Symmetries and Ward-Takahashi Identities in Cosmology

Justin Khoury (U. Penn)

EISAS AP/WMKA9c Geriee Teram

TOCO 1998

Planck 2018

Not to reminisce about the past

Not to be complacent about the present

Look boldly into the future!

Fundamental questions: Did inflation really occur? If so, how many fields were participating? Or is some other dynamics responsible for the observations?

Focus on broad class of theories, distinguished by their symmetries.

Symmetries of Density Perturbations

Primordial inhomogeneities are the simplest imaginable

Approximately scale invariant

$$\left\langle \frac{\delta T}{T}(\vec{x}_1) \frac{\delta T}{T}(\vec{x}_2) \right\rangle = \int \frac{\mathrm{d}^3 k}{(2\pi)^3 k^3} e^{-i\vec{k}\cdot(\vec{x}_1 - \vec{x}_2)} P(k)$$

with

$$P(k) \sim k^{2(n_s - 1)}$$

$$\Longrightarrow$$

$$n_s = 0.9649 \pm 0.0042$$

Planck (2018)

Harrison-Zeldovich spectrum ruled out at $\gtrsim 8\sigma$

Approximately Gaussian

$$f_{\rm NL} \equiv -\frac{\left\langle \frac{\delta T}{T} \frac{\delta T}{T} \frac{\delta T}{T} \right\rangle}{\left\langle \frac{\delta T}{T} \frac{\delta T}{T} \right\rangle^2}$$

Liguori et al. (2007)

Planck 2018:

$$f_{\rm NL}^{\rm local} = -0.9 \pm 5.1$$

Gaussian at 10^{-5} level

Inflation \simeq de Sitter space

$$\mathrm{d}s^2 = \frac{1}{H^2\tau^2} \left(-\mathrm{d}\tau^2 + \mathrm{d}\vec{x}^2 \right)$$

At late times, de Sitter isometries reduce to conformal transformations on ${\cal R}^3$

Transl'ns + Rot'ns

Dilation:

Special conformal transformations:

Inversion

Translation $\rightarrow \rightarrow \rightarrow 1$ Inversion

Their commutation relations form the so(4,1) algebra

Conformal correlators

Antoniadis, Mazur & Mottola (1997); Maldacena (2011); Creminelli (2011).

We are interested in correlation functions at late times during inflation \implies invariance under so(4,1) conformal symmetries.

2-point function (except inflaton):

$$\langle \chi(\vec{x},\tau)\chi(\vec{x}',\tau)
angle \sim |\vec{x}-\vec{x}'|^{-2\Delta}$$

with scaling dimension $\Delta = rac{m_{\chi}^2}{3H^2}$

Any field with $m_{\chi} \ll H$ acquires nearly scale invariant spectrum (including gravitational waves)

3-point function also fixed by symmetries:

$$\langle \chi(\vec{x}_1, t) \chi(\vec{x}_2, t) \chi(\vec{x}_3, t) \rangle = \frac{C}{|\vec{x}_1 - \vec{x}_2|^{\Delta} |\vec{x}_2 - \vec{x}_3|^{\Delta} |\vec{x}_1 - \vec{x}_3|^{\Delta}}$$

Single-Field Inflation

Single Field Inflation

 \circ Economical \implies Predictive

Constrained by infinitely-many relations (indep. of slow-roll, c_s , ϕ fundamental or not)

Single-field consistency relations

 \lim

 \vec{q}

 \vec{k}_1

 \vec{k}_2

$$\frac{\zeta_{\vec{q}}\zeta_{\vec{k}_1}\zeta_{\vec{k}_2}\rangle}{P_{\zeta}(q)} = -(n_s - 1)P_{\zeta}(k_1)$$

Maldacena (2002); Creminelli & Zaldarriaga (2004); Cheung, Fitzpatrick, Kaplan & Senatore (2007).

