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Comments on the arrow of time in
cosmology (at board)
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Q: What features of the universe are correlated with
classicality?

e Arrow of time?

e Locality?

e EtcC.
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=>» Explore the process of einselection in a toy model,
relate to AoT, etc.
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e Arrow of time?
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Traditionally
connected with
arrow of time

Related to the

emergence of
classical

=>» Explore the process of But what about

einselection in

relate to AoT, etc.
eqm?

If you are handed a theory,

what are the classical degrees
of freedom?
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Einselection:

|((

The preference of special “pointer” states of a system
due to interactions with the environment

“Preference” =»

» Stability of pointer states

e Destruction of non-pointer states (including
“Schrodinger cat” superpositions of pointer states)

* Pure non-pointer states = mixtures of pointer
states via entanglement with the environment.
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“Preference” =»
e Stability of pointer states

non-pointer states (including
“Schrodinger c?t‘kgy erpositions of pointer states)
* Pure non-pointer states - mixtures of pointer

states via entanglement with the environment.

About to
illustrate this

Important for
with our toy

the emergence of
classicality
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The Caldeira-Leggett Model:

W=5®

T
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The Caldeira-Leggett Model:

W=5S®E

H = Hgo ®1° +0g0H +1° @ HF
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The Caldeira-Leggett Model:

Different (non-
commuting) H’s

H=HS$, ®1F + Qg HE+1° @ HE

i) Model E as an infinite set of SHOs with different
frequencies

i) Take special (order of) limits and parameter choices to get
an (irreversible) stochastic equation that describes this
(unitary) evolution under certain conditions (including AoT)

iii) Demonstrate einselection etc. (CL and others)
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The Caldeira-Leggett Model:

Different (non-
commuting) H’s

H=HS$, ®1F +Qq HE+1° @ HE

~

Adapted CL: Random Hermitian
matrices

i) Model E as finite system

i) Solve full unitary evolution in all regimes (numerical)

iii) Demonstrate Einselection under certain conditions (AoT)

iv) Explore scope of einselection (egm?)

5/21/19 A. Albrecht IPMU talk 25



Introducing the toy model
* No interaction case (H| =0)

 Model SHO with d=30 Hilbert space

H=HS, ®1f+g, HF +1° ®HE
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Introducing the toy model
* No interaction case (H| =0)

 Model SHO with d=30 Hilbert space

H=HS, ®1f+g, HF +1° ®HE

“Movie” A (Isolated SHO)
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Isolated SHO
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Introducing the toy model

* No interaction case (H| =0)

 Model SHO with d=30 Hilbert space

Nice stable

behavior

5/21/19

Numerical

noise not
an issue
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Introducing the Schrodinger cat

* No interaction case (H| =0)

 Model SHO with d=30 Hilbert space
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Isolated SHO

t=1.2566
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Isolated SHO

t=4.3982
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Isolated SHO

t =5.0265
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Schrodinger cat interacting with the environment:

* Interactions turned on (H; #0)

H :H§HO®1E15®HE

This evolution will take an initial product state into a
mixed state:

v =Iv)slv)e = 2euli)s i)
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Schrodinger cat interacting with the environment:
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Schrodinger cat interacting with the environment:
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Some comments on entangled states
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W=AXB

Inclined to think:

) =1V v)s

A state for

each
subsystem
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W=AXB

But the general case is:

W) :Z“ij DARS
1]
Which gives:

Pa=Try (|W>w w <W|)

Ps ETrA(|‘//>w W <9”|)

A density

matrix for
each
subsystem
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The expectation value of an
observable which lives only in A
can be written:

(0,)=tr(p,0 Zp. p.|O

p:)

Eigenvalues and eigensétes of Pa
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The expectation value of an
observable which lives only in A
can be written:

(0,)=tr(p,0 Zp. p.|O

p:)

Eigenvalues and eigensétes of Pa

(“Schmidt states”)
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The expectation value of an
observable which lives only in A
can be written:

(O)=tr (p,0 Zp.<p. p;)

Eigenvalues and eigensétes of Pa

0

A “classical mixture” of the

eigenstates (no cross terms =»
no “quantum coherence”)
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The expectation value of an
observable which lives only in A
can be written:

(O)=tr (p,0 Zp.<p. p;)

