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BH entropy

• Gravity (GN) & quantum mechanics (   ) & 
statistical mechanics (kB) are involved!

• Thermodynamic entropy: S = ln(# of states). 
Can be understood microscopically.

• BH entropy: S = ln(# of states)? Can we 
understood it microscopically? 

• We might be able to learn something about 
quantum gravity from BH entropy.

• BH entropy is also expected to be a key to 
understand information loss problem.
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BH entropy

•Schwarzschild BH
energy            EBH = MBH
temperature  TBH = THawking

•1st law (Bardeen-Carter-Hawking 1973)

TBH dSBH = dEBH

dSBH = dEBH / TBH = 8pMBHdMBH = d(4pMBH
2)

SBH = 4pMBH
2 = AH/4

• (classical) 2nd law
DSBH≧ 0

• (semi-classical) generalized 2nd law (GSL)
DStot≧ 0, where Stot = SBH + Smatter

•Quantum gravity probably breaks GSL @ Page time
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Bekenstein bound (1981)

• Near horizon behavior

• Box’s energy measured @ infinity

• 1st law with DMBH = E

• Total entropy

• GSL (DStot≧ 0) requires 

BH

Box (size R, mass M, entropy S)
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Unruh-Wald argument (1982)

• Buoyancy force

• Work done against the buoyancy force

• Box’s energy measured @ infinity

BH

Box filled with a gas
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Unruh-Wald argument (1982)

• 1st law with DMBH = Ebox + Wb

• Total entropy

BH

Box filled with a gas
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Gibbs-Duhem relation

Ts P  

The thermal state
minimizes Ts 

This argument can be extended to a charged BH (Shimomura-Mukohyama 2000)

&  a rotating BH (Gao-Wald 2001).

Bekenstein bound is NOT needed for the validity of GSL!



Casini’s “proof” of Bekenstein bound (2008)
• Relative entropy

non-negativity of relative entropy
S(1|2)≧ 0, where equality holds iff 1= 2

(proof)
: complete orthonormal sets of eigenvectors of 1 & 2

• Setup
V : a spatial region on a Cauchy surface
-V : complementary set of V
 : a quantum state
0 : vacuum

• Local Hamiltonian K (modular Hamiltonian in continuum theory)

e.g.) for V = half space
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• “Proof”

• This is basically Bekenstein bound

• Therefore, despite the doubt on its derivation/motivation, the bound 
itself seems correct if interpreted properly! 

• Perhaps we should be cautious but, at the same time, open-minded to 
new ideas and conjectures! 
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Casini’s “proof” of Bekenstein bound (2008)



• Distance conjecture

Df : geodesic distance in the moduli space 
 towers of light states with mass

• Assumption I : The distance conjecture holds not only in the moduli 
space with V(fc) = 0 but also in the field space with V(fc) ≠ 0.
[This is in conflict with e.g. monodromy inflation.]

• # of particle species below the cutoff of an EFT

• Ansatz : entropy of the towers of particles in accelerating universe

Swampland conjectures (Ooguri-Vafa 2007, + a 2018)

a (>0) = O(1)

n(f) : effective # of towers

d1,2 (>0) = O(1) N: # of particle species
R = 1/H : AH radius



Covariant entropy bound (Bousso 1999)

• Bekenstein bound is not covariant and it assumes
constant and finite size, negligible gravity, and no negative energy.

• Bousso bound is covariant and can be applied to
gravitational collapse and FLRW universes. 
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L : a hypersuraface generated by null geodesics that are
orthogonal to B and that have non-positive expansion

B : a spacelike 2-surface
B

L

S : entropy on L
A : area of B



Swampland conjectures (Ooguri-Vafa 2007, + a 2018)

• Covariant entropy bound, conservatively applied to quasi de Sitter

If then

+  the entropy ansatz with R = 1/H  

• Assumption II : The upper bound on N is an increasing function of the 
horizon radius and is saturated for large N.

