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1. Introduction

Frobenius manifold (Dubrovin): Encodes the properties of the
primary free energy F = F (v1, . . . , vn) of a 2d topological field
theory

∂3F

∂v1∂vα∂vβ
= ηαβ = constant, (ηαβ) : nondegenerate,

cγαβ = ηγξ
∂3F

∂v ξ∂vα∂vβ
:

structure constants of
an associative algebra

∂EF = (3− d)F + quadratic terms in vα,

here the Euler vector E =
n∑

α=1

(dαvα + rα)
∂

∂vα
.

They are the WDVV equations of associativity.



Examples of Frobenius manifolds:

I From the genus zero part of a 2d TFT (Gromov-Witten,
FJRW), the potential of the Frobenius manifold is given by

F (v) = F0(t1,0, t2,0, . . . , tn,0, t1,1, t2,1, . . . )|tα,p≥1=0,tα,0=vα .

Here tα,p, α = 1, . . . , n, p ≥ 0 are the coupling constants
associated to the n primary fields and their gravitational
descendants.

I From the flat structures defined by Kyoji Saito theory of
primitive forms for quasi-homogeneous isolated singularities;
from the flat structures defined on the orbit space of finite
reflection groups by Kyoji Saito, Iamaki Yano and Jiro
Sekiguchi, and of the extended affine Weyl groups by
Dubrovin, Z..



High genus theory of semisimple Frobenius manifolds:

Developed by Dubrovin-Z. using the approach of integrable
systems, and also by Givental using the approach of quantum
canonical transformations.



The appearance of integrable hierarchies:

Denote

vα(t) = ηαγ
∂F0(t)

∂t1,0∂tγ,0
, α = 1, . . . , n.

Here

(ηαβ) =

(
∂3F0(t)

∂t1,0∂tα∂tβ

)−1
.

Redenote t1,0 = x , then we have the equations

∂vα

∂tβ,q
= ηαγ

∂

∂x

(
∂2F0(t)

∂tγ,0∂tβ,q

)
, α, β = 1, . . . , q ≥ 0.



As observed by Dijkgraaf & Witten (1990) the two-point functions
that appear in the r.h.s. of the above equation can be represented
as functions of v1(t), . . . , vn(t) (the constitutive relation)

∂2F0(t)

∂tα,0∂tβ,q
= Ωα,0;β,q(v(t)) =

∂θβ,q+1(v)

∂vα
.

A hierarchy of infinite dimensional Hamiltonian systems

∂vα

∂tβ,q
= Pαγ δHβ,q

δvγ

with Hamiltonian operator P and pairwise commutative
Hamiltonians given by

Pαβ = ηαβ
∂

∂x
, Hβ,q =

∫
θβ,q+1(v(x))dx .



Reconstructing F0(t) from Frobenius manifold

We first recover the above mention integrable hierarchy

∂vα

∂tβ,q
= ηαγ

∂

∂x

(
∂θβ,q+1(v)

∂vγ

)
, α, β = 1, . . . , n, q ≥ 0,

which is a bihamitonian integrable hierarchy of hydrodynamic type,
called the Principal Hierarchy. Then we need to use the particular
solution selected by the string equation∑

p≥1
tα,p

∂F0

∂tα,p−1
+

1

2
ηαβtα,0tβ,0 =

∂F0

∂t1,0
,

in particular, this implies

vα(t)|small phase space = tα,0, α = 1, . . . , n.



The deformed flat connection of a FM (Mn; · ; 〈 , 〉; e; E ):

∇̃ab = ∇ab + z a · b

Extend it to M × C∗ by

∇̃ d
dz

b = ∂zb + E · b − 1

z
µ b

with µ = 2−d
2 −∇E .

The deformed flat coordinates ṽ1(v ; z), . . . , ṽn(v ; z) satisfying

∇̃dṽα(v ; z) = 0, α = 1, . . . , n.



The functions θβ,q(v)

The deformed flat coordinates have the form

(ṽ1(v ; z), . . . , ṽn(v ; z)) = (θ1(v ; z), . . . , θn(v ; z))zµzR

Here θ1(v ; z), . . . , θn(v ; z) are analytic at z = 0 with Taylor
expansion

θα(v ; z) =
∑
p≥0

θα,p(v)zp

satisfying the normalization conditions

θα(v ; 0) = ηαβvβ, α = 1, . . . , n

〈∇θα(v ;−z),∇θβ(v ; z)〉 = ηαβ.

