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No go of slow roll for PBH production

(ΩUV,XYZ7) ⇒ H 67 89
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XYZ7 ≈ 10($/X⊙: Smallest PBH mass that does not evaporate by matter-radiation 
equality barring merging and accretion ⟹ Lower bound on SR violation



No go of slow roll for PBH production
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No go of slow roll for PBH production
Summary:

PBH production 
⇐ Sharp enhancement of Δ#$(!)
⇔ Quick decay of *+ within ∼ 50 efolds

⇔ −H 67 89
H:

> ,(1)

⇐ *+ ∝ m(n with o = ,(1)

Simple realization:
Constant roll inflation with o = const.

Martin, HM, Suyama, 1211.0083
HM, Starobinsky, Yokoyama, 1411.5021

HM, Hu, 1706.06784
Passaglia, Hu, HM, 1812.08243



Constant-roll inflation

Canonical single filed inflation

≃ 0 Slow-roll 
r̈/(1ṙ) = −3 Ultra slow-roll 

= B (constant)     Constant-roll 

B
0−3

USR SR



Ultra slow-roll inflation (B = −3)

r̈ = −31ṙ ⇒ ṙ ∝ m(b

⇒ *+ ∝ m(s

Tsamis, Woodard, astro-ph/0307463
Kinney, gr-qc/0503017t(r)

r

Constant potential

SR1SR2 USR
(Non-attractor)

KG eq:



Ultra slow-roll inflation (B = −3)
Superhorizon solution of MS eq

uv = wv + yv z
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Constant mode
Decaying mode
Growing mode

Slow-roll          *+ ≃ const. ≪ 1
Ultra slow-roll        *+ ∝ m(s

While *+ ≪ 1, {ln*+/{; = −6 violates slow roll. 
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Constant-roll inflation (general B)
Superhorizon solution

uv = wv + yv z
{|
mb*+

Martin, HM, Suyama, 1211.0083
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Constant-roll inflation (general B)

Constant-roll condition r̈ = B1ṙ
+ Hamilton-Jacobi formalism 1 = 1(r).

−21̇ = ṙ$ ⇒ ṙ = −2 5+
5Ä

⇒ 5O+
5ÄO

= −�
$
1

Analytic solution: 

1 r = linear combination of Å± (�/$ Ä

⇒ t r = 31$ − Ä̇O

$
= 31$ − 2 5+

5Ä

$

= linear combination of Å± ($� Ä

Analytic solutions for r | , 1 | , m |
can also be derived.

HM, Starobinsky, Yokoyama, 1411.5021



Constant-roll inflation (general B)

Potentials

a)  t ∝ Å ($�Ä with B < 0: Power-law inflation
É = 8 1 − ÑÖ

b)  t ∝ cosh( −2Br) + const. with B < 0

c)  t ∝ cos( 2Br) + const.      with B > 0

Growing                  Frozen
B

−b
$

cosh cos0−3
USR SR

SH uv

t(r)

HM, Starobinsky, Yokoyama, 1411.5021



cosh potential (B < 0)
t(r)
X$Xâä

$ = 3 1 −
3 + B
6

1 − cosh −2B
r
Xâä

Assume inflation ends before r = 0.
Analytic solution

Ä ã
Råç

= $
(�
ln coth (�

$
X| → 0

+ ã
R

= coth −BX| → 1

m | ∝ sinh(//� −BX| → ÅRã

Slow-roll parameters
2*/ = *$ëí/ = −B/ cosh$ −BX| → 0
*$ë = 2B tanh$ −BX| → 2B

(| → ∞)

*/ ≡ −1̇/1$
*ëí/ ≡ ̇*ë/1*ë



cos potential (B > 0)
t(r)
X$Xâä

$ = 3 1 −
3 + B
6

1 − cos 2B
r
Xâä

Assume inflation ends before r = rï.  
Analytic solution

Ä ã
Råç

= 2 $
�
arctan(Å�Rã) → 0

+ ã
R

= − tanh BX| → 1

m | ∝ cosh(//� BX| → ÅRã

Slow-roll parameters
2*/ = *$ëí/ = 2B/ sinh$ BX| → 0
*$ë = 2B tanh$ BX| → 2B

(| → −∞)

Same 
asymptotic 
values

*/ ≡ −1̇/1$
*ëí/ ≡ ̇*ë/1*ë



cosh potential (B < 0)
t(r)
X$Xâä

$ = 3 1 −
3 + B
6

1 − cosh −2B
r
Xâä

Assume a transition to reheating at r > 0.

