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1. Introduction

Frobenius manifold (Dubrovin): Encodes the properties of the
primary free energy F = F(v!,...,v") of a 2d topological field
theory
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vigvegys s = constant, (7,8) : nondegenerate,
v v v

e O3F _ structure constants of
a8 =" 5 €9vadvP © an associative algebra,

OeF = (3 — d)F + quadratic terms in v,

here the Euler vector E = Z(da v+ ra)((;)va.
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They are the WDVV equations of associativity.



Examples of Frobenius manifolds:

» From the genus zero part of a 2d TFT (Gromov-Witten,
FJRW), the potential of the Frobenius manifold is given by

F(v) = Fo(th0, 20, . "0 b 21 )] w210 pao—ya-

Here t*P o =1,...,n, p > 0 are the coupling constants
associated to the n primary fields and their gravitational
descendants.

» From the flat structures defined by Kyoji Saito theory of
primitive forms for quasi-homogeneous isolated singularities;
from the flat structures defined on the orbit space of finite
reflection groups by Kyoji Saito, lamaki Yano and Jiro
Sekiguchi, and of the extended affine Weyl groups by
Dubrovin, Z..



High genus theory of semisimple Frobenius manifolds:

Developed by Dubrovin-Z. using the approach of integrable
systems, and also by Givental using the approach of quantum
canonical transformations.



The appearance of integrable hierarchies:

Denote
8}"0(15)

Va(t):’r]a,yW, Oé:].,...,n.

Here
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Redenote t1:0 = x, then we have the equations
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As observed by Dijkgraaf & Witten (1990) the two-point functions
that appear in the r.h.s. of the above equation can be represented

as functions of vi(t),...,v"(t) (the constitutive relation)
0 985.4:1(v)
91009 ¢5.a = a,O;ﬁvq(V(t)) = aqT-

A hierarchy of infinite dimensional Hamiltonian systems
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with Hamiltonian operator P and pairwise commutative
Hamiltonians given by
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Reconstructing Fo(t) from Frobenius manifold

We first recover the above mention integrable hierarchy

ove 0 (005q41(v) B
at@qn’ya)((aw ) aaﬁfla"'vnaqzoa

which is a bihamitonian integrable hierarchy of hydrodynamic type,
called the Principal Hierarchy. Then we need to use the particular
solution selected by the string equation
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in particular, this implies
0
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The deformed flat connection of a FM (M"; - (, ); e; E):
Vob=Vab+za-b

Extend it to M x C* by

~ 1
ng:é?zb+E-b—;ub

dz
: _2-d
with 4 = =% — VE.
The deformed flat coordinates 1(v; z), ..., Vs(v; z) satisfying

Vdia(v;z) =0, a=1,...,n.



The functions 3 4(v)
The deformed flat coordinates have the form
(n(v; 2),...,0n(v; 2)) = (01(v; 2),...,0n(v; Z))Z“ZR

Here 01(v; z),...,0,(v; z) are analytic at z = 0 with Taylor
expansion

Ou(v;z) = Z Oa,p(v)zP

p=>0

satisfying the normalization conditions

9a(v;0):na5vﬁ, a=1,...,n
(VOu(v; —2),VO5(v; 2)) = nagp-

u, R : monodromy data at z = 0.



Topological solution of the Principal Hierarchy

Particular solution v®* = v®(t) of the integrable hierarchy that
satisfies the string equation is obtained by solving the equations
(generalized hodograph transformation)

> 19V 4(v) =0, P9 =179 — 6757,
q=0
The genus zero free energy
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How to reconstruct the higher genera free energies Fg(t)?

We (Dubrovin, Z. 2001) use the properties of the Virasoro
symmetries of the Principal Hierarchy to determine F,.