µ,R : monodromy data at z = 0.



Topological solution of the Principal Hierarchy

Particular solution vα = vα(t) of the integrable hierarchy that
satisfies the string equation is obtained by solving the equations
(generalized hodograph transformation)∑

q≥0
t̃β,q∇θβ,q(v) = 0, t̃β,q = tβ,q − δβ1 δ

q
1 .

The genus zero free energy

F0(t) =
1

2

∑
α,p;β,q

t̃α,p t̃β,q Ωα,p;β,q(v)|v=v(t),

∑
Ωα,p;β,q(v) zpwq =

< ∇θα(z),∇θβ(w) > −ηαβ
z + w

.



How to reconstruct the higher genera free energies Fg (t)?

We (Dubrovin, Z. 2001) use the properties of the Virasoro
symmetries of the Principal Hierarchy to determine Fg .

The first symmetry is the Galilean symmetry:

vα 7→ vα + ε

∑
β,q

tβ,q
∂vα

∂tβ,q−1
+ δα1

+O(ε2),

τ 7→ τ + εL−1τ +O(ε2)

with the tau function τ and the operator L−1 defined by

τ = eF0(t), L−1 =
∑
q≥1

tβ,q
∂

∂tβ,q−1
+

1

2
ηαβ tα,0tβ,0.



Virasoro symmetries acting on the tau function

τ 7→ τ + ε

(
aα,p;β,qm

1

τ

∂τ

∂tα,p
∂τ

∂tβ,q

+bβ,qm;α,ptα,p
∂τ

∂tβ,q
+ cm;α,pβ,qtα,ptβ,qτ

)
+O(ε2)

with the Virasoro operators (for m ≥ −1)

Lm = ε2aα,p;β,qm

∂2

∂tα,p∂tβ,q
+ bβ,qm;α,ptα,p

∂

∂tβ,q

+ ε−2cm;α,p,β,qtα,ptβ,q + κ0 δm,0, m ≥ −1.



Linearization of the Virasoro symmetries

Note that the higher genera free energy Fg (t) can be represented
as functions of the two-point functions

Fg (t) = Fg (v , vx , vxx , . . . )|v=v(t)

We require that the infinitesimal Virasoro symmetries act linearly
on the full genera tau function

τ = eε
−2F0+

∑
g≥1 ε

2g−2Fg (v ,vx ,vxx ,... )|v=v(t) .

in the following way

τ 7→ τ + ε Lmτ +O(ε2), m ≥ −1.

Here the parameter ε is called the string coupling constant.



The loop equation

The condition of linearization of the Virasoro symmetries is
equivalent to a system of equations, called the loop equation, for
the functions Fg , g ≥ 1. For example, when n = 1 we have

∑
r

∂∆F
∂v (r)

∂rx
1

v − λ
+
∑
r≥1

∂∆F
∂v (r)

r∑
k=1

(
r

k

)
∂k−1x

1√
v − λ

∂r−k+1
x

1√
v − λ

=
1

16λ2
− 1

16(v − λ)2
− κ0
λ2

+
ε2

2

∑[
∂2∆F

∂v (k)∂v (l)
+
∂∆F
∂v (k)

∂∆F
∂v (l)

]
∂k+1
x

1√
v − λ

∂ l+1
x

1√
v − λ

− ε
2

16

∑ ∂∆F
∂v (k)

∂k+2
x

1

(v − λ)2
.

Here ∆F =
∑

g≥1 ε
2g−2Fg .



The ε0’s coefficients of the loop equation give the equation for F1:

1

v − λ
∂F1

∂v
− 3

2

v ′

(v − λ)2
∂F1

∂v ′
=

1

16λ2
− 1

16(v − λ)2
− κ0
λ2
.

This implies that

κ0 =
1

16
, F1 =

1

24
log v ′.

Similarly, the coefficients of ε2 give the squations for F2, from
which we obtain

F2 =
v (4)

1152 v ′2
− 7 v ′′v ′′′

1920 v ′3
+

v ′′3

360 v ′4
.



For a general semisimple Frobenius manifold, the ε0 terms of the
loop equation yield the equation

n∑
i=1

∂F1

∂ui

1

ui − λ
−

n∑
i=1

∂F1

∂u′i

u′i
(ui − λ)2

+
∑ ∂F1

∂vγx
∂1pαGαβ∂x∂

γpβ

= − 1

16

n∑
i=1

1

(λ− ui )2
− 1

2

∑
i<j

V 2
ij

(λ− ui )(λ− uj)
+

1

4λ2
tr

(
1

4
− µ̂2

)
− κ0
λ2
.

