Constant roll and primordial black holes

Hayato Motohashi

Yukawa Institute for Theoretical Physics 2019.12.03 Focus Week on Primordial Black Holes, Kavli IPMU

 $M_{\rm min} \approx 10^{-21} M_{\odot}$: Smallest PBH mass that does not evaporate by matter-radiation equality barring merging and accretion \Rightarrow Lower bound on SR violation

No go of slow roll for PBH production

HM, Hu, 1706.06784

No go of slow roll for PBH production

HM, Hu, 1706.06784

Summary:

Passaglia, Hu, HM, 1812.08243

- **PBH** production
- \leftarrow Sharp enhancement of $\Delta_{\zeta}^2(k)$
- \Leftrightarrow Quick decay of ϵ_H within ~ 50 efolds

$$\Leftrightarrow -\frac{\Delta \ln \epsilon_H}{\Delta N} > O(1)$$
$$\Leftrightarrow \epsilon_H \propto a^{-p} \text{ with } p = O(1)$$

Simple realization:

Constant roll inflation with p = const.

Martin, HM, Suyama, 1211.0083 HM, Starobinsky, Yokoyama, 1411.5021

Constant-roll inflation

Canonical single filed inflation

 $\approx 0 \qquad \qquad \text{Slow-roll} \\ \ddot{\phi}/(H\dot{\phi}) = -3 \qquad \qquad \text{Ultra slow-roll} \\ = \beta \text{ (constant)} \qquad \qquad \text{Constant-roll}$

Ultra slow-roll inflation ($\beta = -3$)

$$\begin{array}{rcl} \mathsf{KG eq:} & \ddot{\phi} = -3H\dot{\phi} & \Rightarrow & \dot{\phi} \propto a^{-3} \\ & \Rightarrow & \epsilon_H \propto a^{-6} \end{array}$$

Ultra slow-roll inflation ($\beta = -3$)

Superhorizon solution of MS eq

 $\zeta_k = A_k + B_k \int \frac{dt}{a^3 \epsilon_H}$ Constant mode Slow-roll $\epsilon_H \simeq \text{const.} \ll 1$ **Decaying mode** Ultra slow-roll $\epsilon_H \propto a^{-6}$ Growing mode While $\epsilon_H \ll 1$, $d \ln \epsilon_H / dN = -6$ violates slow roll. SR USR ()-3**>** β SH ζ_k Growing Frozen

Constant-roll inflation (general β)

Superhorizon solution

Constant roll $\epsilon_H \propto a^{2\beta}$

 $\zeta_k = A_k + B_k \int \frac{dt}{a^3 \epsilon_H}$ Constant mode

Martin, HM, Suyama, 1211.0083

 $2\beta \gtrless - 3$ Decaying mode Growing mode

Constant-roll inflation (general β)

HM, Starobinsky, Yokoyama, 1411.5021

Constant-roll condition $\ddot{\phi} = \beta H \dot{\phi}$

+ Hamilton-Jacobi formalism $H = H(\phi)$.

$$-2\dot{H} = \dot{\phi}^2 \quad \Rightarrow \quad \dot{\phi} = -2\frac{dH}{d\phi} \quad \Rightarrow \quad \frac{d^2H}{d\phi^2} = -\frac{\beta}{2}H$$

Analytic solution:

 $H(\phi) = \text{linear combination of } e^{\pm \sqrt{-\beta/2} \phi}$ $\Rightarrow V(\phi) = 3H^2 - \frac{\dot{\phi}^2}{2} = 3H^2 - 2\left(\frac{dH}{d\phi}\right)^2$ $= \text{linear combination of } e^{\pm \sqrt{-2\beta} \phi}$ Analytic solutions for $\phi(t), H(t), a(t)$

can also be derived.

Constant-roll inflation (general β)

HM, Starobinsky, Yokoyama, 1411.5021

Potentials

a) $V \propto e^{\sqrt{-2\beta}\phi}$ with $\beta < 0$: Power-law inflation $\swarrow r = 8(1 - n_s)$ b) $V \propto \cosh(\sqrt{-2\beta}\phi) + \text{const.}$ with $\beta < 0$ c) $V \propto \cos(\sqrt{2\beta}\phi) + \text{const.}$ with $\beta > 0$

cosh potential ($\beta < 0$)

$$\frac{V(\phi)}{M^2 M_{Pl}^2} = 3 \left[1 - \frac{3+\beta}{6} \left\{ 1 - \cosh\left(\sqrt{-2\beta} \frac{\phi}{M_{Pl}}\right) \right\} \right]$$