The first symmetry is the Galilean symmetry:
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with the tau function 7 and the operator L_; defined by
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Virasoro symmetries acting on the tau function
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with the Virasoro operators (for m > —1)
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Linearization of the Virasoro symmetries

Note that the higher genera free energy F,(t) can be represented
as functions of the two-point functions

"Tg(t) = Fg(vv Vs Vaxs - - ')‘v:v(t)

We require that the infinitesimal Virasoro symmetries act linearly
on the full genera tau function

T = e€72]:0+2g21€2g72Fg(V,Vx,VXX,...)lV:V(t).
in the following way

T T+ elnm +0O(2), m>—1.

Here the parameter ¢ is called the string coupling constant.



The loop equation

The condition of linearization of the Virasoro symmetries is
equivalent to a system of equations, called the loop equation, for
the functions F,, g > 1. For example, when n =1 we have

OAF ., 1 N OAF ak .1 a' b 1
v Xy — X = ovlr) 4 Vv Vv—2A
1 1 Y]

B 16)\2 T16(v— A2 X2
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Here AF =3 4 52g_2Fg.
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The €%'s coefficients of the loop equation give the equation for Fy:

1 oFr 3 V' OF 1 B 1 _ ko
v—Adv 2(v—=A2dv  16A2 16(v—A)2 A2

This implies that

1 1
=—, FL=—1
fo= 15 F1=gl0ev"
Similarly, the coefficients of €2 give the squations for F», from

which we obtain
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For a general semisimple Frobenius manifold, the €0 terms of the

loop equation yield the equation

ZaFl 1 ~O0F  u
ou; uj — N Bu (u; — N)?

Z 31pa G*P0,0"pg
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1 o 1 1 V;
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Here uy,...,

1 1 K
U] I v 2 U
) 4 r(4 “) 22

up are the canonical coordinates of the semisimple

Frobenius manifold M, which have the property

0. 0
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The genus one free energy

1
24

1 23 Fo
= ﬂ |Og det (MW) + G(V)

(Witten-Dijkgraaf and Getzler)

Fi(v, vx) = 7 logdet (cagy(v)v]) + G(v)

The function G(v) has the form (Dubrovin, Z.)

7(v)

G(v) = Iogm.



» For Frobenius manifolds come from ADE singularities,
Hertling showed that G = 0.

» For Frobenius manifolds come from the extended affine Weyl
groups of ADE type, or Gromov-Witten invariants of
P-orbifolds with positive Euler characteristics. There are at
most three orbifold points with multiplicity p, g, r satisfying
1.1 % > 1. The equivalence of these two class of FM is
established by Milanov & Tseng; Rossi. We have the solutions

(p7 q, 1) ’2\qu
(2,2,r) Drio
(27 37 r) ~r+3

We have G = — 5 v" (proved for A, 4 by Strachan and for
Dr.o by Liu, Z.)



The genus two free enegy
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The loop equation can be solved recursively to yield a unique
solution Fg(V, Vx,...,v3672),g > 1 (up to the addition of
constants). If the genus zero from energy Fy is constructed from
the topological solution of the Principal Hierarchy, then tau
function (partition function, total descendant potential)

T(t) — e€_2f0(t)+2g22 E2g_2Fg(V7VX>~~-7V(3g_2))|v:v(t).
satisfies the Virasoro constraints

Lnlpia_ypa_q7(t) =0, m>—1.

Note that the validity of Virasoro constraints for Gromov-Witten
invariants of Fano varieties was formulated and conjectured by
Eguchi, Hori, Xiong in 1997.



Motivation of our work:

To have a better understanding of the high genus free energies,
attempt to represent the genus g free energy in terms of the flat
coordinates, or in other words, in terms of the genus zero
correlation functions, like in the genus one case

1
Fi(v,vy) = 2 log det (cap(v)vy)) + G(v)

1 23 Fo
= ﬁ Iogdet (MW) + G(V)

Such a representation of F, for A, topological minimal model was
given by Eguchi, Yamada, Yang, 1994.