Here u1, . . . , un are the canonical coordinates of the semisimple
Frobenius manifold M, which have the property

∂

∂ui
· ∂
∂uj

= δi ,j
∂

∂ui
.



The genus one free energy

F1(v , vx) =
1

24
log det (cαβγ(v)vγx ) + G (v)

=
1

24
log det

(
∂3F0

∂t1,0∂tα,0∂tβ,0

)
+ G (v).

(Witten-Dijkgraaf and Getzler)

The function G (v) has the form (Dubrovin, Z.)

G (v) = log
τI (v)

J1/24(v)
.



I For Frobenius manifolds come from ADE singularities,
Hertling showed that G = 0.

I For Frobenius manifolds come from the extended affine Weyl
groups of ADE type, or Gromov-Witten invariants of
P1-orbifolds with positive Euler characteristics. There are at
most three orbifold points with multiplicity p, q, r satisfying
1
p + 1

q + 1
r > 1. The equivalence of these two class of FM is

established by Milanov & Tseng; Rossi. We have the solutions

(p, q, 1) Ãp,q

(2, 2, r) D̃r+2

(2, 3, r) Ẽr+3

We have G = − 1
24r vn (proved for Ãp,q by Strachan and for

D̃r+2 by Liu, Z.)



The genus two free enegy







The loop equation can be solved recursively to yield a unique
solution Fg (v , vx , . . . , v

3g−2), g ≥ 1 (up to the addition of
constants). If the genus zero from energy F0 is constructed from
the topological solution of the Principal Hierarchy, then tau
function (partition function, total descendant potential)

τ(t) = eε
−2F0(t)+

∑
g≥2 ε

2g−2Fg (v ,vx ,...,v (3g−2))|v=v(t) .

satisfies the Virasoro constraints

Lm|t1,1→t1,1−1 τ(t) = 0, m ≥ −1.

Note that the validity of Virasoro constraints for Gromov-Witten
invariants of Fano varieties was formulated and conjectured by
Eguchi, Hori, Xiong in 1997.



Motivation of our work:

To have a better understanding of the high genus free energies,
attempt to represent the genus g free energy in terms of the flat
coordinates, or in other words, in terms of the genus zero
correlation functions, like in the genus one case

F1(v , vx) =
1

24
log det (cαβγ(v)vγx ) + G (v)

=
1

24
log det

(
∂3F0

∂t1,0∂tα,0∂tβ,0

)
+ G (v).

Such a representation of F2 for A2 topological minimal model was
given by Eguchi, Yamada, Yang, 1994.



Elements needed to represent the genus two free energy

Let F = F (v1, . . . , vn) be the potential of the Frobenius manifold,
v1, . . . , vn are the flat coordinates, in theses coordinates, the flat
metric

ηαβ =
∂3F (v)

∂v1∂vα∂vβ
= constant.

The canonical coordinates u1, . . . , un are defined so that the
multiplication table defined on the tangent spaces is given by

∂

∂ui
· ∂
∂uj

= δij
∂

∂ui

and the Euler vector field has the form

E =
∑

ui
∂

∂ui
.



The rotation coefficients and the Lamé coefficients

In the canonical coordinates the flat metric takes the diagonal form

n∑
i=1

ηii (u)du2
i .

The rotation and Lamé coefficients

γij =
1

hi

∂hj

∂ui
, hi =

√
ηii , i = 1, . . . , n.

They satisfy the equations

∂γij
∂uk

= γikγkj , i , j , k distinct,

∂γij
∂ui

=

∑n
k=1(uj − uk)γikγkj − γij

ui − uj
.



The genus two free energy are represented in terms of

γij , hi , ui , u
(k)
i = ∂kx ui , k = 1, 2, 3, 4.

Note that Vij = (uj − ui )γij appear in the formula of F2.



2. Main Results

Theorem 1.
Let M be a semisimple Frobenius manifold of dimension n, and F2

be the genus two free energy for M, then we have

F2(v) =
16∑
p=1

cp Qp + G (2)(u, ux , uxx).

