On the contribution of *infrared secular effects* to primordial fluctuations via *quantum interference*

Junsei Tokuda (Kyoto Univ.)

collaborator: Takahiro Tanaka (Kyoto Univ. & YITP)

Working in progress.

Refs. : JT and T.Tanaka JCAP02(2018)014 JT and T.Tanaka JCAP11(2018)022

2019 5.22 Quantum Entanglement in Cosmology @ Kavli IPMU

plan

• 1. Introduction (9 pages.)

Infrared secular effects, Stochastic picture of inflation

- 2. Body (11 pages.)
 - •Discuss the validity of the stochastic picture of inflation.
 - •Violation of the stochastic picture up to non-zero quantum coherence during inflation, and its consequences.

(Working in progress.....)

• 3. Summary (1 page.)

Generation of fluctuations

• Microscopic fluctuations → Macroscopic. (IR modes) (super-horizon modes)

$$\lambda_{\rm ph} = \frac{2\pi a(t)}{k} \approx \frac{2\pi e^{Ht}}{k}$$

Observables=Quantum fluctuations

• These fluctuations are the seeds of various objects, *e.g.*, galaxies.

Observables = QFT expectation values of $\zeta : < \zeta \cdots \zeta >$

IR secular effects

• $< \zeta \cdots \zeta >$ contains very large loop corrections:

Deep IR contribution is divergent or significantly large.

e.g.) interaction vertex which includes an interaction picture field ϕ_{I} without derivative can yield the following loop corrections:

$$\langle \phi_{\mathrm{I}}^2 \rangle \propto \int_{k_0} \mathrm{d}^3 l \; \frac{1}{l^3} \sim \ln k_0 \to \infty \; (\mathrm{as} \; k_0 \to 0).$$

IR secular effects: interesting!

• $< \zeta \cdots \zeta >$ contains very large loop corrections:

Deep IR contribution is divergent or significantly large.

- If IR loops affect observables, it would be interesting because
- 1. IR loops may modify the current predictions,
- 2. the dynamics **before** 60 e-folds may be imprinted on observables!

Be skeptical.

- Large IR loops may signal the inappropriate definition of observables.
 - e.g.) QED
 - Take into account the soft photon emission/exchange whose energy is below the detector resolution

Finite scattering amplitudes.

• It seems that we are in the similar situation. We should reconsider which quantities are really observables for us. IR secular effects from isocurvature modes

IR loops affect observables for a local observer ?

• We should reconsider which quantities are really observables for us.

1. loops of ζ , h_{ij} (metric perturbations) T. Tanaka and Y. Urakawa (2009,...)

IR loops of ζ , $h_{ij} = gauge$ artifact

2. loops of ϕ (isocurvature modes)

Above discussion does not apply. T. Tanaka and Y. Urakawa (2010, 2011)

• From now on, we concentrate on a light scalar field on inflationary background.

Classical stochastic picture

A. Linde(1986) A. A. Starobinsky (1986) Y. Nambu and M. Sasaki (1989)

Fluctuations of deep IR modes (k < a(t*)H) are completely neglected by hand.

Classical stochastic picture

A. Linde(1986) A. A. Starobinsky (1986)Y. Nambu and M. Sasaki (1989)

some

• Fluctuations of deep IR modes $(k < a(t_*)H)$ are completely neglected by hand.

$$|\Psi_{\text{stoc}}\rangle = |\Psi\rangle_{\alpha} \neq U(t_f, t_0)|\Psi^0\rangle$$
 α specifies

Classical stochastic picture ?

 $|\Psi_{\text{stoc}}\rangle = |\Psi\rangle_{\alpha} \neq U(t_f, t_0)|\Psi^0\rangle$

A. Linde(1986) A. A. Starobinsky (1986) Y. Nambu and M. Sasaki (1989)

Fluctuations of deep IR modes (k < a(t_{*})H) are completely neglected by hand. Can we justify |Ψ_{stoc})?

 α specifies some particular history.

Importance of the decoherence (1/3)

- Expectation: quantum decoherence may justify the stochastic picture of inflation.
- E.g.) Let us consider the following situation. E. Joos and H. D. Zeh (1985)

Importance of the decoherence (2/3)

• E.g.) Let us consider the following situation.

- Orthogonality (|e_{x1}⟩_ε, |e_{x2}⟩_ε) ∝ δ_{x1x2}
 It is possible to distinguish |e_x⟩_ε from |e_y⟩_ε when x ≠ y.
 Suppose that an observer observed the photon state |e_α⟩_ε.
 - Then, $|\Psi_{obs}\rangle \propto c(\alpha) |\alpha\rangle_{\mathcal{S}} \otimes |e_{\alpha}\rangle_{\mathcal{E}}$. There is a cup at $x = \alpha$.

Importance of the decoherence (3/3)

• E.g.) Let us consider the following situation.

• Key point: orthogonality $(|e_{x_1}\rangle_{\mathcal{E}}, |e_{x_2}\rangle_{\mathcal{E}}) \propto \delta_{x_1x_2}$.

Observer can obtain the information (record) of the system quantum state $|x\rangle_{\mathcal{S}} \in \mathcal{S}$, by monitoring the environment thanks to the orthogonality.

Application to the stochastic picture of inflation?

• Let us consider the possible application of the previous discussion to the stochastic picture of inflation.

• We will investigate whether the information of the history α is recorded in the environment \mathcal{E} which is accessible by an observer:

$$|\Psi^{0}\rangle = |VAC\rangle \rightarrow |\Psi(t_{f})\rangle = \sum_{\alpha} |\Psi\rangle_{\alpha}$$
 a specifies some particular history.
 $|\Psi\rangle_{\alpha} = |\alpha\rangle_{\delta} |z_{\alpha}\rangle_{\varepsilon}$

• More specifically, we will investigate the orthogonality

$$(|z_{\beta}\rangle_{\varepsilon}, |z_{\alpha}\rangle_{\varepsilon}) \approx \delta_{\alpha\beta}$$
 ?????

Application to the stochastic picture of inflation?

• Accessibility of a local observer at the end of inflation

We choose

$$\mathcal{E} = \bigotimes_{k \ge a(t_f)H} \mathcal{H}_{\vec{k}} \quad : \text{UV modes at the end of inflation.}$$

E contains the UV modes which live outside the observed scale, although we will not care for a while (in this talk).

- We assume that we can monitor the states $\{|z_{\alpha}\rangle_{\mathcal{E}}\} \in \mathcal{E}$ somehow.
- From now on, we will
 - 1. define $|\Psi\rangle_{\alpha}$ and obtain an explicit expression for $|z_{\alpha}\rangle_{\mathcal{E}}$ 2. confirm that $(|z_{\beta}\rangle_{\mathcal{E}}, |z_{\alpha}\rangle_{\mathcal{E}}) \approx \delta_{\alpha\beta}$, by using the path integral.

Quantum states of the stochastic picture of inflation

- The allowed amplitudes of deep IR modes $(k < a(t_*)H)$ fluctuations will be suppressed by $\left(\frac{a(t_*)}{a(t)}\right)^3$ for $t > t_*$.

Summary <u>Motivation</u>

Large IR secular effects from isocurvature modes are really observable effects??

<u>Method</u>

Investigate the validity of the stochastic picture of inflation.

<u>Conclusions</u>

- 1. Stochastic picture might appear only approximately, and would be violated up to the non-zero quantum coherence.
- 2. Deep IR fluctuations of isocurvature modes **might be able to contribute** to primordial perturbations.

<u>On-going</u>

Qualitative estimation of the contribution of IR secular effects, etc. IR secular effects might allow us to observe the quantum interference during inflation!²³