Holds in all inflationary models, under the assumptions:

- single "clock"
- Bunch-Davies vacuum
- background is attractor $\ \zeta
 ightarrow {
 m const.}$

Measuring (primordial) 3-point function in this limit

automatically rules out all standard single-field models
 We will see this is consequence of symmetry:
 Ward identity for dilation

Background wave

Maldacena (2002); Creminelli & Zaldarriaga (2004)

 ζ_S

 $h_{ij} = a^2(t)e^{2\zeta_{\rm L}}\delta_{ij}$

 ζ_L

$$\begin{aligned} \langle \zeta_S \zeta_S \rangle_{\zeta_L} &= \langle \zeta_S \zeta_S \rangle_0 + \zeta_L \frac{\mathrm{d}}{\mathrm{d}\zeta_L} \langle \zeta_S \zeta_S \rangle \Big|_0 \\ &= \langle \zeta_S \zeta_S \rangle_0 + \zeta_L \frac{\mathrm{d}}{\mathrm{d}\ln|\vec{x}_1 - \vec{x}_2|} \langle \zeta_S \zeta_S \rangle \Big|_0 \end{aligned}$$

Multiply by ζ_L and take expectation value:

$$\langle \zeta_L \langle \zeta_S \zeta_S \rangle_{\zeta_L} \rangle = \langle \zeta_L \zeta_L \rangle \frac{\mathrm{d}}{\mathrm{d} \ln |\vec{x}_1 - \vec{x}_2|} \langle \zeta_S \zeta_S \rangle$$

$$\lim_{\vec{q}\to 0} \frac{\langle \zeta_{\vec{q}} \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle}{P_{\zeta}(q)} = -(n_s - 1) P_{\zeta}(k_1)$$

"Background wave" argument is intuitive and compelling, but...

Semi-classical

Technically challenging for other symmetriesDependence on initial state unclear

The upshot of field theoretic method:

Non-perturbative

Easily generalizes to other symmetries

Dependence on initial state is explicit

Conformal Symmetries of Scalars Creminelli, Norena & Simonovic, 1203.4595; Hinterbichler, Hui & Khoury, 1203.6351

Uniform-density gauge:

$$\phi = \phi(t);$$

$$h_{ij} = a^2(t)e^{2\zeta(t,\vec{x})}\delta_{ij}$$

Bardeen, Steinhardt & Turner (1982); Bond & Salopek (1990)

This completely fixes the gauge, as long as we restrict to diffs that fall off at infinity. \implies Focus on diffs that do not fall off.

e.g. Spatial dilation:

$$\vec{x} \to e^{\lambda} \vec{x}$$
$$\zeta \to \zeta + \lambda$$

leaves h_{ij} invariant.

Ward identities for broken symmetries

Homogeneous Goldstone π is equivalent to change of the vacuum, i.e. to a broken symmetry transformation.

Soft pion thms:

$$\lim_{\vec{q}\to 0} \langle \pi(\vec{q}) \mathcal{O}(\vec{k}_1, \dots, \vec{k}_N) \rangle \sim \langle \delta \mathcal{O}(\vec{k}_1, \dots, \vec{k}_N) \rangle$$

e.g. Strong interactions

<u>Consistency relations as Ward identities</u> Hinterbichler, Hui and Khoury, 1304.5527 Goldberger, Hui and Nicolis, 1303.1193

Dilation:

$$\lim_{\vec{q}\to 0} \frac{1}{P_{\zeta}(q)} \langle \zeta(\vec{q}) \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c' = -\left(3(N-1) + \sum_{a=1}^N \vec{k}_a \cdot \frac{\partial}{\partial \vec{k}_a} \right) \langle \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c'$$

Special conformal:

$$\lim_{\vec{q}\to 0} \frac{\partial}{\partial q^i} \left(\frac{1}{P_{\zeta}(q)} \langle \zeta(\vec{q}) \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c' \right) = -\frac{1}{2} \sum_{a=1}^N \left(6 \frac{\partial}{\partial k_a^i} - k_a^i \frac{\partial^2}{\partial k_a^j \partial k_a^j} + 2k_a^j \frac{\partial^2}{\partial k_a^j \partial k_a^i} \right) \langle \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c' + \dots$$