Elements needed to represent the genus two free energy

Let F = F(v},...,v") be the potential of the Frobenius manifold,
vl, ..., v" are the flat coordinates, in theses coordinates, the flat
metric
D3F(v)
Nap = VIovoDvE = constant.

The canonical coordinates w1, ..., u, are defined so that the
multiplication table defined on the tangent spaces is given by

0 0 _, 0

Ouj Ou; Yoy

and the Euler vector field has the form

0
Ezzuiauf.




The rotation coefficients and the Lamé coefficients

In the canonical coordinates the flat metric takes the diagonal form

i nii(u)du?.
i=1

The rotation and Lamé coefficients

1 Oh; .
PYU:hilau‘f’ hlzm, I:].’...’n.

They satisfy the equations

Al
8uk
i k(U — )V Vig — Vi
ou; up — uj )

= YikVkjs 1,J, k distinct,




The genus two free energy are represented in terms of
Yij» hia uj, u,(k) = 8)6”13 k = 17273a4'

Note that Vj; = (uj — u;)7; appear in the formula of F;.



2. Main Results

Theorem 1.
Let M be a semisimple Frobenius manifold of dimension n, and F;
be the genus two free energy for M, then we have

16
Fa(v) = Z cp Qp + G (u, Uy, Uyy).

p=1

Here each term Q, corresponds to a dual graph of stable curves
(we will explain their meaning later)
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The constants ¢, are fixed up to one arbitrary constant parameter.

1 1 1

960 7 57607 4T 1152
1 1 7 7

60’ C14:@, C15:_27,0’ C16:T0'

C1:0, C = —

€13 = —

The function G(2)(u, Uy, Uxx ) is called the genus two G-function,
which has the following form

i\3
G( (U, Uy, Usxx) ZG 2) u, Uy uXX+ZG X,) —|—Z P,-(jz)(u)u i
X ’1_]

i#j

Here the functions GI-(Z)7 G,.E-z) are fixed uniquely once the above
mentioned parameter is fixed.



Meaning of the graphs

We introduce a matrix

P*Fo

Mas = 5105700 950

and denote its inverse by (M~1)*%. Then we have
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O =540 5110 5200 9¢7 9 5290 97 0
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Characterization of the 16 graphs

» Each graph is the dual graph of a stable curve of arithmetic
genus two. This condition also implies that the graph is
planar, and the valence and genus of its vertices satisfy

m

2g(vi) =2+ n(v) >0, Y g(vi)+Bi(Q) =2
i=1

» Cutting of an edge connecting two genus zero vertices does
not destroy the connectivity of the graph. A graph with this
property is called to be one-particle irreducible (1PI) in
physics literature.



» The number of edges and the number of legs are equal to
N,(Q) + B1(Q) — 1. This property is equivalent to the Euler
formula for the graph

Ne(Q) — Ny (Q) + 1 = Bi1(Q)

and the condition that the function associated to @ must
have degree two with respect to the jet variables 9Xv?, i.e.

m

S (2g(v) — 2+ n(v)) — Ne(Q) = 2.

i=1

» There is at most one vertex with valence n(v;) = 3 —2g(v;) in
the graph. Moreover, if the graph contains only one genus one
vertex, then the valence of each of its vertices v; satisfies
n(v,-) >3- 2g(v;).



Conjecture.

If M is a Frobenius manifold defined on the orbit space of a
Coxeter group of ADE type or on that of an extended affine Weyl
group of ADE type, then

G(z)(u, Uy, Uxx) = 0.

For A, (Eguchi, Yamada, Yang, 1994).

1 1 1
Fa = 1152 @1 = 360 @~ 1150 B T 350 &



The first class of Frobenius manifolds is isomorphic to the ones
defined on the space of miniversal deformations of simple
singularities of ADE type. These Frobenius manifolds can also be
obtained from the genus zero Fan-Jarvis-Ruan-Witten invariants
theory for ADE singularities.