B = −3

B = −3.5

B = −2.5

| → ∞
Attractor

Non-attractor



cos potential (B > 0)
t(r)
X$Xâä

$ = 3 1 −
3 + B
6

1 − cos 2B
r
Xâä

Assume a transition to reheating at r < rï.  

B = 0.2

B = 0.5

rï rï

Natural inflation 
+ negative CC

| → ∞

| → −∞
Attractor



Non-attractor behavior Lin, Morse, Kinney, 1904.06289

FIG. 4. Evolution of ⌘ on the convex potential for various trajectories perturbed about the ⌘ =

⌘̄ = 2.5 constant roll solution, labeled “Analytic”. The late-time attractor solution is the dual slow

roll solution with ⌘ = 3� ⌘̄ = 0.5.

Fig. 6. However, for both the positive and negative kick case, the attractor solution is not

the analytic constant roll large-⌘ solution, but rather solution in the slow roll regime where

⌘̃ = 3 � ⌘ under the duality found in [2, 3, 36]. For Fig. 4 this corresponds to ⌘̃ = 0.5

because the large-⌘ constant roll was chosen to be ⌘ = 2.5. Therefore, the slow roll solution

is the attractor solution, a conclusion which is not confined to this particular choice of ⌘̄.

It is interesting to note that for 1 < ⌘̄ < 2 there is no slow roll solution, because the dual

relation takes a larger 2 > ⌘ = ⌘̄ > 1.5 solution to a smaller 1.5 > ⌘ = 3 � ⌘̄ > 1 solution.

This “self-dual” region will correspond to blue tilt in the scalar spectral index [36], and is

uninteresting from a phenomenological standpoint. A plot of this can be seen in Fig. 7.

B. Concave Potential

We perform the same analysis on ⌘̄ > 3 potentials,

V (�) = 3M2
PH

2
0

✓
1 +

1

3
(3� ⌘̄) sinh2

✓p
⌘̄p
2

�

MP

◆◆
, (23)

with field evolution

�(t)

MP
= 2

r
2

⌘̄
arctanh

�
e�⌘̄H0t

�
. (24)
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r̈/(1ṙ) = B (constant) 



Curvature perturbation
Mukhanov-Sasaki equation

óvòò + !$ −
ôòò

ô
óv = 0

where óv = 2ôuv with ô = m */.  
Without approximation,

ôòò

ô
= m$1$ 2 − */ +

3
2
*$ +

1
4
*$$ −

1
2
*/*$ +

1
2
*$*b

For both cosh potential and cos potential,
ôòò

ô
→

B + 2 B + 1
ö$

=
õ$ − 1/4

ö$
where õ ≡ B + 3/2 and hence

ÑÖ − 1 ú
vùû/

= 3 − |2B + 3|

*/ ≡ −1̇/1$
*ëí/ ≡ ̇*ë/1*ë

HM, Starobinsky, Yokoyama, 1411.5021
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growth to 
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r̈/(1ṙ) = B (constant) 

HM, Starobinsky, Yokoyama, 1411.5021



Growing Frozen
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Dynamics Non-attractor                  Attractor

Δ#
$(!) ú

vùû/
Red Blue Red

Model for Δ#$(!†V_)
B ≈ 0.015

HM, Starobinsky, Yokoyama, 1411.5021
HM, Starobinsky, 1702.05847

Model for Δ#$(!^_`)
HM, Mukohyama, Oliosi, 1910.13235

r̈/(1ṙ) = B (constant) 

Other CR models
HM, Starobinsky, 1704.08188, 1909.10883



PBH from constant-roll inflation
HM, Mukohyama, Oliosi, 1910.13235
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FIG. 3. The three-stage potential (21) with its di↵erent con-
tributions, leading to the first SR stage for ' & '1, then the
CR stage for '1 . ' . '2, and finally the second SR stage
for ' . '2. The parameters are chosen as in (22).