Creminelli, Norena & Simonovic, 1203.4595

General Ward Identities Hinterbichler, Hui and Khoury, 1304.5527

Single-field inflation constrained by infinite number of symmetries, corresponding to an infinite number of consistency relations:

$$\lim_{\vec{q}\to 0} \frac{\partial^n}{\partial q^n} \left(\frac{\langle \zeta_{\vec{q}} \mathcal{O}_{\vec{k}_1,\dots,\vec{k}_N} \rangle}{P_{\zeta}(q)} + \frac{\langle \gamma_{\vec{q}} \mathcal{O}_{\vec{k}_1,\dots,\vec{k}_N} \rangle}{P_{\gamma}(q)} \right) \sim \frac{\partial^n}{\partial k^n} \langle \mathcal{O}_{\vec{k}_1,\dots,\vec{k}_N} \rangle$$

- $\circ q^0$ and q behavior completely fixed
- ${\circ}$ q^n , $n \geq 2$, behavior partially fixed
- These are physical statements (i.e., can be violated)
- Hold on any spatially-flat FRW background (no slow-roll)

 \Rightarrow Complete checklist for testing single-field inflation

General Ward Identities

Hinterbichler, Hui and Khoury, 1304.5527

$$\begin{split} \lim_{\vec{q}\to 0} M_{i\ell_0\dots\ell_n}(\hat{q}) \frac{\partial^n}{\partial q_{\ell_1}\cdots\partial q_{\ell_n}} \left(\frac{1}{P_{\gamma}(q)} \langle \gamma^{i\ell_0}(\vec{q})\mathcal{O}(\vec{k}_1,\dots,\vec{k}_N) \rangle_c' + \frac{\delta^{i\ell_0}}{3P_{\zeta}(q)} \langle \zeta(\vec{q})\mathcal{O}(\vec{k}_1,\dots,\vec{k}_N) \rangle_c' \right) \\ &= -M_{i\ell_0\dots\ell_n}(\hat{q}) \left\{ \sum_{a=1}^N \left(\delta^{i\ell_0} \frac{\partial^n}{\partial k_{\ell_1}^a\cdots\partial k_{\ell_n}^a} - \frac{\delta_{n0}}{N} \delta^{i\ell_0} + \frac{k_a^i}{n+1} \frac{\partial^{n+1}}{\partial k_{\ell_0}^a\cdots\partial k_{\ell_n}^a} \right) \langle \mathcal{O}(\vec{k}_1,\dots,\vec{k}_N) \rangle_c' \right. \\ &\left. - \sum_{a=1}^M \Upsilon^{i\ell_0 i_a j_a}(\hat{k}_a) \frac{\partial^n}{\partial k_{\ell_1}^a\cdots\partial k_{\ell_n}^a} \langle \mathcal{O}^{\zeta}(\vec{k}_1,\dots,\vec{k}_{a-1},\vec{k}_{a+1},\dots\vec{k}_M) \gamma_{i_a j_a}(\vec{k}_a) \mathcal{O}^{\gamma}(\vec{k}_{M+1},\dots,\vec{k}_N) \rangle_c' \right. \\ &\left. - \sum_{b=M+1}^N \Gamma^{i\ell_0}{}_{i_b j_b}{}^{k_b \ell_b}(\hat{k}_b) \frac{\partial^n}{\partial k_{\ell_1}^b\cdots\partial k_{\ell_n}^b} \langle \mathcal{O}^{\zeta}(\vec{k}_1,\dots,\vec{k}_M) \mathcal{O}^{\gamma}_{i_{M+1} j_{M+1},\dots,k_b \ell_b,\dots i_N j_N}(\vec{k}_{M+1},\dots,\vec{k}_N) \rangle_c' \right\} + \dots \end{split}$$