The second class of Frobenius manifolds is isomorphic to the ones
defined on the space of certain tri-polynomials, and they can also

be obtained from the genus zero Gromov-Witten invariants theory
for P1-orbifolds of ADE type, as shown by Milanov & Tseng, Rossi.



Reason for the appearance of an arbitrary parameter

Theorem 2.

If M is a Frobenius manifold defined on the orbit space of a
Coxeter group or on that of an extended affine Weyl group, then
we have the following identity

(Qr— Q) +2(Q7 — @s5) +3(Qs — Q)
+4(Qo— @3) +6(Qs + Qo — Q11 — Q12) = 0.



3. Proofs of the Theorems

Proof of Theorem 1

We only need to represent the above 16 graphs in terms of the
functions

yi(u), hi(u), ui, Oy, ij=1,....n k=1,2,3456

and compare the expression
16
E :CP @p
p=1

with the formula of the genus two free energy F, obtained by
solving the loop equation.
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Recall that uj, 1 < i < n are the canonical coordinates of the
Frobenius manifold

0.9 ;9
8u,- an_ ”8u,-’

in these canonical coordinates the flat metric on the Frobenius
manifold has the diagonal form

zn:n,-,-(u)du,?.
i=1

7ij are the rotation coefficients of the diagonal metric

1 oh;
iz A d  hi = /nii.
P}/J hi au’_ an n



by using the fact that

82}"0 83]:0(1.‘) ¢
grargera — Leppa(V(t), 5ooamomn = Cas(V(D)Mey,

where
Mey = ceyp(v(t))VE,
the Principal Hierarchy and the equations

M

= YikYki, 1,/, k distinct
aUk 7!k7k_]7 7./7 9

al] _ > k1 (U — ui)vik v — Vi
Ou; ujp — uj '




Proof of Theorem 2

Lemma.
We have the following identity

(Q1— Qs) +2(Q7 — Qs) +3(Qs — @)
+4(Qy — Q3) +6(Qs + Qio — Qi1 — Q12)
:8)%(01 - 0s).

with

OO L

O1 o)}



Lemma.
For any semisimple Frobenius manifold, the following identity holds
true

C84F(V17 ceey Vn)
OvEQVEOvavh N

= ng(‘/”v"/:v“f(t)'

t)

01— 0, =y’

Proposition.

For any Frobenius manifold defined on the orbit space of a Coxeter
group or on that of a extended affine Weyl group, the difference
01 — O, is equal to zero or to a constant respectively.



Proof We note that

deg Ca,B(V) _ d—1<0, Coxeter groups;
of d —1=0, extended affine Weyl groups.

On the other hand, for a Coxeter group the potential F(v) of the
Frobenius manifold is a polynomial of v1,..., v" with

0<d<1, degv®>D0,

and for an extended affine Weyl group the potential F(v) of the
Frobenius manifold is a polynomial of v1,...,v"~1 e"" with

d=1, degv®>0(1<a<n-—1), dege” >0.

Thus we proved the proposition.



4. Checking the Validity of the Conjecture

Frobenius manifolds associated to simple singularities

f=f(z,...,z™): a polynomial which has an isolated critical
point at 0 € C™ of ADE type with Milnor number n.

F:C"x B—C, (z,t) — F(z,t) a miniversal deformation of f,
where B is an open set in C".

There is a semisimple Frobenius manifold structure on the base
space B\ C outside of the caustic C C B with the flat metric

(OF(z,t))(9"F(z, 1)) dz" A+ -+ A dz™

/ol _
<8)8 >t_ resz:OO 821F-~-(92mF

for any &', 9" € T;B.



