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PBH special session at annual meeting of
the Physics Society of Japan (over 200 participants)
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Contents of my talk

e Microlensing constraints on PBH with Subaru
e Microlensing constraints on PBH with OGLE
e [Future prospects for PBHs/LIGO BHs
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| .Microleh.sing search of stars in
Andromeda Galaxy (M31)

o In the northern

- hemisphere (not
~accessible from VST,
DES, LSST)

~ Large spiral galaxy
HSC FoV ~ entire M31

~770kpc (u~24.4),
reachable distance
~ (not too far)!




PBH microlensing of M31 star

e <afew Msun BH = PBH

e | ensed image can't be resolved with
optical resolution (~108 arcsec) =
only light curve is a signal

e MW/M31 halo ~ 10"2Msun (we
assumed NFW models)

e PBH has a peculiar velocity of
~200km/s

e ~1000 expected events if PBH is DM Paczynski 86
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e Need to monitor brightness of the s
same star as a function of “time” (time "
domain astronomy)
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PBH microlensing on M31 star

Cumulative optical depth of PBH microlensing for a single star in M31
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If we observe ~106 stars at one time, one star at leas
should be micro-lensed if PBHs are DM



source star

PBH microlensing event rate

— dr0g 34 min Mpga \7° dr, UPBH -
" upBH 10—3 M, 100 kpc /) \ 200 km /s
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Event rate per unit obs. time and per a single star in M31 for a given
timescale of light curve (we monitored ~108 stars)



Rule of the game: LC timescale vs. Cadence

lLC

Design the ML observation satisfying the condition Atyigit ~ O(10)

simulated light curve
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dense- Cadence observatlon of I\/I31 PI Taka
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commissioning run)
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Challenges: Pixel lensing

Fluxes from multiple stars are overlapped at each position
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Upr left: refeence imge (0.5”
Upper right: target image (0.8”)
Lower: difference image

Accurate PSF and astrometry
measurements needed.
HSC pipeline (hscPipe) works!




Procedures: search for ML events

difference image (coadds of 3 exposures)

-

idntify candidates in each diff. image
=15,571
measure light curve (188 data points)
NN\
S Y
Car;mcejsiecdates with bump-like light curve
= 11,703

fitting of LC to the microlensing model

visual inspection of
individual candidates...

counts

= , selection criteria
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diff _ diff- PSF
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One microlensing candidate among ~15,000 variable stars ...?
_ref.  target diff. diff.-PSF
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Expected number of ML events

dr
dt i

NML,exp ~ NS X Tobs X X E(tE)

# of source stars total

— depends on observation ML optical gZICIeenr:jzyc:n
target gals (M31, time depth — cagence
LMC, Galactic (duration of depends on and qualit
bulge), tel. aperture,  monitoring the number of  of daqta ’
seeing, ... observation) compact

objects (MS,

WD, NS, BH)
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Subaru/HSC constraint on PBH abundance

Mass fraction of PBHs to DM

Niikura, MT+ (19, Nature Astronomy) MPBH [g]
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HSC 10yr ML search for M31

(Note 3yr-program ongoing) MPBH [M@]
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Optical Gravitational Lensing Experiment
(OGLE)

e A long-term monitoring observation of Galactic bulge (1992- ).
Pl Prof. Udalski (Warsaw): Note MOA (Nagoya, Osaka, ...)

e 1.3m Warsaw U. Telescope at Las Campanas, Chile
SRR G R e &\ TR O e
: AR S T e SR S L (N oy
D 0t R e

Py
Q

Rt e G

Py feysator Uacsik 2011}

REECIR ne 0
(39 '."' e . 7 ‘.'_ fing
4 ks 0 R
6 . <, r,.‘ R R -"phmﬁ/




Hiroko Niikura
(U. Tokyo/IPMU
just graduated!)

HSC M31
PBH
microlensing
search

< 20

SoscUse OGLE (Optical
4 Gravitational Lensing
elarifperiment) for PBH

search




5-years OGLE data: Mroz et al. 2017

o 2622 ML events: the ML timescale distribution is provided
(now >5000 events)
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Spatial distribution of “stars”

75,0001




Gould & Han 1995:
spatial structure of ”stars”

TABLE 2
BULGE AND Disk DENSITY MODELS

Location Model Distribution
Bulge...... isothermal P(r) = 02115/27Gr? = 36.7(0py5./r)* M pc™?
Kent p(s) = 1.04 x 105(s/0.482)"*%> M, pc™? (s <938 pc)
p(s) = 3.53K (s/667) My pc™2 (s = 938 pc)
bar W(ry) = v, exp (—0.5r2) x 10° L, pc™?
Disk ....... Bahcall n(R, z) = n(0, 0) exp {—[(R — 8000)/3500 + z/325]}
en WR, z) = 3.0 exp [—(R/3001 + z/h,)] Lo pc™> (R <5 kpc)
WR, z) = 3.0(h,/h,) exp [—(R/3001 + z/h,)] Ly pc~® (R > 5 kpc)
KP p=01Mgpc™? (d<d,,)

p=0MO pc-3 (ddeax)

The density distribution models adopted for stellar populations. The values r = (x? + y* + z%)/2,
R = (x? + y*)/2, s* = R* + (2/0.61)* are measured in pc. K, is a modified Bessel function and n(0,
0) = 0.097 pc~3. We adopted d,,, ~ 4 kpc for the KP model. The Bahcall and Kent disk models and
the barred bulge model are expressed in number density, n(R, z), and luminosity functions, WR, z) and
w(r), respectively. For the Kent disk model two different scale heights are adopted for the inner (h, for
R < 5kpc) and outer (h, for R > 5 kpc) parts of the disk. The respective scale heights are h; = 165 pc
and h, = (0.027R + 28.3) pc. For the barred (anisotropic) bulge model, v, = 3.66 x 107 L, kpc™?,
and r, = {[(x'/x0)* + (¥'/¥0)*]* + (z'/z,)*}'/*. Here the coordinates (x’, y’, z') have their center at the
Galactic center, the longest axis is the x’ axis, and the shortest axis is the z’ axis. The values of the scale
lengths are x, = 1.58 kpc, y, = 0.62 kpc, and z, = 0.43 kpc, respectively.



