポト イヨト イヨト 二日

Problems

• Application to computing the Fukaya-Seidel categories.

< 口 > < 同 >

문▶ ★ 문▶

Problems

- Application to computing the Fukaya-Seidel categories.
- Application to the 4-dimensional topology.

∃ ▶

Problems

- Application to computing the Fukaya-Seidel categories.
- Application to the 4-dimensional topology.
- Relation between 4-dimensional topology and Mirror symmetry.
Problems

- Application to computing the Fukaya-Seidel categories.
- Application to the 4-dimensional topology.
- Relation between 4-dimensional topology and Mirror symmetry.
- The most important problem is ...

Problems

- Application to computing the Fukaya-Seidel categories.
- Application to the 4-dimensional topology.
- Relation between 4-dimensional topology and Mirror symmetry.
- The most important problem is ...whether this talk is valuable for you!

Problems

- Application to computing the Fukaya-Seidel categories.
- Application to the 4-dimensional topology.
- Relation between 4-dimensional topology and Mirror symmetry.
- The most important problem is ...whether this talk is valuable for you!

Thank you for your listening!!($\geq \bigtriangledown \leq$)