Here each term Qp corresponds to a dual graph of stable curves
(we will explain their meaning later)



Q1 Q2 Q3

Q4 Q5 Q6



Q7 Q8 Q9

Q10 Q11 Q12



Q13 Q14

Q15 Q16



The constants cp are fixed up to one arbitrary constant parameter.

c1 = 0, c2 = − 1

960
, c3 =

1

5760
, c4 =

1

1152
,

c13 = − 1

60
, c14 =

1

48
, c15 = − 7

240
, c16 =

7

10
.

The function G (2)(u, ux , uxx) is called the genus two G -function,
which has the following form

G (2)(u, ux , uxx) =
n∑

i=1

G
(2)
i (u, ux)ui

xx+
∑
i 6=j

G
(2)
ij (u)

(uj
x)3

ui
x

+
∑
i,j

P
(2)
ij (u)ui

xuj
x .

Here the functions G
(2)
i ,G

(2)
ij are fixed uniquely once the above

mentioned parameter is fixed.



Meaning of the graphs

We introduce a matrix

Mαβ =
∂3F0

∂t1,0 ∂tα,0 ∂tβ,0
,

and denote its inverse by (M−1)αβ. Then we have

Q1 =
∂6F0

∂t1,0 ∂t1,0 ∂tα,0 ∂tα′,0 ∂tβ,0 ∂tβ′,0
(M−1)αα

′
(M−1)ββ

′

Q1



Q2 Q15

Q2 =
∂4F0

∂t1,0 ∂tα,0 ∂tβ,0 ∂tγ,0
(M−1)αα

′
(M−1)ββ

′
(M−1)γγ

′

∂5F0

∂t1,0 ∂t1,0 ∂tα′,0 ∂tβ′,0 ∂tγ′,0
,

Q15 =
∂4F0

∂t1,0 ∂tα,0 ∂tα′,0 ∂tβ,0
(M−1)αα

′
(M−1)ββ

′ ∂2F1

∂t1,0 ∂tβ′,0
.



Characterization of the 16 graphs

I Each graph is the dual graph of a stable curve of arithmetic
genus two. This condition also implies that the graph is
planar, and the valence and genus of its vertices satisfy

2g(vi )− 2 + n(vi ) > 0,
m∑
i=1

g(vi ) + B1(Q) = 2.

I Cutting of an edge connecting two genus zero vertices does
not destroy the connectivity of the graph. A graph with this
property is called to be one-particle irreducible (1PI) in
physics literature.



I The number of edges and the number of legs are equal to
Nv (Q) + B1(Q)− 1. This property is equivalent to the Euler
formula for the graph

Ne(Q)− Nv (Q) + 1 = B1(Q)

and the condition that the function associated to Q must
have degree two with respect to the jet variables ∂px vα, i.e.

m∑
i=1

(2g(vi )− 2 + n(vi ))− Ne(Q) = 2 .

I There is at most one vertex with valence n(vi ) = 3− 2g(vi ) in
the graph. Moreover, if the graph contains only one genus one
vertex, then the valence of each of its vertices vi satisfies
n(vi ) > 3− 2g(vi ).



Conjecture.

If M is a Frobenius manifold defined on the orbit space of a
Coxeter group of ADE type or on that of an extended affine Weyl
group of ADE type, then

G (2)(u, ux , uxx) = 0.

For A2 (Eguchi, Yamada, Yang, 1994).

F2 =
1

1152
Q1 −

1

360
Q2 −

1

1152
Q3 +

1

360
Q4.



The first class of Frobenius manifolds is isomorphic to the ones
defined on the space of miniversal deformations of simple
singularities of ADE type. These Frobenius manifolds can also be
obtained from the genus zero Fan-Jarvis-Ruan-Witten invariants
theory for ADE singularities.

The second class of Frobenius manifolds is isomorphic to the ones
defined on the space of certain tri-polynomials, and they can also
be obtained from the genus zero Gromov-Witten invariants theory
for P1-orbifolds of ADE type, as shown by Milanov & Tseng, Rossi.



Reason for the appearance of an arbitrary parameter

Theorem 2.
If M is a Frobenius manifold defined on the orbit space of a
Coxeter group or on that of an extended affine Weyl group, then
we have the following identity

(Q1 − Q6) + 2(Q7 − Q5) + 3(Q8 − Q2)

+ 4(Q9 − Q3) + 6(Q4 + Q10 − Q11 − Q12) = 0.



