

Universal Infrared Scaling of Stochastic Gravitational Wave Background

Shi Pi (皮石)

Kavli IPMU, University of Tokyo

Based on Rong-Gen Cai, SP, and Misao Sasaki, arXiv:1909.13728.

History of the Universe

Radius of the Visible Universe

History of the Universe

Radius of the Visible Universe

History of the Universe

observed GW signal

5

[Rong-Gen Cai, SP, and Misao Sasaki, arXiv:1909.13728]

• Define the power spectra of SGWB: $\Omega_{\rm GW} = \frac{1}{\rho_{\rm crit}} \frac{d\rho_{\rm GW}}{d\ln k}$.

• Metric:
$$ds^2 = a^2(\eta)(-d\eta^2 + (\delta_{ij} + h_{ij})dx^i dx^j)$$
,

- Source term: $T_{ab}(\eta, \mathbf{x}) = \partial_a \phi(\eta, \mathbf{x}) \partial_b \phi(\eta, \mathbf{x}) + v_a(\eta, \mathbf{x}) v_b(\eta, \mathbf{x}).$
- ϕ is a scaler field, while v_a is a vector field, and $v_a = \partial_a v + w_a$

• The GW spectrum is

•
•
$$\Omega_{\text{GW}}(\eta, k) = \frac{k^3}{45a^4H^2M_{\text{Pl}}^4} \int_0^{\eta} d\eta_1 \int_0^{\eta} d\eta_2 \, a^3(\eta_1) a^3(\eta_2) \\ \cos k(\eta_1 - \eta_2) \Lambda_{ab}^{cd}(\hat{k}) \langle T_{\mathbf{k}}^{ab}(\eta_1) T_{cd,\mathbf{p}}^*(\eta_2) \rangle'.$$

•
$$T_{\mathbf{k}}^{ab}(\eta) = \int \frac{d^3 \ell}{(2\pi)^{3/2}} v_{\mathbf{l}}^a(\eta) v_{\mathbf{k}-\mathbf{l}}(\eta) + \cdots$$

•
$$\langle T_{\mathbf{k}}^{ab}(\eta_1) T_{\mathbf{p}}^{cd^*}(\eta_2) \rangle = \int \frac{d^3 \ell d^3 q}{(2\pi)^3} \Big[\langle v_{\mathbf{l}}^a(\eta_1) v_{\mathbf{k}-\mathbf{l}}^b(\eta_1) v_{\mathbf{q}}^{c^*}(\eta_2) v_{\mathbf{p}-\mathbf{q}}^{d^*}(\eta_2) \rangle + \cdots$$

 $\langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1})v_{\boldsymbol{q}}^{c*}(\eta_{2})v_{\boldsymbol{p}-\boldsymbol{q}}^{d*}(\eta_{2})\rangle$ $= \langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{q}}^{c*}(\eta_{2})\rangle \langle v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1})v_{\boldsymbol{q}-\boldsymbol{p}}^{d*}(\eta_{2})\rangle$ $+ \langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{p}-\boldsymbol{q}}^{d*}(\eta_{2})\rangle \langle v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1})v_{\boldsymbol{q}}^{c*}(\eta_{2})\rangle$ $+ \langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1})v_{\boldsymbol{q}}^{c*}(\eta_{2})v_{\boldsymbol{p}-\boldsymbol{q}}^{d*}(\eta_{2})\rangle_{c},$

 $\langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1})v_{\boldsymbol{a}}^{c*}(\eta_{2})v_{\boldsymbol{p}-\boldsymbol{a}}^{d*}(\eta_{2})\rangle$ $= \langle v_{\boldsymbol{\ell}}^{a}(\eta_{1}) v_{\boldsymbol{q}}^{c*}(\eta_{2}) \rangle \langle v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1}) v_{\boldsymbol{q}-\boldsymbol{p}}^{d*}(\eta_{2}) \rangle$ $+ \langle v^a_{\ell}(\eta_1) v^{d*}_{\boldsymbol{p}-\boldsymbol{q}}(\eta_2) \rangle \langle v^b_{\boldsymbol{k}-\boldsymbol{\ell}}(\eta_1) v^{c*}_{\boldsymbol{q}}(\eta_2) \rangle$ $+\left\langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{k}}^{b} \boldsymbol{\ell}(\eta_{1})v_{\boldsymbol{q}}^{c*}(\eta_{2})v_{\boldsymbol{p}}^{d*} \boldsymbol{\ell}(\eta_{2})\right\rangle_{\boldsymbol{p}},$