Velocity structure of “stars”

disk stars (vertical)

Earth: rigid rotation ~220km/s ~30km/s
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diameter of
Milky Way
galaxy
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galaxy viewed from above galaxy viewed
from the side




MW dark matter halo

Dark matter
(WIMP),

~220km/s




Astrophysical lenses: stars and stellar remnants
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Microlensing of Galactic bulge

e Microlensing light curve timescale

o= T gt gy (ML) () (o
BT A\ M, 4 kpc 220 km /s

= V] — ﬂV —I—ﬂv
Vi = V] ds S ds o)

e Expected event # at a given LC timescale (1_E)

d
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(old-days) Astronomers very smart!

1 I OGLE data — (Galactic bulge/disk models
(2622 events)
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Number of events per bin

PBH lenses needed?
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Null test: PBH upper bounds
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Number of events per bin

PBH lenses needed?

1 I OGLE data — (Galactic bulge/disk models
(2622 events)
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Number of events per bin

EFarth-mass scale PBH?
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EFarth-mass scale PBH?
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From today’s arXiv

Compact Dark Matter Objects via IN Dark Sectors

Gia Dvali,"*? Emmanouil Koutsangelas,’? * and Florian Kiihnel®

T Arnold Sommerfeld Center, Ludwig-Mazimilians- Universitit, Theresienstrafie 37, 80333 Miinchen, Germany,
? Maaz-Planck-Institut fiir Physik, Féhringer Ring 6, 80805 Miinchen, Germany

¥ The Oskar Klein Centre for Cosmoparticle Physics,
Department of Physics, Stockholm University, AlbaNova University Center,
Roslagstullsbacken 21, SE-10691 Stockholm, Sweden

(Dated: Monday 2"? December, 2019, 1:38am)

We propose a novel class of compact dark matter objects in theories where the dark matter con-

I. INTRODUCTION

To the present day the fundamental nature of the dark
matter (DM) remains one of the major mysteries in cos-
mology and particle physics. At the same time, another
major unanswered question in particle physics is what
stabilizes the mass term of the Higgs boson against quan-
tum corrections at a value more than 32 orders of magni-

vl [astro-ph.CO] 29 Nov 2019

stellar structures. This framework also gives rise to new microscopic supei
example with mass 10% g and size 10~ cm. By confronting the resulting obje
constraints, we find that, due to a huge suppression factor entering the mass sj
evade the strongest constrained region of the parameter space. Finally, we disc
scenarios of N-MACHOs. We argue that, due to the efficient dissipation of e
high-density regions such as ultra-compact mini-halos could serve as formatior]

sists of multiple sectors. We call these objects N-MACHOs. In such theories neither the existence of
dark matter species nor their extremely weak coupling to the observable sector represent additional
hypotheses but instead are imposed by the solution to the Hierarchy Problem and unitarity. The
crucial point is that particles from the same sector have non-trivial interactions but interact only
gravitationally otherwise. As a consequence, the pressure that counteracts the gravitational collapse
is reduced while the gravitational force remains the same. This results in collapsed structures much
lighter and smaller as compared to the ordinary single-sector case. We apply this phenomenon to a
dark matter theory that consists of NV dilute copies of the Standard Model. The solutions do not rely
on an exotic stabilization mechanism, but rather use the same well-understood properties as known

In the present paper 3
which goes under the n
the Hierarchy Problem
low-energy effective thg
species, the quantum-gi
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FIG. 2: The blue-shading represents the 95% C.L. allowed
region of N-MACHO abundance using combined data from
OGLE [42] and HSC/Subaru [41]. (Figure adapted from
Ref. [43])




Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars

From LIGO website

LIGO-Virgo | Frank Elavsky | Northwestern



~70Msun BH found! (last week Nature paper)

Article

Awidestar-black-holebinary systemfrom
radial-velocity measurements
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All stellar-mass black holes have hitherto beenidentified by X-rays emitted from gas
thatis accreting onto the black hole from acompanion star. These systems are all
binaries with ablack-hole mass that is less than 30 times that of the Sun'*. Theory
predicts, however, that X-ray-emitting systems form a minority of the total population
of star-black-hole binaries>¢. When the black hole is not accreting gas, it can be found
through radial-velocity measurements of the motion of the companion star. Here we
report radial-velocity measurements taken over two years of the Galactlc B-typestar,
LB-1. We find that the motion of the B star and an accompz C ion ine
require the presence of a dark companion with amass
onlybe ablack hole. The long orbital period of 78.9 daysSShows ISisa W|de
binary system. Gravitational-wave experiments have detected black holes of similar
mass, but the formation of such massive ones in a high-metallicity environment would
be extremely challenging within current stellar evolution theories.




summary

Gravitational microlensing is a very powerful probe of
‘compact, invisible objects” including PBH ana
astrophysical BH

We used the 8.2m Subaru HSC data of M31 to search for
ML due to PBHSs, and obtained the tightest upper bound
on the abundance of PBHSs

Also used the 5yrs OGLE data (1.3m) to constrain PBH
— A hint of the Earth-mass PBHs"

ML can be used to search for LIGO-counterpart BH of

~10Msun, if we can have ~10yr data of Galactic
bulge/disk with HSC or LSST

— The same data allows various science cases (IMF, exoplanets, ...)