To fix the details of the second transition from CR to
SR, one needs to consider the PBH distribution func-
tion. The second transition should indeed let the power
spectrum decrease shortly after reaching the threshold
amplitude for su�cient PBH production. This guaran-
tees that the PBH mass distribution is peaked enough to
satisfy the thin windows allowed by current constraints,
and also that the curvature power spectrum satisfies con-
straints on smaller scales. Leaving the details of the
PBH distribution to Sec. IV, we specify here how to
fix the parameters in the potential: The two constants
WSR2 and ⇤SR2 are fixed in such a way that the po-
tential is continuous at ' = '2 in the limit d2 ! 0,
i.e. VCR('2) = WSR2'2 + ⇤SR2 yet that the slope of the
potential increases enough to guarantee a drop in the
power spectrum, i.e. V 0

CR
('2) < WSR2; d2 is fixed such

that the second transition is short enough (since the field
value becomes exponentially small in N during CR).

As an example realization, demanding that

� = �1.4 ,
m

2

M2
= 3.13,

WSR2

V
0
CR

('2)
= 5 ,

's = �5 , '1 = 0.175 '2 = 4.5⇥ 10�6
,

d1 = 10�2
, d2 = 10�7

, (22)

yields the potential and the background evolution shown
in Figs. 3 and 4, respectively. In Fig. 4, while SR stages
are simply characterized by |✏1,2| ⌧ 1, the CR stage is
recognized by representing the condition (4). Each tran-
sition lasts for O(1) e-folds. In particular the ratio m/M ,
as well as '1 and '2 were fixed from the requirement
of the first transition occurring about 5 e-folds after the
CMB scales exit the horizon to satisfy the observational
constraints, and the second transition occurring after suf-
ficient e-folds of CR to produce a chosen abundance of
PBHs (see Sec. IV for more details).

Turning to perturbations, the same set of parameters
(22) leads to the curvature power spectrum of Fig. 5. As

FIG. 4. Numerical evolution (black) of the first two SR
parameters ✏1,2 and the ratio '̈/(H'̇) for the set of parame-
ters (22). The analytical CR asymptotic values are also repre-
sented (dashed, green). For these background quantities, the
transitions last O(1) e-folds. The colored areas correspond to
the respective stages of our model (SR1, CR, SR2 ).

for modes that exit the horizon during the first SR stage,
scalar and tensor perturbations satisfy the observational
constraints. As expected, the power spectrum on scales
that exit the horizon during the CR stage is enhanced
up to �2

⇣
= O(10�2) to produce PBHs. The analytically

predicted spectral tilt depicted as dashed line in Fig. 5
fits the numerical result well.
The transient behavior in the background shown in

Fig. 4 is reflected to oscillations in the power spectrum
in Fig. 5. The power spectrum stabilizes to a nearly con-
stant tilt after the oscillatory behavior lasting O(1) mag-
nitude orders of k. This oscillation can be understood
as follows. As is shown in Fig. 4, both the transition
from SR1 to CR and that from CR to SR2 are in fact
characterized by the sharp increase in ✏1 at the end of
the transient regimes. The increase causes a time depen-
dence of the mass term 1

a2z

d
2
z

d⌧2 , leading to oscillations
in the evolution of the norm of each complex curvature
modes that cross the horizon at the transitions. This
leads to an elongated inspiral of the mode in the com-
plex ⇣ plane, which appears as oscillations in the power
spectrum.
As shown in Fig. 5, the power spectrum should satisfy

observational constraints on di↵erent scales, in particular
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FIG. 7. Scalar power spectrum for the three-stage poten-
tial (21) for values of � corresponding to quasi-maximum and
quasi-minimum tilts (solid and dashed, respectively) for each
peak. Modes that exit the horizon during the first SR stage
corresponds to the CMB scales, while the intermediate CR
stage allows for the power spectrum to increase up to the
threshold for PBH production. Here the only restriction on
the final SR stage is that the slope of the potential increases
enough to ensure a slight drop of the power spectrum after it
reaches the threshold.

For tilts larger than nµ+CMB, the principal constraint will
be that from µ-distortions. On the other hand for models
with ns < nµ+CMB, the CMB, as well as other small scale
constraints (such as that from gravitational waves) will
constrain the maximum PBH mass. This highlights the
fact that the CR inflation accommodates various possibil-
ities of PBH production within the framework of single-
field inflation, and that it is robust to future improve-
ments of observational constraints and/or detections.

