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BH entropy
s _ k,C° A
ARG,
* Gravity (Gy) & quantum mechanics (/) &
statistical mechanics (kg) are involved!

S = In(# of states).
Can be understood microscopically.

S = In(# of states)? Can we
understood it microscopically?

 We might be able to learn something about
guantum gravity from BH entropy.

* BH entropy is also expected to be a key to
understand information loss problem.




BH entropy

(c=h=Gy=kg=1)
2

* Schwarzschild BH ds® =—f (r)dt® + SUERTOT

_ I
ENErgy EBH - I\/IBH f(r):l—ri ry =2Myg,

temperature Tgy = Tauking . o i f(r.) 1

* 15t |aw (Bardeen-Carter-Hawking 1973) ravking 27 An 87M gy,
Tgy dSgy = dEgy,
dSgy = dEgy, / Tay = 8TM;,dMg,, = d(4TM;,,2)
Sy = 4TM 2 = A, /4 o3
_ B

* (classical) 2nd law Sy =
AS,, = 0 4G,

A,

* (semi-classical) generalized 2"9 [aw (GSL)
AS.. = 0, whereS,_, =Sg, +S

* Quantum gravity probably breaks GSL @ Page time

matter



Bekenstein bound (1981)

| §? = —f ()2 + 2 1 24 0y?

— t(r)
D T — K — f l(rH)
Box (size R, mass M, entropy S) N on A

* Near horizon behavior (r : box’s position)
Fr)~=t(h)r-r,)= 47TTBH (r )
~ 2 _ r—r,
~ (27Tg,) I \/ f(r) \/47ZTBH I \/ﬁ ATen J
* Box’s energy measured @ infinity E=M./f (r) = 2zMT,,, |

Men _ = <27M,,
L Ten

AS o =AS;, —S=27MI-S
ot = 0) requires S <27-MR
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* 1stlaw with AM,, = E AS,,, =

* Total entropy

« GSL (AS




Unruh-Wald argument (1982)

Thermal atmosphere around BH causes a buoyancy force
. (P39

TD

Box fllled with a gas (,O P S)
(AIS\/T)l—Rm» (Alﬁ\/?)
WO=(48T),~(45T)

* Work done against the buoyancy force
|
W, (1) == f,(0dl'=]

* Box’s energy measured @ infinity

= | pJfav

box

* Buoyancy force

I+R/2

|+R/2
p/fdv

box



Unruh-Wald argument (1982)

Thermal atmosphere around BH causes a buoyancy force
L. (pP.9)

AIZI
Box fllled with a gas (,O, P S)

* 15t law with AM,, = Ebox + W,

AM
AS,,, = jbox(p+ P),/fdV

TBH Ten
* Total entropy 1 i
AS,, =AS,, —S = box{—N(m P) —s}dv

_|

T ET Tolman temperature
s : entropy density of gas
ol [(p Ts)—(p-T8) [dv >0

Gibbs-Duhem relation The thermal state
p=T5-P minimizes p—Ts

Bekenstein bound is NOT needed for the validity of GSL!

This argument can be extended to a charged BH (Shimomura-Mukohyama 2000)
& a rotating BH (Gao-Wald 2001).



Casini’s “proof” of Bekenstein bound (2008)

* Relative entropy

S (pl | pz) ETr(pl In pl)_Tr(pl In /02)
non- negativity of relative entropy

S(p,|p,) = 0, where equality holds iff p,= p,
(proof)

{]a)} &{|b)}: complete orthonormal sets of eigenvectors of p, & p,
pi=2la)a (] P2 :Z|bi>bi (b |

2
S(plp,)=Tr(pInp)=Tr(pInp,)+Trp, ~Trp, =Z‘<ai |bj>‘ (a/Ina —aInb; +b; -a,)=0
N

* Setup
"V :aspatial region on a Cauchy surface
-V : complementary set of V o, =Tr,p
p : a quantum state 0 _ 0
_pY: vacuum A =T p
* Local HamllEonlan K (modular Hamiltonian in continuum theory)
o €
Tre ™ y
e.g.) K_Zyzfdxdyj dzzH (x,y,2) = Id3 (x,y,2) for V = half space

T

Rindler z



Casini’s “proof” of Bekenstein bound (2008)

* “Proof”

0<S(p 127)=Tr(a np,)-Tr(a Ing))
S-K-In(Tre™) 1o Trp
=Tr(p, Inp, )+Tr(Kg, )+In(Tre ™ \Trp)

R

YK -=Ing
=Tr(p, Inp, )=Tr (0 Inp\‘,))+Tr(KpV)—Tr(Kp\(,’)
“-s(a) "= (a))
S(p)-S(a0)<Tr(Kp, )-Tr(Ka)
g O(l)xMR QED

* This is basically Bekenstein bound (g < 27MR

* Therefore, despite the doubt on its derivation/motivation, the bound
itself seems correct if interpreted properly!