• Equate the two expressions for N, considering f as a time variable

• If (3) does not hold then either (1) or (2) should be violated

(1) (2)
c1,2 (>0) = O(1)

if (1)&(2) hold
(3)



Swampland conjectures (Ooguri-Vafa 2007, + a 2018)

• This is the (refined) de Sitter swampland conjecture rewritten in a way that 
is useful for extensions

• For a single-field slow-roll inflation with a canonical kinetic term,

this is what is usually known as the (refined) de Sitter conjecture. 

• The de Sitter conjecture would be a serious challenge to the standard single-
field slow-roll inflation (or to string theory). 

• On the other hand, our universe may be fine-tuned. An “O(1) number” 
may be as small as 10-120 in our universe (the c.c. problem). 

• Anyway, I think it is important/interesting to push forward the idea as far as 
we can go. 



Extension to DBI scalar (S.Mizuno, S. Mukohyama, S.Pi and Y.Zhang, to appear)

• String theory allows for not only canonical scalar but also DBI scalar 
(representing the position of a D-brane in extra-dimensions)

• Can we extend the swampland conjectures to a DBI scalar and, more 
generally, to a k-essence type scalar with Lagrangian P( X , j ) ? 

• There seems at least three options:

• None of the three options is convincing…

A) Expand the action w.r.t. X as
and then make the following identification

B) Introduce perturbation as ,
calculate the quadratic action as
and then make the identification

C) Make the identification 



2-field model with hyperbolic field space
• Distance conjecture  negatively curved moduli/field space

simplest : 2d hyperbolic field space

• Simple 2-field model

• c-eom for large b2

c has a large mass 

• Effective single-field action

This is a DBI action! 

c.f. This is a special case of the gelaton (Tolley & Wyman 2010; Edler & 
Joyce & Khoury & Tolley 2015).

c can be integrated out



2-field model with hyperbolic field space
• The 2-field model and the single-field DBI model agree very well!

• For the 2-field model we know how to use the swampland conjecture.

• Perhaps we can obtain the swampland conjecture for the single-field 
DBI model by taking b2

∞ limit

j(t)

j(t)

t t

tt

g(t)

g(t)



2-field model with hyperbolic field space
• Geodesic distance in the field space for large b2

Thus the fist condition in the dS conjecture is

• Squared masses of scalar perturbation modes for large b2

Thus the last condition in the dS conjecture is

non-dynamical

dynamical



De Sitter swampland conjecture for a DBI scalar
(S.Mizuno, S. Mukohyama, S.Pi and Y.Zhang, to appear)

• For the 2-field system ( j , c ) in b2
  limit

• In b2
  limit, the 2-field model is equivalent to the single-field DBI

and thus the above condition may be considered as 
de Sitter swampland conjecture for a DBI scalar

• This would ensure the equivalence between the de Sitter swampland 
conjectures in the 2-field model and the single-field DBI model

• The limit g 1 with j & X and (ln T)’ & (ln T)’’ kept finite recovers 
canonical one



Extension to general P(X, j)

• Equivalent Lagrangian

• Adding a small kinetic term of c

• Geodesic distance in the field space

• Scalar perturbations in the k=0 sector contain
two fast modes 
two slow modes

• De Sitter swampland conjecture for P( X , j )

Z  0



Summary
• Analogy between thermodynamics & properties of BH
 BH entropy SBH = AH/4     ( AH: horizon area)

• Bekenstein bound was “derived” by a gedanken experiment

• Bekenstein’s “derivation” was refuted by Unruh & Wald. Nonetheless the 
bound seems correct (if interpreted properly) and was “proven” by Casini. 

• The distance conjecture + the covariant entropy bound motivate the de 
Sitter swampland conjecture under a number of speculations. Some of the 
speculations may be doubtful but the conjecture itself may be correct (as in 
the case of Bekenstein bound). 

• Note that in our universe “O(1) numbers may be small (could be as small as 
10-120 as in the case of c.c.). 

• The conjecture was formulated for scalars with linear kinetic terms but string 
theory allows for DBI scalars with nonlinear kinetic terms.  

• We therefore extended the de Sitter conjecture to a DBI scalar by 
considering a model of two scalars with a hyperbolic field space that reduces 
to a single-field DBI and applying the conjecture to the 2-field model. 

• We also considered extension to a general P( X , j ).
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