

Exploring Primordial Black Holes from Multiverse with Optical Telescopes Focus week on PBH, Kavli IPMU, Kashiwa (Japan) December 4, 2019

Edoardo Vitagliano edoardo@physics.ucla.edu University of California, Los Angeles

Acknowledgments...

A long time ago in a galaxy far, far away....

Some keywords

Supermassive Black Hole seeds Vacuum bubbles LIGO **Dark Matter** Subaru HSC Microlensing **Primordial Black Holes** Multiverse Andromeda

Image credits: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

Primordial Black Holes & multi-messenger astronomy

- Primordial Black Holes in a peanut-shell
- Experimental status: Subaru, LIGO and all of that
- Why multi-messenger astronomy?
- Gravitational waves + photons = Primordial Black Holes

Bubbling bubbles and Primordial Black Holes

- Nucleation of bubbles in the early universe
- From one, many: a multiverse scenario

One spectrum to rule them all

- The shape of the wide mass spectrum
- Discovery potential with Subaru/HSC

Conclusions

Primordial Black Holes & multimessenger astronomy

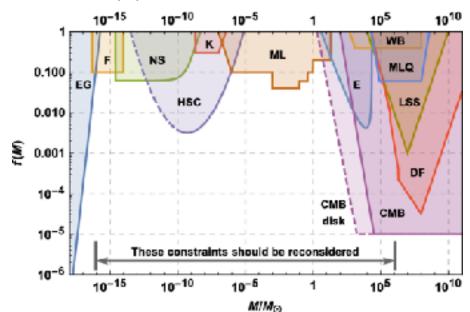
Primordial Black Holes are a type of black hole that formed soon after the Big Bang

- They can solve many cosmological conundra!
- Dark matter: the only dark matter candidate that is not necessarily made of new particles
- OGLE and quasar microlensing events
- Can seed supermassive black holes
- LIGO signal
- Perhaps Subaru detected one
- Miscellanea

Many production mechanisms

A LOT of possible production mechanisms (Carr's talk)

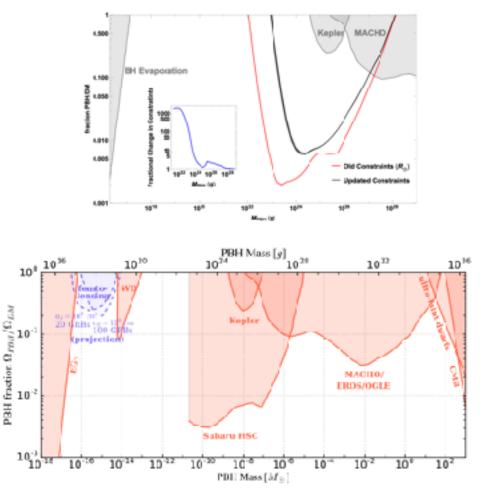
- Phase transitions: topological defects are formed through the Kibble mechanism, and shrink to PBH
- Soft equation of state (somewhat related to phase transitions too)
- Large density fluctuations
- Scalar field fragmentation to Q-balls (non-topological solitons) which collapse to PBHs, Kusenko's talk
- Many possible variations (see references in astro-ph/ 0310838, 0801.0116), see also Kawasaki's talk



How can we detect PBHs?

A LOT of constraints (?)

- Hawking's radiation, femtolensing, microlensing, CMB, wide binaries disruption... (not even all shown here!)
- Seems like PBHs cannot account for all the DM

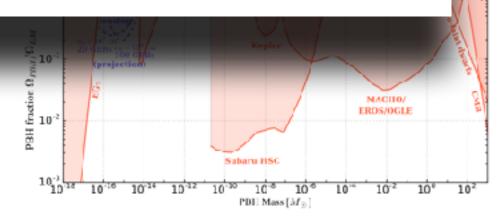


Should we trust all the constraints?

- **HSC bounds** must be modified to account for finite size of the sources (it is more likely to observe $10M_{\odot}$ than $1M_{\odot}$ stars), see 1910.01285
- Same goes for **femto-lensing**: most of GRBs previously considered are too large! (on the right it is a projection, not a constraint), see 1807.11495
- White dwarf bounds and neutron star bounds were initially very naive (see Kusenko's talk)
- Seems like on the one hand we have a new window for PBH as dark matter! But it is now more difficult to probe...

How can we detect PBHs?