* Perhaps we should be cautious but, at the same time, open-minded to
new ideas and conjectures!



Swampland conjectures (ooguri-vata 2007, + a 2018)

* Distance conjecture

1

Lyin = _§7ab((bc)guyau¢ay¢ V(¢C) — ()

A¢ : geodesic distance in the moduli space
— towers of light states with mass

m ~ e—aAqb

* Assumption | : The distance conjecture holds not only in the moduli
space with V(¢¢) = 0 but also in the field space with V(¢¢) # 0.
[This is in conflict with e.g. monodromy inflation.]

a (>0) = 0(1)

* # of particle species below the cutoff of an EFT

d
N ~ n(¢)€b¢ ; ﬁ > () n(¢) : effective # of towers

* Ansatz : entropy of the towers of particles in accelerating universe

Stower (N, R) ~ N%t R 8., (>0) =0(1) N: # of particle species
R =1/H : AH radius



Covariant entropy bound (Bousso 1999)
A

S < __ S :entropy on L
o 4 A : area of B
L L : a hypersuraface generated by null geodesics that are

orthogonal to B and that have non-positive expansion

B : a spacelike 2-surface

* Bekenstein bound is not covariant and it assumes
constant and finite size, negligible gravity, and no negative energy.

* Bousso bound is covariant and can be applied to
gravitational collapse and FLRW universes.



Swampland conjectures (ooguri-vafa 2007, + a 2018)

 Covariant entropy bound, conservatively applied to quasi de Sitter

then S < W/HQ

2

H IUN Mg alar >

If _Sca ~ &
H2|~ 5 HE Y

¢y, (>0) = 0(1)
+ the entropy ansatzwithR=1/H > N 5 H_(2_52)/51

* Assumption Il : The upper bound on N is an increasing function of the
horizon radius and is saturated for large N.

2—49

(V]

1 51
N ~ [ — o1 > 0 0<dy <2
O

* Equate the two expressions for N, considering ¢ as a time variable
2—4 2
Inn(¢) ~ —bp — 552 In H

2
dn L dH?)|  B) 205,
— > 0 > = i
do "2 dp | ™ Co, Co S if (1)&(2) hold
* If (3) does not hold then either (1) or (2) should be violated
H?2 dgb Z Co, OI ﬁ Z ci, Or 72 5 —C9




Swampland conjectures (ooguri-vafa 2007, + a 2018)

* This is the (refined) de Sitter swampland conjecture rewritten in a way that
is useful for extensions

1 d(H? H min m?
( ) 2 Co, O s z c1, or scalar 5 —col
H? dg¢ H? H?
* For a single-field slow-roll inflation with a canonical kinetic term,
Vl Vll
7 > C, or 7 > —C, CEmin(Co,\/ch) C, — 02/3

this is what is usually known as the (refined) de Sitter conjecture.

* The de Sitter conjecture would be a serious challenge to the standard single-
field slow-roll inflation (or to string theory).

* On the other hand, our universe may be fine-tuned. An “O(1) number”
may be as small as 10122 jn our universe (the c.c. problem).

* Anyway, | think it is important/interesting to push forward the idea as far as
we can go.



Extension to DBI scalar (S.Mizuno, S. Mukohyama, S.Pi and Y.Zhang, to appear)

* String theory allows for not only canonical scalar but also DBI scalar
(representing the position of a D-brane in extra-dimensions)

x|
T(p)

* Can we extend the swampland conjectures to a DBI scalar and, more
generally, to a k-essence type scalar with Lagrangian P( X, @) ?

1
- U(s@)} X = —59“”%@8#

Ippr = /d4$\/—_9 {T(‘P)

* There seems at least three options:

A) Expand the action w.rt. Xas P(X,p) = Py(p) + Pi(p) X + O(X?)
and then make the following identification

V(p) & —Po(p), do < /Pi(p)dy

B) Introduce perturbation as p = o (t) (¢, 7)
calculate the quadratic actionas  P(X,¢) > _’CHW — —ICL(S* 070

and then make the identification

C) Make the identification do < VK. dy KL= P,(;(?

* None of the three options is convincing...



2-field model with hyperbolic field space

* Distance conjecture - negatively curved moduli/field space
simplest : 2d hyperbolic field space

Yab()dpde” = dx* + e*Xdp?
* Simple 2-field model

1 1
I = /d%\/—g {§g“”8uxc‘9,,x — §e2ﬁxg‘“’”8ug08,,<p — T'(p) [cosh(25x) — 1] — U((p)}
* y-eom for large [32 L 1
1 - X
—Bx—+ 28e?PX X — 28T () sinh(28x) =0 X =~ 25 In~y L= 70

1 LV

4T
X has a large mass 2V |28x=n = 762 % can be integrated out

* Effective single-field action

I = /d4ﬂ3\/—_9 {T(ﬁp)

This is a DBI action!

c.f. This is a special case of the gelaton (Tolley & Wyman 2010; Edler &
Joyce & Khoury & Tolley 2015).