where

$$\begin{split} \Upsilon_{abcd}(\hat{k}) &\equiv \frac{1}{4} \delta_{ab} \hat{k}_c \hat{k}_d - \frac{1}{8} \delta_{ac} \hat{k}_b \hat{k}_d - \frac{1}{8} \delta_{ad} \hat{k}_b \hat{k}_c \,; \\ \Gamma_{abijk\ell}(\hat{k}) &\equiv -\frac{1}{2} \left(\delta_{ij} + \hat{k}_i \hat{k}_j \right) \left(\delta_{ab} \hat{k}_k \hat{k}_\ell - \frac{1}{2} \delta_{ak} \hat{k}_\ell \hat{k}_b - \frac{1}{2} \delta_{a\ell} \hat{k}_k \hat{k}_b \right) + \delta_{b(i} \delta_{j)(k} \delta_{\ell)a} - \delta_{a(i} \delta_{j)(k} \delta_{\ell)b} \\ &- \delta_{b(i} \hat{k}_j) \delta_{a(k} \hat{k}_\ell) + \delta_{a(i} \hat{k}_j) \delta_{b(k} \hat{k}_\ell) - \delta_{a(k} \delta_{\ell)(i} \hat{k}_j) \hat{k}_b - \delta_{b(k} \delta_{\ell)(i} \hat{k}_j) \hat{k}_a + 2 \delta_{ab} \hat{k}_{(i} \delta_{j)(k} \hat{k}_\ell) \end{split}$$

Multiple Soft Limits Joyce, Khoury & Simonovic, 1409.6318 Another probe of higher-q dependence.

e.g. QCD: Double-soft limit probes non-Abelian algebra

Weinberg (1966); Arkani-Hamed et al. (2008)

$$\lim_{q_a,q_b\to 0} \langle \pi^a(q_a) \pi^b(q_b) \pi^{i_1}(k_1) \cdots \pi^{i_n}(k_n) \rangle = \frac{1}{2} \sum_j \frac{(q_a - q_b) \cdot k_j}{(q_a + q_b) \cdot k_j} \epsilon^{abc} \langle \pi^{i_1}(k_1) \cdots T_c \pi^{i_j}(k_j) \cdots \pi^{i_n}(k_n) \rangle$$

Double-soft result:

$$\lim_{\vec{q}_1,\vec{q}_2\to 0} \frac{\langle \zeta_{\vec{q}_1}\zeta_{\vec{q}_2}\zeta_{\vec{k}_1}\cdots\zeta_{\vec{k}_N}\rangle'}{P_{\zeta}(q_1)P_{\zeta}(q_2)} = \frac{\langle \zeta_{\vec{q}_1}\zeta_{\vec{q}_2}\zeta_{-\vec{q}}\rangle'}{P_{\zeta}(q_1)P_{\zeta}(q_2)} \left(\delta_{\mathcal{D}} + \frac{1}{2}\vec{q}_1\cdot\delta_{\vec{\mathcal{K}}}\right)\langle\zeta_{\vec{k}_1}\cdots\zeta_{\vec{k}_N}\rangle' + \left(\delta_{\mathcal{D}}^2 + \frac{1}{2}\vec{q}_1\cdot\delta_{\vec{\mathcal{K}}}\delta_{\mathcal{D}} + \frac{1}{4}q_1^iq_2^j\delta_{\mathcal{K}^i}\delta_{\mathcal{K}^j}\right)\langle\zeta_{\vec{k}_1}\cdots\zeta_{\vec{k}_N}\rangle' + \lim_{\vec{q}\to 0} \left[\frac{1}{2}\left(\vec{q}^2\nabla_q^2 - 2q_iq_j\nabla_q^i\nabla_q^j\right)\langle\zeta_{\vec{q}}\zeta_{\vec{k}_1}\cdots\zeta_{\vec{k}_N}\rangle' + \frac{\langle\zeta_{\vec{q}_1}\zeta_{\vec{q}_2}\zeta_{-\vec{q}}\rangle'}{P_{\zeta}(q_1)P_{\zeta}(q_2)}q_iq_j\nabla_q^i\nabla_q^j\frac{\langle\zeta_{\vec{q}}\zeta_{\vec{k}_1}\cdots\zeta_{\vec{k}_N}\rangle'}{P_{\zeta}(q)}\right]$$