IV. PRIMORDIAL BLACK HOLE
PRODUCTION

In Sec. III we presented the three-stage potential (21)
that transits as SR1 ! CR ! SR2, and highlighted that
it allows various blue-tilted scalar spectra with the ad-
justable scalar spectral tilt. In this section we connect
these results to PBH abundance and compare it with ob-
servational constraints.

To obtain the PBH abundance, we follow the treat-
ment of [37] (and references therein) that models the
collapse of an overdense region with some simplifying as-
sumptions. The procedure consists in first evaluating the
variance [38]

�
2(MPBH(k)) =

16

81

Z
d ln qW 2(q/k) (q/k)4 �2

⇣
(q) ,

(24)
of the density contrast for the PBH mass of MPBH(k)
coarse-grained by a window function W (x), which we

take the Gaussian W (x) = e
�x

2
/2. It then allows for

an estimation within Gaussian statistics of the formation
rate

�PBH(MPBH) '
1

p
2⇡

�(MPBH)

�c
e
� �2c

2�2(MPBH) (25)

where the PBH mass MPBH is related to the wavenumber
k via

MPBH(k)

1020g
'

⇣
�

0.2

⌘⇣
g⇤

106.75

⌘� 1

6

✓
k

7⇥ 1012Mpc�1

◆�2

,

(26)
in which g⇤ is the number of relativistic degrees of free-
dom at PBH formation, and the factor � relates the cos-
mological horizon mass to the mass of the corresponding
PBH. The latter factor depends on the particulars of the
formation process and has been the subject of research,
see e.g. [39], but we do not favor any specific value here,
since several other parameters (note the large sensitivity
on the details of the inflationary background) have still
large error margins. Finally, the abundance of PBH over
logarithmic mass intervals can be approximated by

fPBH(MPBH) ⌘
⌦PBH(MPBH)

⌦c

(27)

=

✓
�(MPBH)

8⇥ 10�15

◆✓
0.12

⌦ch
2

◆⇣
�

0.2

⌘ 3

2

✓
106.75

g⇤

◆ 1

4

✓
MPBH

1020g

◆� 1

3

.

Again, the calculations here can only be taken as rough
approximations. Some approximations taken here (and
thus partly in [37]) are that of spherical symmetry, con-
stant PBH mass after formation neglecting accretion and
merger, and g⇤ being almost equal to g⇤s. However, these
estimations are su�cient to show the e↵ectiveness of the
PBH production in the CR model.
Using the above relations, we convert various blue-

tilted scalar power spectra shown in Fig. 7 to the PBH
abundances depicted in Fig. 8. Exact values of parame-
ters characterizing the potential (21) employed for Figs. 7
and 8 are listed in Appendix A. We set other parameters
as the same proxy values (e.g. � = 0.2, etc.) as given in
(26) and (27).
The possibility to adjust the tilt of the power spec-

trum renders the CR model robust to observations. Al-
though the tilt of the power spectrum may be changed,
this only marginally a↵ects the width of the PBH distri-
bution function. In particular for large PBH masses, this
is limited by the widest range of tilts allowed by the dif-
ferent constraints on the scalar power spectrum. While
a marginal di↵erence may be produced nevertheless, as
seen in Fig. 8, for a given set of the PBH mass and abun-
dance, the CR model allows a range of the scalar tilt. In
Fig. 7 are shown large tilt with � = �1.4, which is close
to the maximum tilt with � ! �1.5, and quasi-minimum
tilt for each peak.
In Figs. 7 and 8, we focused on three di↵erent PBH

mass scales, each of which corresponds to PBHs as LIGO-
Virgo events (red), OGLE events (purple), and all dark
matter (green), the first two of which could be possible

ÑÖ − 1 = 3 − |2B + 3|
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FIG. 8. PBH abundance for several values of �, with the same
parameters as in Fig. 7. Diverse observational constraints are
represented, including that on extra-galactic radiation (EG�)
[1], femto-lensing [40] long-livedness of white dwarfs (WD)
[41], microlensing by the Subaru HSC [42], Kepler [43] and
by EROS-2 and previous related searches [44], the survival
of ultra-faint dwarf (UFD) galaxies [45], and the accretion
on the CMB [46–49]. We also include the allowed parameter
space assuming a detection by OGLE [6].