Eigenvalues and eigensétes of Pa

0

A “classical mixture” of the
eigenstates (no cross terms =»
no “quantum coherence”)

Onset of entanglement =
decoherence
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Neumann
entropy

Decoherence = increasing S
=>» arrow of time
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In general, the density matrix eigenstates might vary
significantly from one moment to the next, producing a
“classical mixture of random stuff”
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Special case: The nature of the interactions between A
and B lead to a reliable preference for specific “pointer”
eigenstates. This is Einselection




In general, the density matrix eigenstates might vary
significantly from one moment to the next, producing a
“classical mixture of random stuff”

Special case: The nature of the interactions between A
and B lead to a reliable preference for specific “pointer”
eigenstates. This is Einselection

5/21/19

Discuss pendulum
interacting with the air,

leading to localized wave
packed pointer states.
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Schrodinger cat interacting with the environment:

* Interactions turned on (H; #0)

H :H§HO®1E15®HE
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Schrodinger cat interacting with the environment:

An illustration of

* Interactions turned on (H; #0) : :
Einselection

H :H§HO®1518®HE
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Schrodinger cat interacting with the environment:

* Interactions turned on (H; #0)

H :H§HO®1E15®HE

This evolution will take an initial product state into a
mixed state:

v =Iv)slv)e = 2euli)s i)

ps =Tr, (|l//>W . <z//|)=|w>s . (w|—> more general 0s
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Schrodinger cat interacting with the environment:

* Interactions turned on (H; #0)

H :H5H0®1515®HE

This evolution will take an initial product sta
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Show
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and

|l//>W =|z//>s |W>E _>Zaij |i>s | j>E eigenvalues
1]

ps =Tr, (|W>W . <1//|):|gy>s . (| > more general P
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Schrodinger cat interacting with the environment:

* Interactions turned on (H; #0)

H :H§HO®1515®HE

This evolution will take an initial product sta
mixed state:
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Schrodinger cat interacting with the environment:

* Interactions turned on (H; #0)

H :H§HO®1515®HE

This evolution will take an initial product sta
mixed state:

Show  First 2
eigenstates
and

|l//>W =|z//>s |W>E _)Zaij |i>s | j>E eigenvalues
1]

ps =Tr, (|l//>w . <l//|)=|l//>s . (| > more general P

Show Movie C
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Eigenvalues

Eigenstates
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Schrodinger cat interacting with the environment:

* Interactions turned on (H; #0)

UPSHOT:

Show  First 2
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The collapsing Schrodinger cat (Movie C) was in this time window
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The collapsing Schrodinger cat (Movie C) was in this time window
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Discuss “detailed balance”
(wallowing) of everett worlds at
board
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SHO density matrix in egm
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might expect)
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SHO density matrix in eqgm
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coupling strength is
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Next movie shows weak coupling case,
starting here
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SHO density matrix in egm Weakly
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SHO density matrix in egm Weakly

coupled
case

Eigenvalues .-

' 6 -4 -2 0 2 4 6

t=3.0108x10°

Eigenstates

5/21/19 A. hPﬁré’t;tQWﬁXﬂaQ? 189



SHO density matrix in egm
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SHO density matrix in egm Weakly
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SHO density matrix in eqgm \WEELYY
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SHO density matrix in eqgm \WEELYY
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case
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SHO density matrix in egm Weakly
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case
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SHO density matrix in eqgm \WEELYY
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SHO density matrix in eqgm \WEELYY
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Movie E shows the weakly
oo interacting toy model in eqm phase
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Further analysis:

Time-time correlation function

f(t)

6(At)
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Power
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Now look at strong coupling, where Egm
seemed more noisy
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Upshot:

=>» Strong oscillatory signal in <q> for O eigenstates for weakly
coupled case (despite messy overall wavefunction shapes)

=>» No such signal for strongly coupled case

=> Both cases show strong oscillatory signal for (de) but
amplitude is small.
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Upshot:

=>» Strong oscillatory signal in <q> for O eigenstates for weakly
coupled case (despite messy overall wavefunction shapes)

=>» No such signal for strongly coupled case

=> Both cases show strong oscillatory signal for (de) but
amplitude is small.