 $\delta_{\mathcal{D}} \equiv \text{dilation} \quad \delta_{\mathcal{K}} \equiv \text{SCT}$

Berezhiani and Khoury, 1309.4461

Since symmetries of interest are subset spatial diffeomorphism, consistency relations must be consequence of gauge symmetry (Slavnov-Taylor identity). Gauge invariance in EM implies Ward-Takahashi identity:

$$q^{\mu}\Gamma^{A\psi\psi}_{\mu}(q,p,p+q) = e\left(\Gamma^{\psi}(p+q) - \Gamma^{\psi}(p)
ight).$$

Similarly, spatial diffeomorphisms should give rise to a Slavnov-Taylor identity.

E&M warm-up

Berezhiani and Khoury, 1309.4461

$$Z[J,\eta] = \int \mathcal{D}A_{\mu}\mathcal{D}\psi e^{iS_{\text{QED}} - \frac{i}{2\xi}\int (\partial^{\mu}A_{\mu})^{2} + i\int (J^{\mu}A_{\mu} + \eta\psi)}$$

Field redefinition:

$$A_{\mu} \to A_{\mu} + \partial_{\mu}\Lambda; \qquad \psi \to \psi - i\Lambda\psi$$

Z must be invariant: $\delta Z = 0$

$$\left[\frac{i\Box}{\xi}\partial^{\mu}\frac{\delta}{\delta J^{\mu}} - \partial^{\mu}J_{\mu} + \eta\frac{\delta}{\delta\eta}\right]Z[J,\eta] = 0$$

Legendre transform ($J^{\mu} = -\frac{\delta\Gamma}{\delta A_{\mu}}$ etc.) :

$$-\frac{\Box}{\xi}\partial^{\mu}A_{\mu} + \partial_{\mu}\frac{\delta\Gamma}{\delta A_{\mu}} + i\psi\frac{\delta\Gamma}{\delta\psi} = 0$$

Can differentiate a number of times, e.g. $\Gamma^{Aar{\psi}\psi}_{\mu}=rac{\delta^3\Gamma}{\delta A^\mu\delta^2\psi}$,

$$q^{\mu}\Gamma^{A\bar{\psi}\psi}_{\mu}(q,p,-p-q) = \Gamma^{\psi}(p+q) - \Gamma^{\psi}(p)$$

(Ward-Takahashi)

$$q^{\mu}\Gamma^{A\bar{\psi}\psi}_{\mu}(q,p,-p-q) = \Gamma^{\psi}(p+q) - \Gamma^{\psi}(p)$$

General solution is power series:

$$\Gamma^{A\bar{\psi}\psi}_{\mu}(q,p,-p-q) = \sum_{n=0}^{\infty} q^{\alpha_1} \dots q^{\alpha_n} \frac{\partial^n \Gamma^{\psi}(p)}{\partial p^{\mu} \partial p^{\alpha_1} \dots \partial p^{\alpha_n}} + C_{\mu}$$

If C_{μ} is <u>analytic</u> in q_{μ} (locality), then it drops out at $\mathcal{O}(q^0)$:

$$\Gamma^{A\bar{\psi}\psi}_{\mu}(0,p,-p) = \frac{\partial\Gamma_{\psi}(p)}{\partial p^{\mu}}$$