3. Proofs of the Theorems

Proof of Theorem 1

We only need to represent the above 16 graphs in terms of the
functions

γij(u), hi (u), ui , ∂
k
x ui , i , j = 1, . . . , n; k = 1, 2, 3, 4, 5, 6

and compare the expression

16∑
p=1

cp Qp

with the formula of the genus two free energy F2 obtained by
solving the loop equation.



For example, we have

=
∂3F0

∂tα,0 ∂tβ,0 ∂tγ,0
(M−1)αα

′
(M−1)ββ

′
(M−1)γγ

′

× ∂4F0

∂t1,0 ∂tα′,0 ∂tβ′,0 ∂tγ′,0

=
∑

1≤i<j≤n
γij

(h4
i ui ,x − h4

j uj ,x)(uj ,x − ui ,x)

h3
i h3

j ui ,xuj ,x
+

n∑
i=1

ui ,xx

h2
i u2

i ,x

.



Recall that ui , 1 ≤ i ≤ n are the canonical coordinates of the
Frobenius manifold

∂

∂ui
· ∂
∂uj

= δij
∂

∂ui
,

in these canonical coordinates the flat metric on the Frobenius
manifold has the diagonal form

n∑
i=1

ηii (u)du2
i .

γij are the rotation coefficients of the diagonal metric

γij =
1

hi

∂hj

∂ui
, and hi =

√
ηii .



by using the fact that

∂2F0

∂tα,p∂tβ,q
= Ωα,p;β,q(v(t)),

∂3F0(t)

∂tα,0∂tβ,0∂tγ,0
= cξαβ(v(t))Mξγ ,

where
Mξγ = cξγρ(v(t))vρx ,

the Principal Hierarchy and the equations

∂γij
∂uk

= γikγkj , i , j , k distinct,

∂γij
∂ui

=

∑n
k=1(uj − uk)γikγkj − γij

ui − uj
.



Proof of Theorem 2

Lemma.
We have the following identity

(Q1 − Q6) + 2(Q7 − Q5) + 3(Q8 − Q2)

+ 4(Q9 − Q3) + 6(Q4 + Q10 − Q11 − Q12)

=∂2x (O1 − O2) .

with

O1 O2



Lemma.
For any semisimple Frobenius manifold, the following identity holds
true

O1 − O2 = ηαξηβζ
∂4F (v1, . . . , vn)

∂v ξ∂v ζ∂vα∂vβ

∣∣∣∣
vγ=vγ(t)

= cαβαβ (v)|vγ=vγ(t).

Proposition.

For any Frobenius manifold defined on the orbit space of a Coxeter
group or on that of a extended affine Weyl group, the difference
O1 − O2 is equal to zero or to a constant respectively.



Proof We note that

deg cαβαβ (v) =

{
d − 1 < 0, Coxeter groups;
d − 1 = 0, extended affine Weyl groups.

On the other hand, for a Coxeter group the potential F (v) of the
Frobenius manifold is a polynomial of v1, . . . , vn with

0 < d < 1, deg vα > 0,

and for an extended affine Weyl group the potential F (v) of the
Frobenius manifold is a polynomial of v1, . . . , vn−1, ev

n
with

d = 1, deg vα > 0 (1 ≤ α ≤ n − 1), deg ev
n
> 0.

Thus we proved the proposition. �



4. Checking the Validity of the Conjecture

Frobenius manifolds associated to simple singularities

f = f (z1, . . . , zm): a polynomial which has an isolated critical
point at 0 ∈ Cm of ADE type with Milnor number n.

F : Cm × B → C, (z , t) 7→ F (z , t) a miniversal deformation of f ,
where B is an open set in Cn.

There is a semisimple Frobenius manifold structure on the base
space B \ C outside of the caustic C ⊂ B with the flat metric

〈∂′, ∂′′〉t = − resz=∞
(∂′F (z , t))(∂′′F (z , t)) dz1 ∧ · · · ∧ dzm

∂z1F · · · ∂zmF

for any ∂′, ∂′′ ∈ TtB.



Canonical coordinates

For a given t ∈ B \ C , the equations

∂zαF = 0, α = 1, . . . ,m

has n solutions z(i)(t) = (z(i),1, . . . , z(i),m) (i = 1, . . . , n). The
canonical coordinates ui on B \ C are given by

ui (t) = F (z(i)(t), t), i = 1, . . . , n.

Denote

hαβ(z , t) = ∂zα∂zβF (z , t), H(z , t) = det(hαβ(z , t))

and
(hαβ) = (hαβ)−1.