Assume inflation ends before $\phi = 0$. Analytic solution

$$\begin{split} \frac{\phi(t)}{M_{Pl}} &= \sqrt{\frac{2}{-\beta}} \ln \left[\coth\left(\frac{-\beta}{2}Mt\right) \right] \to 0 \quad (t \to \infty) \\ \frac{H(t)}{M} &= \coth(-\beta Mt) \qquad \to 1 \\ a(t) &\propto \sinh^{-1/\beta}(-\beta Mt) \qquad \to e^{Mt} \quad \epsilon_1 \equiv -\dot{H}/H^2 \\ \epsilon_{n+1} \equiv \dot{\epsilon_n}/H\epsilon_n \end{split}$$
Slow-roll parameters

$$\begin{aligned} 2\epsilon_1 &= \epsilon_{2n+1} = -\beta/\cosh^2(-\beta Mt) \to 0 \\ \epsilon_{2n} &= 2\beta \tanh^2(-\beta Mt) & \to 2\beta \end{aligned}$$

cos potential ($\beta > 0$)

$$\frac{V(\phi)}{M^2 M_{Pl}^2} = 3 \left[1 - \frac{3+\beta}{6} \left\{ 1 - \cos\left(\sqrt{2\beta} \frac{\phi}{M_{Pl}}\right) \right\} \right]$$

Assume inflation ends before $\phi = \phi_c$. Analytic solution

$$\frac{\phi(t)}{M_{Pl}} = 2\sqrt{\frac{2}{\beta}}\arctan(e^{\beta Mt}) \rightarrow 0 \quad (t \rightarrow -\infty)$$

$$\frac{H(t)}{M} = -\tanh(\beta Mt) \rightarrow 1 \qquad \epsilon_1 \equiv -\dot{H}/H^2$$

$$a(t) \propto \cosh^{-1/\beta}(\beta Mt) \rightarrow e^{Mt} \qquad \epsilon_{n+1} \equiv \dot{\epsilon}_n/H\epsilon_n$$
Slow-roll parameters
$$2\epsilon_1 = \epsilon_{2n+1} = 2\beta/\sinh^2(\beta Mt) \rightarrow 0 \qquad \text{same}$$

$$\epsilon_{2n} = 2\beta \tanh^2(\beta Mt) \rightarrow 2\beta \qquad \text{same}$$

cosh potential ($\beta < 0$)

$$\frac{V(\phi)}{M^2 M_{Pl}^2} = 3 \left[1 - \frac{3+\beta}{6} \left\{ 1 - \cosh\left(\sqrt{-2\beta} \frac{\phi}{M_{Pl}}\right) \right\} \right]$$

Assume a transition to reheating at $\phi > 0$.

cos potential ($\beta > 0$)

$$\frac{V(\phi)}{M^2 M_{Pl}^2} = 3 \left[1 - \frac{3+\beta}{6} \left\{ 1 - \cos\left(\sqrt{2\beta} \frac{\phi}{M_{Pl}}\right) \right\} \right]$$

Assume a transition to reheating at $\phi < \phi_c$.

Non-attractor behavior

Lin, Morse, Kinney, 1904.06289

Curvature perturbation

HM, Starobinsky, Yokoyama, 1411.5021 Mukhanov-Sasaki equation

$$v_k^{\prime\prime} + \left(k^2 - \frac{z^{\prime\prime}}{z}\right)v_k = 0$$

where $v_k = \sqrt{2}z\zeta_k$ with $z = a\sqrt{\epsilon_1}$. $\epsilon_1 \equiv -\dot{H}/H^2$ Without approximation, $\epsilon_{n+1} \equiv \dot{\epsilon}_n/H\epsilon_n$

$$\frac{z''}{z} = a^2 H^2 \left(2 - \epsilon_1 + \frac{3}{2} \epsilon_2 + \frac{1}{4} \epsilon_2^2 - \frac{1}{2} \epsilon_1 \epsilon_2 + \frac{1}{2} \epsilon_2 \epsilon_3 \right)$$

For both cosh potential and cos potential,

$$\frac{z''}{z} \to \frac{(\beta + 2)(\beta + 1)}{\tau^2} = \frac{\nu^2 - 1/4}{\tau^2}$$

where $\nu \equiv |\beta + 3/2|$ and hence

$$n_s - 1 \Big|_{k\eta=1} = 3 - |2\beta + 3|$$

 $\ddot{\phi}/(H\dot{\phi}) = \beta$ (constant)

 $\ddot{\phi}/(H\dot{\phi}) = \beta$ (constant)

PBH from constant-roll inflation

HM, Mukohyama, Oliosi, 1910.13235

PBH from constant-roll inflation

HM, Mukohyama, Oliosi, 1910.13235

PBH from constant-roll inflation

Primordial black hole mass *M*_{PBH} [g]

Summary

PBH DM from Higgs?

Passaglia, Hu, HM, 1912.02682