Canonical coordinates
For a given t € B\ C, the equations
0zF =0, a=1,...,m

has n solutions z()(t) = (21 ... z(0m) (i=1,... n). The
canonical coordinates v’ on B\ C are given by

Denote
hap(z,t) = 0200,5F(z,t), H(z,t) = det(hys(z,t))

and
(h*?) = (hap) ™"



The flat metric in canonical coordinates

1

i(duj)?,  with njj = =~
2 )’ with s = e

The rotation and Lamé coefficients

Oihe  hy
= — T — |— '7 h' pu— 4
Vki hi hi ki i Nii
and
Oy 1
Mhi o= Thy = S5 = 20,0 (K0 (2,8) 0,0.0 F(2,1)) |0,
2 Nk 2



Example: A, singularity

f(z) =2z, F(z,t) = 2" 4 tlz27 1 4 g,

1
(z(K(t) — z(£))2F"(2()(t), t)

Mi(t) =Tk =



We use the critical points z(1. ..., z(" and an additional
parameter z(9) to represent F(z, t) as

F(z,t):/\():/ n+1)H 9)de + 2@

Note that z(1), ... z(" are not independent, they satisfy

n—1
P () — Zz(k)_
k=1
Then we have
u=AZD), b= = e, 7= .

)\//(Z(i)) (Z(i) — z(j))z.



Proof of the validity of the Conjecture for A, singularity

Substituting these expressions into the formula for the difference
16
G(2)(u> Ux, Uxx) =F — Z Cpra
p=1

it becomes a rational function of z(0, ... z("=1) We prove the
vanish of this rational function, and thus prove the validity of the
above conjecture for A, singularities.



Example: D, singularity
In this case, m = 2. Denote x = zl,y = 72, then

f(z) = X”_l + Xyz,
Fz,t) =x" 1+ xy2 + tIx" 2 -+ " L4 1"y,

Denote the critical points of F by z() = (x;, y;), and introduce the
function

()

A t) = n—1 tl n—2 , .. tnfl_
() =x""+t X"+ 4 1

Lemma.

Xk + Xi
2x;(xk — xi )N (x;)

Mei(t) =Tk =



Verifying the validity of the Conjecture for D, singularity

Represent A(x, t) in terms of x1,...,x,—1 and xp in the form

A= [ Y- e 2 T (€ - x)d + %
k=1

Here Xin =— Z;} 71k Then we have
1 . Vh:h:
ui=ANx), hi=——— ;= M

\/2X,')\”(X,')’ i (Xi - Xj)z

By using these data, one can also verify the Conjecture for n < 10.



Example: Frobenius manifold structures associated to extended
affine Weyl group of ADE type

Isomorphic to the ones defined on the space of tri-polynomials of
type (p, g, r) (for certain specific values)

F(z,t) = 21253+ Pi(z1) + Pa(z2) + P3(z3),
g—1

p—1
Puz)) =) tizi +2[, Paz)=) tp1+izh+25,
i=1 i=1

r
P3(z3) = Y tprq-1+iZh,
i=0

where t = (t1,... t") € B, and B is an open set in C"~! x C*,
i.e. t" # 0. The computation of the rotation coefficients is similar
to that of simple singularities.



Proof of the conjecture for ADE singularities by Xiaobo Liu & Xin
Wang

Using the properties of semisimple Frobenius manifolds and the
following properties of FJRW invariants of ADE singularities:

L (609 $s0  bay - - Pay)o = O;
2. <¢a1 s ¢ak>1 =0;
3' <¢a1 s ¢ak>2 - 07 <T1(¢a1)¢a2 s d)ak>2 = O

The first property is equivalent to the property ¢ 5 = const, and
the second property is equivalent to the vanishing of the genus one
G-function.



A conceptual proof of the conjecture is in progress

Using the analyticity property of the potential of the Frobenius
manifolds and their genus one G-function, and the nonnegative
property of the degrees of the flat coordinates, and the property of
the charge d < 1. To complete the proof we need to prove the
analyticity of the genus two G function.



5. Some Remarks

Works to be done

» To elucidate the geometrical and physical meaning of the
genus two G-function, and the conditions of the vanishing of
this function.

> Possible generalization to higher genera.



Thanks
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