(QED analogue of Maldacena)

physical piece $q^{\mu}C_{\mu}=0$

It can contribute at $\mathcal{O}(q^1)$, e.g. $C^{\mu}=q_{
u}[\gamma^{
u},\gamma^{\mu}]$:

$$F_{\mu\nu}\bar{\psi}\gamma^{\mu}\gamma^{\nu}\psi$$

. . C_{μ} encodes physical info about non-minimal couplings

Cosmological Slavnov-Taylor Identity

Berezhiani & Khoury, 1309.4461

Following similar steps,

$$2\partial_j \left(\frac{1}{6}\delta_{ij}\frac{\delta\Gamma}{\delta\zeta} + \frac{\delta\Gamma}{\delta\gamma_{ij}}\right) = \partial_i\zeta\frac{\delta\Gamma}{\delta\zeta} + \text{G.F.}$$

Can vary this a number of times wrt the fields, e.g. vary twice wrt ζ ,

$$q^{j}\left(\frac{1}{3}\delta_{ij}\Gamma^{\zeta\zeta\zeta} + 2\Gamma_{ij}^{\gamma\zeta\zeta}\right) = q_{i}\Gamma_{\zeta}(p) - p_{i}\left(\Gamma_{\zeta}(|\vec{q} + \vec{p}|) - \Gamma_{\zeta}(p)\right)$$

(Exact in q)

Analogue of W-T identity in E&M

General schematic solution:

$$\frac{1}{3}\delta_{ij}\Gamma^{\zeta\zeta\zeta} + 2\Gamma^{\gamma\zeta\zeta}_{ij} = \sum_{n=0}^{\infty} q^n \frac{\partial^n}{\partial p^n} P_{\zeta}(p) + A_{ij}(\vec{p}, \vec{q})$$

physical piece $q^j A_{ij}(\vec{p}, \vec{q}) = 0$

Whether or not consistency relation holds hinges on model-dependent piece A_{ij} . Most general form:

$$A_{ij}(\vec{p},\vec{q}) = \epsilon_{ikm}\epsilon_{j\ell n}q^kq^\ell \left(a(\vec{p},\vec{q})\delta^{mn} + b(\vec{p},\vec{q})p^mp^n\right)$$

arbitrary scalar functions

Key assumption: Suppose a and b are analytic in q, such that

 $A_{ij} = \mathcal{O}(q^2)$ (Locality condition)

Then Maldacena's relation holds. Moreover, at each order in q can project out A_{ij} :

$$\lim_{\vec{q}\to 0} \frac{\partial^n}{\partial q^n} \left(\frac{\langle \zeta_{\vec{q}} \zeta_{\vec{p}} \zeta_{-\vec{q}-\vec{p}} \rangle}{P_{\zeta}(q)} + \frac{\langle \gamma_{\vec{q}} \zeta_{\vec{p}} \zeta_{-\vec{q}-\vec{p}} \rangle}{P_{\gamma}(q)} \right) \sim -\frac{\partial^n}{\partial p^n} P_{\zeta}(p)$$

General consistency relations

The Conformal Scenario

An Old Idea...

Could <u>scale invariance</u> observed in CMB/LSS have originated from (space-time) <u>conformal invariance</u> in early universe? Conformal Scenario Rubakov (2009); Creminelli, Nicolis & Trincherini (2010); Hinterbichler & Khoury (2011) ; Hinterbichler, Khoury & Joyce (2012)

- Non-inflationary scenario, takes place before the big bang
- Space-time is nearly static, i.e. \approx flat, Minkowski space
- Relies on approximate conformal invariance in flat space: (1, 0)

so(4, 2)

Conformal invariance is spontaneously broken:

 $so(4,2) \rightarrow so(4,1)$

same as de Sitter algebra (but not isometries of space-time)

Essential physics fixed by symmetry breaking pattern, irrespective of microphysics

Simplest Example

Rubakov (2009); Craps, Hertog & Turok (2007); Hinterbichler & Khoury, 1106.1428

$$V(\phi) = -\frac{\lambda}{4}\phi^4$$

 $\lambda > 0 \implies$ asymptotically free

As time goes on, ϕ rolls off: $E = \frac{1}{2}\dot{\phi}^2 - \frac{\lambda}{4}\phi^4$

Particular solution is E = 0:

$$\phi(t) = \frac{\sqrt{2}}{\sqrt{\lambda}(-t)}$$

$$-\infty < t < 0$$

This is an <u>attractor</u>: Growing mode = time shift.