2-field model with hyperbolic field space

* The 2-field model and the single-field DBl model agree very well!

o(t)

o(t) |

T

15

-25}

10F

20}

Ule)=1401¢%, T(p) =¢*/N, f=20and A =05
Two-field | 150 e2Bx
\ y(t) =
0 2 4 t 6 8 10 0 2 4 t 6 8 10
U(p) = 7.5¢°, T(p) =1/\, =20, and A\ = 10
Two-field 150 e2Bx
Y(t) 1@ 7

* For the 2-field model we know how to use the swampland conjecture.

* Perhaps we can obtain the swampland conjecture for the single-field
DBI model by taking 32 > oo limit



2-field model with hyperbolic field space

* Geodesic distance in the field space for large [32

— N GEON L
do = \/%b(@ )dprdgt = \/dx? + e2PXdp? > {45272952 + 'Y] dp = \/vdg
Thus the fist condition in the dS conjecture is
1 d(H?) 1 |1 d(H?)
H? df V7 H? dy
. Squared masses of scalar perturbation modes for large [32

ECO

ZCO

2
1% = f dta® |YTKY + YT MY +Y " MTY = YT ( /cv—z + v) Y
a
_ 0 1 1
\ ? . (t) w dynamical 0 _511” 7 = 202 V — O
x = x(t) +@x(t. DD L= 75 dx
gudzide’ = —[1+2®(t, Z))dt* + 2N (t)a(t)0(B(t, T)dtdx’ + a(t)*dz’dx?
det [mQIC — 2imM — V] =3 5
2 2 0 Q — LUH _|_ (’Y o 1) TII
my = AT (p)yB" + O(57) N 21

m: = Q+0(B7)+OMp]) - T @ - v -7

Thus the last condition in the dS conjecture is
min mgcalar < _¢ Y
H2

FER




De Sitter swampland conjecture for a DBI scalar
(S.Mizuno, S. Mukohyama, S.Pi and Y.Zhang, to appear)

* For the 2-field system (@, % ) in B2 =2 oo limit

1 d(H? H min m?
ﬁ (d¢ ) > ¢y, or ﬁ Z ci, or H;calar SJ —Cy
1 | 1 d(H? H 0
5 (A7) ZC, O |Z=|ZC1, O —5 < —C
VY T HE do H H
1 (v — 1)2 1 2
O==U" T" — 2T 4 24(T' — U") — 37"

* In 32 = oo limit, the 2-field model is equivalent to the single-field DBI
and thus the above condition may be considered as
de Sitter swampland conjecture for a DBI scalar

IDBI:/dLL.Tﬂ/—g{T(QO) —U((p)} T e e e e e
e This would ensure the equivalence between the de Sitter swampland

conjectures in the 2-field model and the single-field DBI model

* The limity =2 1 with ¢ & Xand (In T)’ & (In T)”” kept finite recovers
canonical one 2 ' 1
L d(H?) al v
H? dyp H?

Z 0 or

~Y H2N




Extension to general P(X, @)

* Equivalent Lagrangian

L = P(x,¢) + AMx —X)= P, ») + Px(x; »)(X = x)
* Adding a small kinetic term of y

L=L+ Z?g"d,x0,x/2

» Geodesic distance in the field space
Z>0

dp = /P(x,¢) + Z2(dx/dp)?de = do = \/Px(X,p)dy

* Scalar perturbations in the k=0 sector contain
two fast modes ~ e="t! with m3 = O(Z°2) > 0

two slow modes ~ e="-t with m2 = O(ZY)

* De Sitter swampland conjecture for P( X, ¢ )
1 1 d(H?) H m?
VPx (X ) |H? dyp 2

> o

~Y )

or




Summary

* Analogy between thermodynamics & properties of BH
- BHentropy S;,=A,/4 (A4 horizon area)

* Bekenstein bound was “derived” by a gedanken experiment
S <27MR

* Bekenstein’s “derivation” was refuted by Unruh & Wald. Nonetheless the
bound seems correct (if interpreted properly) and was “proven” by Casini.

* The distance conjecture + the covariant entropy bound motivate the de
Sitter swampland conjecture under a number of speculations. Some of the
speculations may be doubtful but the conjecture itself may be correct (as in
the case of Bekenstein bound).

* Note that in our universe “O(1) numbers may be small (could be as small as
10-120 3s in the case of c.c.).

* The conjecture was formulated for scalars with linear kinetic terms but string
theory allows for DBI scalars with nonlinear kinetic terms.

* We therefore extended the de Sitter conjecture to a DBI scalar by
considering a model of two scalars with a hyperbolic field space that reduces
to a single-field DBI and applying the conjecture to the 2-field model.

* We also considered extension to a general P( X, @ ).