By symmetry

 $\langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1})v_{\boldsymbol{q}}^{c*}(\eta_{2})v_{\boldsymbol{j}-\boldsymbol{q}}^{d*}(\eta_{2})\rangle$ $= \langle v_{\boldsymbol{\ell}}^{a}(\eta_{1}) v_{\boldsymbol{q}}^{c*}(\eta_{2}) \rangle \langle v_{\boldsymbol{k}-\boldsymbol{\ell}}^{b}(\eta_{1}) v_{\boldsymbol{q}-\boldsymbol{\lambda}}^{d*}(\eta_{2}) \rangle$ $+ \left\langle v_{\boldsymbol{\ell}}^{a}(\eta_{1}) v_{\boldsymbol{\lambda}-\boldsymbol{q}}^{d*}(\eta_{2}) \right\rangle \left\langle v_{\boldsymbol{\lambda}-\boldsymbol{\ell}}^{b}(\eta_{1}) v_{\boldsymbol{q}}^{c*}(\eta_{2}) \right\rangle$ $+\left\langle v_{\boldsymbol{\ell}}^{a}(\eta_{1})v_{\boldsymbol{k}}^{b} \boldsymbol{\ell}(\eta_{1})v_{\boldsymbol{q}}^{c*}(\eta_{2})v_{\boldsymbol{p}}^{d*} \boldsymbol{\ell}(\eta_{2})\right\rangle_{\boldsymbol{p}},$

When $k \ll l$

Define as un-equal time power spectrum $\mathscr{P}_{v,w,\phi}(\ell,\eta_1,\eta_2)$

Infrared Scaling

• The GW spectrum in the infrared region when k is smaller than all the scales of the source term ($k \ll l$) is

•
$$\Omega_{\text{GW}}(\eta, k) = \frac{k^3}{45a^4H^2M_{\text{Pl}}^4} \int_0^{\eta} d\eta_1 \int_0^{\eta} d\eta_2 a^3(\eta_1) a^3(\eta_2)$$

 $\cos k(\eta_1 - \eta_2) \int d\ell \left[\left(2\mathscr{P}_v + 3\mathscr{P}_w \right)^2 + 5\mathscr{P}_w^2 + 4\mathscr{P}_\phi^2 \right].$

- $\mathscr{P}_{v,w,\phi}(\ell,\eta_1,\eta_2)$ are unequal time correlators of v, w, and ϕ .
- $\langle v_{\mathbf{l}}(\eta_1)v_{\mathbf{l}}(\eta_2)\rangle \sim \mathcal{P}_v(\ell,\eta_1,\eta_2)$

Infrared Scaling

• The GW spectrum in the infrared region when k is smaller than all the scales of the source term and the inverse time duration of the source term ($k \ll 1/\Delta \eta$) is

•
$$\Omega_{\text{GW}}(\eta, k) = \frac{k^3}{45a^4H^2M_{\text{Pl}}^4} \int_0^{\eta} d\eta_1 \int_0^{\eta} d\eta_2 \, a^3(\eta_1) a^3(\eta_2)$$
$$\cos k(\eta_1 = \eta_2) \int d\ell \left[\left(2\mathscr{P}_v + 3\mathscr{P}_w \right)^2 + 5\mathscr{P}_w^2 + 4\mathscr{P}_\phi^2 \right].$$

- $\mathscr{P}_{v,w,\phi}(\ell,\eta_1,\eta_2)$ are unequal time correlators of v, w, and ϕ .
- $\langle v_{\mathbf{l}}(\eta_1)v_{\mathbf{l}}(\eta_2)\rangle \sim \mathcal{P}_v(\ell,\eta_1,\eta_2)$

Example: Induced GWs

- Broad peak: In the infrared region the integral is redular, so we have $\Omega_{\rm GW} \propto k^3$.
- δ -function peak: The integral is linearly divergent in the infrared region: $\int d\ell(\cdots) \sim 1/k$. Therefore we have $\Omega_{\rm GW} \propto k^2$.
- Narrow peak with width σ : In the far infrared region $(k \ll \sigma \ll k_{\rm peak})$, $\Omega_{\rm GW} \propto k^3$. In the near infrared region $(\sigma \ll k \ll k_{\rm peak})$, $\Omega_{\rm GW} \propto k^2$.

Conclusion

• If the following 3 conditions are satisfied, we have $\Omega_{\rm GW} \propto k^3.$

• (1)
$$0 < \int d\ell \left[\left(2\mathscr{P}_v + 3\mathscr{P}_w \right)^2 + 5\mathscr{P}_w^2 + 4\mathscr{P}_\phi^2 \right] < \infty$$
.

- (2) k is smaller than all the scales associate with the source term, for instance $k_{\rm peak}$, Δk , $1/\Delta \eta$, etc.
- (3) Modes of interest reenters the horizon during radiation dominated universe.

Possible Violations

- GWs from BBH/BNS/... Resonance $k = 2\omega$.
- GWs induced by scale-invariant scalar perturbations. Integral is divergent ($\propto k^{-3}$) (Baumann et al 2007)
- GWs induced by scalar perturbations with δ -function peak. Integral is divergent ($\propto k^{-1}$). No infrared region. (Ananda et al 2006)
- Induced GW in a slow transition of matter- to radiation-dominant universe. Resonance. (Inomata et al 2019)
- GWs from sound waves which last for a long period of time. Resonance. (Hindmarsh 2016, Hindmarsh et al 2019)