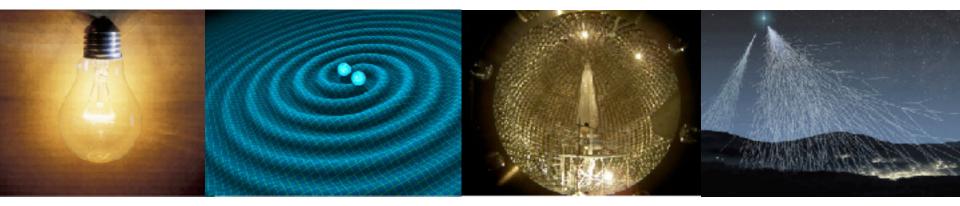
Should we trust all the constraints?


• HSC bounds must be

Uhm. Perhaps we should start trying to detect/constrain wide mass functions...

neutron star bounds were initially very naive (see Kusenko's talk)

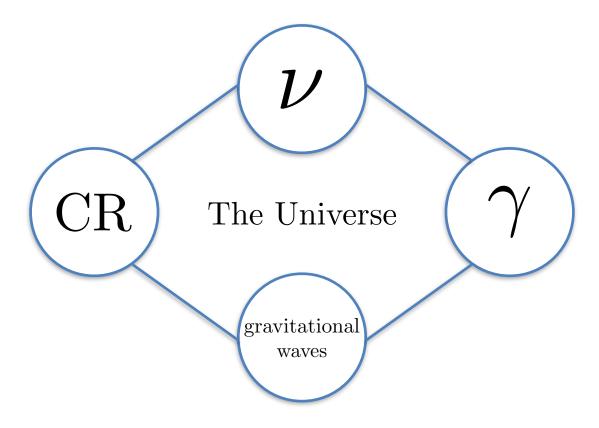
 Seems like on the one hand we have a new window for PBH as dark matter! But it is now more difficult to probe...



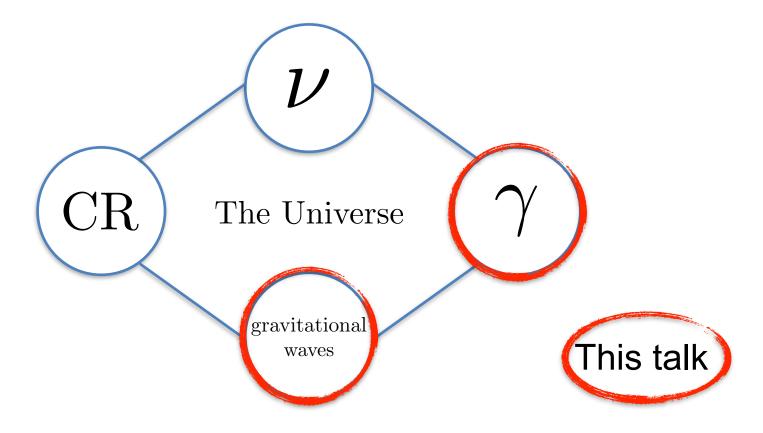
10¹⁶

From Wikipedia...

Multi-messenger astronomy is astronomy based on the coordinated observation and interpretation of disparate "messenger" signals. The four extrasolar messengers are **electromagnetic radiation**, **gravitational waves**, **neutrinos**, and **cosmic rays**. They are created by different astrophysical processes, and thus reveal different information about their sources.


https://en.wikipedia.org/wiki/Multi-messenger_astronomy

Images credits: Rex, R. Hurt/Caltech-JPL/EPA, Virginia Tech Physics, ASPERA/Novapix/L. Bret



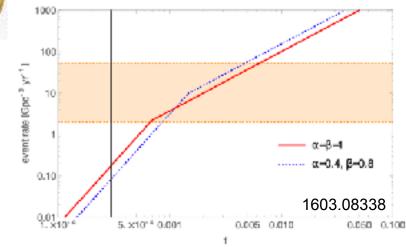
The universe is no longer explored with electromagnetic radiation alone!

The universe is no longer explored with electromagnetic radiation alone!