detections of primordial black holes. First, the LIGO-
Virgo black holes, which, if shown to be PBHs, would
necessitate the abundance fPBH ⇠ 10�3 at about 30M�
[5]. In particular, the red solid line corresponds to the ex-
ample set of parameters (22). Next, OGLE reported a se-
ries of observations possibly consistent with PBHs, which
would imply a peaked distribution at fPBH ⇠ 10�3/2 at
about 1026�1028 g [6]. We have also chosen to reproduce
this value in Fig. 8. Finally, we provided an example of
peak corresponding to PBH as all dark matter scenario
at the window around 1021 g. Since in this case the re-
quired PBH mass is lightest among the three examples,
the widest range of the scalar tilt is allowed as depicted
in Fig. 7. Since for each case the transient CR scenario
allows various tilts of the power spectrum, it can be dis-
tinguished from the transient USR scenario and be tested
by future observations.

Once more, as explained in Sec. III, constant values of
�2

⇣
appeared in Fig. 7 on small scales after the peaks are

not important as they originate from the linear potential
approximation (19) of the second SR stage. Ultimately,
a more realistic potential should be implemented for the
second SR stage to realize a smooth transition to a re-
heating stage, which will also change the small-scale be-
havior of the power spectrum. However, the modification
would not a↵ect the estimation of PBH abundance very
much. The linear potential approximation is also su�-
cient to extract the typical e↵ect of the transition on the
power spectrum.

V. DISCUSSION

The constant-roll inflation with � ⌘
�̈

H�̇
⇡ 0.015 has

been known to produce a slightly red-tilted scalar power
spectrum compatible with the observational constraints.
In this work, we have instead shed light on the CR in-
flation with a di↵erent parameter range, � 3

2
< � < 0,

for which a blue-tilted curvature power spectrum is gen-
erated during the CR attractor stage without superhori-
zon growth of curvature modes, and have investigated
how a stage of CR inflation may lead to the production of
PBHs. Indeed, PBHs may be generated once a (mildly k-
dependent) threshold value (approximately �2

⇣
⇠ 10�2)

for the curvature power spectrum is reached, which can
be easily realized in the CR model since the tilt is ad-
justable within the range of 0 < ns � 1 < 3 for the
aforementioned parameter range.
We have constructed a specific potential (21) with

three stages. Indeed, the CR stage generating the blue-
tilted spectrum should be preceded and followed by SR
stages with red tilts in order to satisfy the existing con-
straints on the curvature power spectrum and on the
PBH distribution. We have implemented these three
stages by using a Starobinsky inflation—as a proxy for
a SR stage satisfying the CMB constraints—in the re-
gion � & �1, the CR stage in the region �2 . � . �1,
and finally a linear potential approximation in the region
� . �2—again a proxy for a SR stage to prevent overpro-
duction of PBHs. The matching positions �1 and �2 are
chosen to satisfy various observational constraints and to
partially regulate the PBH mass. We find that it is possi-
ble for the model to satisfy the observational constraints,
and also to induce the PBH abundances necessary in case
of a detection via e.g. the growth of the family of LIGO-
Virgo black holes, or the OGLE microlensing events [6],
or all of dark matter for MPBH ⇠ 1021 g.
PBH production in the context of single-field inflation

has already been studied in several realizations, yet our
construction has its own particularities. A stage of the
CR inflation, contrary to models which rely on a tran-
sient USR stage (such as some analyses of the inflec-
tion point potential), in particular has several advan-
tages: that the curvature modes are frozen on superhori-
zon scales as in the standard SR inflation—which reduces
the amount of tuning needed for a desired blue-tilted
stage—, that one does not need to be apprehensive for
a possible ambiguities in the USR model from stochastic
e↵ects on the plateau of the potential, and that the tilt of
the curvature power spectrum can be simply and freely
adjusted. The first and second features make the CR
model theoretically economical, whereas the third one
implies that the CR model is robust to more precise ob-
servations, for instance on the curvature power spectrum.
Conversely, future observations constraining small-scale
power spectrum such as those planned by the next gen-
eration ground- and space-borne gravitational wave ob-
servatories (see e.g. [36]) will allow further observational
tests of our model. We therefore find that the CR model

LIGO

All DM
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