Preserves dilation

15 original symmetries \rightarrow 10 unbroken symmetriesso(4,2) so(4,1) (de Sitter symmetries)

Angular field acquires scale invariant spectrum:

$$\mathcal{L}_{\theta} = -\frac{1}{2}\phi^2(\partial\theta)^2 \sim \frac{1}{t^2}(\partial\theta)^2 + \dots$$

Exactly like massless field in de Sitter!

Other Realizations

Galilean Genesis

Creminelli, Nicolis & Trincherini (2010); Creminelli, Hinterbichler, Khoury, Nicolis & Trincherini (2012)

Universe is slowly expanding from asymptotically static past.

Brane-world (DBI) realizations
 Hinterbichler & Khoury (2011);
 Hinterbichler, Joyce, Khoury & Miller (2012)

Model-independent predictions Creminelli, Joyce, Khoury & Simonovic, 1212.3329

Ave additional consistency relations (Ward identities) from the <u>5 broken symmetries</u> $so(4,2) \rightarrow so(4,1)$

$$\lim_{\vec{q}\to 0} \frac{1}{P_{\pi}(q)} \langle \pi(\vec{q}) \mathcal{O}(\vec{k}_a) \rangle = -\left(1 + \frac{1}{N} \sum_{a} \vec{q} \cdot \frac{\partial}{\partial \vec{k}_a} + \frac{q^2}{6N} \sum_{a} \frac{\partial^2}{\partial k_a^2}\right) t \frac{\partial}{\partial t} \langle \mathcal{O}(\vec{k}_a) \rangle$$

Goldstone spectrum is very red (though contribution to ζ is blue)

$$q^{3}P_{\pi}(q) = \frac{A_{\pi}^{2}}{q^{2}t^{2}}$$

Observational Signatures

Creminelli, Joyce, Khoury & Simonovic, 1212.3329

Soft internal lines: Libanov, Mironov & Rubakov (2011)

Loop contribution:

$$au_{\rm NL} \sim \log rac{q}{\Lambda}$$

Anisotropy: Realization-dependent from super-Hubble π mode Libanov & Rubakov (2010)

$$\langle \chi_{\vec{k}}\chi_{-\vec{k}}\rangle_{\pi_{\vec{q}}} = \langle \chi_{\vec{k}}\chi_{-\vec{k}}\rangle \left(1 + c_1 \frac{A_{\pi}}{2\pi} \frac{H_0}{k} \left(3\cos^2\theta - 1\right) + c_2 \frac{3A_{\pi}^2}{4\pi^2}\cos^2\theta\log\frac{H_0}{\Lambda}\right)$$

Conclusions

Nearly scale invariant and gaussian primordial density inhomogeneities:

so(4, 1)Multi-field inflation: Single-field inflation: $so(4,1) \rightarrow \text{translations}$ O Conformal mechanism: $so(4,2) \rightarrow so(4,1)$ Symmetries reflected in soft limits of correlation functions. Single-field inflation constrained by infinitely-many relations (indep. of slow-roll, c_s , ϕ fundamental or not) $\lim_{\vec{a}\to 0} \frac{\partial^n}{\partial a^n} \left(\frac{\langle \zeta_{\vec{q}} \mathcal{O}_{\vec{k}_1,\dots,\vec{k}_N} \rangle}{P_{\epsilon}(a)} + \frac{\langle \gamma_{\vec{q}} \mathcal{O}_{\vec{k}_1,\dots,\vec{k}_N} \rangle}{P_{\epsilon}(a)} \right) \sim \frac{\partial^n}{\partial k^n} \langle \mathcal{O}_{\vec{k}_1,\dots,\vec{k}_N} \rangle.$

All follow from <u>Slavnov-Taylor identity</u> for spatial diffs