NEXT: A consistent histories approach
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Consistent histories (CH):

=» Generally, in the path integral formulation of QM
interference among paths plays an important role

=» CH formalism identifies paths where interferences effects are
NOT important. These are the paths to which probabilities
can be assigned, and which are classical in that sense.

=2 We have found that the messiness of the egm physics of our

toy model shows up as histories that degrade after a couple
of SHO periods

=>» CH gives interesting test of “coherent state as most robust
state” result from master equation work.
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Histories built from coherent states (green) degrade more slowly than histories
built from other states.
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Fractional

Probability for Path 1

interference

error

Histories built from coherent states (green) degrade more slowly than histories
built from other states. But eventually the coherent state paths degrade too.
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Histories built from coherent states (green) degrade more slowly than histories
built from other states.

Lesson from consistent histories:
Histories made by projecting on
coherent states are most robust

(consistent with existing lore about
SHO in an environment).

Probabili

interference

Fractional
error
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Fractional

Histories built from coherent states (green) degrade more slowly than histories
built from other states.

107\ =

Lesson from consistent histories:
Histories made by projecting on
coherent states are most robust
(consistent with existing lore about
SHO in an environment).

Probabili

But in EQM (detailed balance), even
coherent state histories degenerate

on the scale of a coherence time

interference
S
N

error

5/21/19 A. Albrecht IPMU talk 221



Lessons from egm studies in the adapted CL model:

=>» Plenty of messiness in egm (“wallowing or interfering Everett
worlds”)

=» Still, some intriguing sign of “classicality” show up in the
power spectra of density matrix eigenstates.

=» Consistent Histories formalism shows some classical behavior
(which degrades after a couple of SHO periods)

=>» Further discussion of implications at end of talk.
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Einselection in equilibrium (technical explorations

and overall assessment)

Eigenstate Einselection Hypothesis (if there is
time)

Conclusions
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Similar power spectra to those shown above

Entropy vs time
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Randomized

Entropy vs time

Same as previous slide, but calculated for a state that has the
S phases of the coefficients of the expansion in energy eigenstates
(of the whole system) randomized
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Same as previous slide, but calculated for a state that has the
phases of the coefficients of the expansion in energy eigenstates
(of the whole system) randomized

Randomized

Entropy vs time

o

i

Power spectra
by

eigenstate =>» Interesting behavior of power spectra a reflection
of intrinsic properties of (certain) energy
eigenstates of the entire system

=» Compare with “Eigenstate Thermalization
Hypothesis” (ETH)

=>» “Eigenstate Einselection Hypothesis” (EEH)
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Conclusions

=» The adapted CL (ACL) model reproduced results about
decoherence and einselection known from the standard CL model

=» The ACL allows the exploration of these phenomena under
conditions not accessible to the CL model (specifically eqm.)

=» We have found einselection phenomena are highly degraded in
egqm., but not completely destroyed.

=>» A suggestion: Classical phenomena may persist in equilibrium on a
time scale short compared to a decoherence time... interesting for
cosmology.
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=» The ACL allows the exploration of these phenomena under
conditions not accessible to the CL model (specifically eqm.)

=» We have found einselection phenomena are highly degraded in
egm., but not completely destroyed. Interesting connection with
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cosmology.
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Conclusions

=» The adapted CL (ACL) model reproduced results about
decoherence and einselection known from the standard CL model

=>» The ACL allows the exploration of these phenomena under
conditions not accessible to the CL model (specifically eqm.)

=>» We have found einselection phenomena are highly degraded in
egm., but not completely destroyed.

=» A suggestion: Classical phenomena may persist in equilibrium on a
time scale short compared to a decoherence time... interesting for
cosmology.

“classical” features emerged in egm when the
decoherence time was extended (weak coupling) to
be longer than the SHO period
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Conclusions

=» The adapted CL (ACL) model reproduced results about
decoherence and einselection known from the standard CL model

=>» The ACL allows the exploration of these phenomena under
conditions not accessible to the CL model (specifically eqm.)

=>» We have found einselection phenomena are highly degraded in
egm., but not completely destroyed.

Compare with “de

. . . Sitter Equilibrium”
=» A suggestion: Classical phenomena may persis q
scenario where

time scale short compared to a decoherence ti emalEErEs e

cosmology. is thS age of the
niverse

“classical” features emerged in egm when the
decoherence time was extended (weak coupling) to
be longer than the SHO period
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