The flat metric in canonical coordinates

n∑
i=1

ηii (dui )
2, with ηii =

1

H(z(i)(t), t)
.

The rotation and Lamé coefficients

γki =
∂i hk

hi
=

hk

hi
Γki , hi =

√
ηii

and

Γki := Γk
ki =

∂uiηkk
2 ηkk

= −1

2
∂zα

(
hαβ(z , t) ∂ui∂zβF (z , t)

)
|z=z(k) .



Example: An singularity

f (z) = zn+1, F (z , t) = zn+1 + t1zn−1 + · · ·+ tn.

Lemma.

Γki (t) := Γk
ki =

1

(z(k)(t)− z(i)(t))2F ′′(z(i)(t), t)
.



We use the critical points z(1), . . . , z(n) and an additional
parameter z(0) to represent F (z , t) as

F (z , t) = λ(z) =

∫ z

0
(n + 1)

n∏
k=1

(ξ − z(k))dξ + z(0)

Note that z(1), . . . z(n) are not independent, they satisfy

z(n) = −
n−1∑
k=1

z(k).

Then we have

ui = λ(z(i)), hi = ψi ,1 =
1√

λ′′(z(i))
, γij =

hi hj

(z(i) − z(j))2
.



Proof of the validity of the Conjecture for An singularity

Substituting these expressions into the formula for the difference

G (2)(u, ux , uxx) = F2 −
16∑
p=1

cpQp,

it becomes a rational function of z(0), . . . , z(n−1). We prove the
vanish of this rational function, and thus prove the validity of the
above conjecture for An singularities.



Example: Dn singularity

In this case, m = 2. Denote x = z1, y = z2, then

f (z) = xn−1 + xy2,

F (z , t) = xn−1 + xy2 + t1xn−2 + · · ·+ tn−1 + tny .

Denote the critical points of F by z(i) = (xi , yi ), and introduce the
function

λ(x , t) = xn−1 + t1xn−2 + · · ·+ tn−1 − (tn)2

4x

Lemma.

Γki (t) := Γk
ki =

xk + xi
2xi (xk − xi )2λ′′(xi )



Verifying the validity of the Conjecture for Dn singularity

Represent λ(x , t) in terms of x1, . . . , xn−1 and x0 in the form

λ(x) =

∫ x

0
(n − 1)ξ−2

n∏
k=1

(ξ − xi )dξ + x0

Here 1
xn

= −
∑n−1

k=1
1
xk

. Then we have

ui = λ(xi ), hi =
1√

2xiλ′′(xi )
, γij =

(xi + xj)hihj

(xi − xj)2
.

By using these data, one can also verify the Conjecture for n ≤ 10.



Example: Frobenius manifold structures associated to extended
affine Weyl group of ADE type

Isomorphic to the ones defined on the space of tri-polynomials of
type (p, q, r) (for certain specific values)

F (z , t) = −z1z2z3 + P1(z1) + P2(z2) + P3(z3),

P1(z1) =

p−1∑
i=1

tiz
i
1 + zp

1 , P2(z2) =

q−1∑
i=1

tp−1+iz
i
2 + zp

2 ,

P3(z3) =
r∑

i=0

tp+q−1+iz
i
3,

where t = (t1, . . . , tn) ∈ B, and B is an open set in Cn−1 × C∗,
i.e. tn 6= 0. The computation of the rotation coefficients is similar
to that of simple singularities.



Proof of the conjecture for ADE singularities by Xiaobo Liu & Xin
Wang

Using the properties of semisimple Frobenius manifolds and the
following properties of FJRW invariants of ADE singularities:

1. 〈φαφαφβφβφα1 . . . φαk
〉0 = 0;

2. 〈φα1 . . . φαk
〉1 = 0;

3. 〈φα1 . . . φαk
〉2 = 0, 〈τ1(φα1)φα2 . . . φαk

〉2 = 0.

The first property is equivalent to the property cαβαβ = const, and
the second property is equivalent to the vanishing of the genus one
G-function.



A conceptual proof of the conjecture is in progress

Using the analyticity property of the potential of the Frobenius
manifolds and their genus one G-function, and the nonnegative
property of the degrees of the flat coordinates, and the property of
the charge d ≤ 1. To complete the proof we need to prove the
analyticity of the genus two G function.



5. Some Remarks

Works to be done

I To elucidate the geometrical and physical meaning of the
genus two G-function, and the conditions of the vanishing of
this function.

I Possible generalization to higher genera.



Thanks
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