More about the various messengers

A short recap:

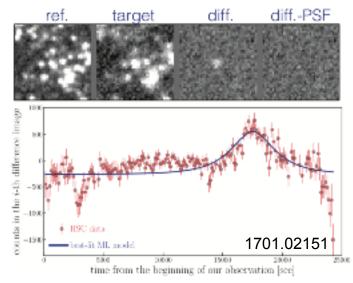
- Photons:
 easy to detect
 point back at the source(s)
 get absorbed
- Cosmic rays: easy to detect don't point back
- Neutrinos:
 point back at the source(s) don't get absorbed to detect
- Gravitational waves: point back at the source(s) get absorbed very difficult to detect


Images credits: NASA/Aurore Simonnet, Sonoma State University, NAOJ/HSC Project, http://www.phys.lsu.edu/faculty/gonzalez/

16

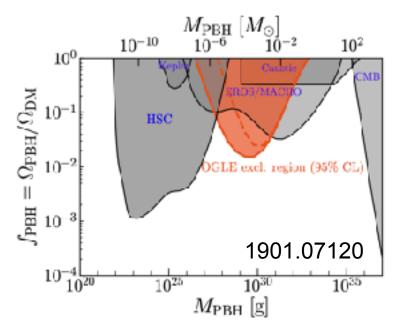
Experimental status: LIGO

- The Laser Interferometer Gravitational-Wave Observatory (LIGO) detects cosmic gravitational waves and to develop gravitationalwave observations as an astronomical tool.
- 2017 Nobel prize to Barish, Thorne and Weiss!
- We have detected GWs, but we still do not know where they come from. It is possible that the BHs involved in the mergers are PBHs (see 1603.08338)



Experimental status: Subaru

- The Subaru telescope (8.2 m, FoV 9 full moons, 104 CCDs for 1 gigapixel) is located at the Mauna Kea Observatory on Hawaii (northern emisphere, so it can look at Andromeda, which is 770 kph away)
- The Hyper Suprime-Cam (HSC) is used to search for lensing events
- Subaru/HSC has detected a potential candidate event: it has all the features needed to be a PBH (1701.02151)



18

Experimental status: OGLE

- The Optical Gravitational Lensing Experiment (OGLE) is a telescope based at Las Campanas Observatory in Chile, run by the University of Warsaw
- "More interestingly, we also show that Earth-mass PBHs can well reproduce the 6 ultrashort-timescale events, without the need of freefloating planets, if the mass fraction of PBH to DM is at a per cent level, which is consistent with other constraints such as the microlensing search for Andromeda galaxy (M31) and the longer timescale OGLE events." (1901.07120)
- As an aside, the range has been used also to explain Planet IX (1909.11090)

Recent bonus: 70 solar mass BH

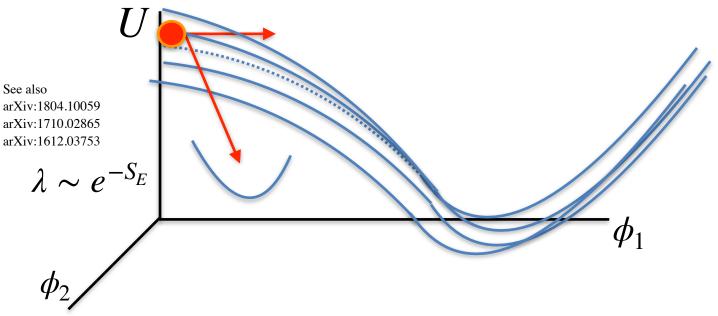
Article A wide star-black-hole binary system from radial-velocity measurements

https://doi.org/101038/s41588-019-1766-2 Received: 1 March 2019	 Jifeng Liu^{12,4}*, Haotong Zhang^{4*}, Andrew W. Howard⁴, Zhongrui Ba¹, Youjun Lu¹², Roberto Sorla¹⁴, Stephen Justham^{13,4}, Xlangdong Li²⁴, Zheng Zhang⁵, Tinggul Wang¹⁰, Krzysztof Belezynski¹, Jorge Casares^{16,10}, Wei Zhang¹, Hailong Yuan¹, Yiqiao Dong¹, Yajuan Lef², Koward Isaacson¹⁰, Song Wang¹, Yu Ba¹, Yong Shao²⁴, Qing Gao¹, Yilun Wang¹³, Zesi Niu¹², Kaiming Gu¹³, Chuanjie Zheng¹⁴, Xisoyong Mu², Lan Zhang¹, Wei Wang¹⁴, Alesander Heger¹⁶, Zhaosiang Qi¹⁰, Shilong Liao²⁶, Mario Lattard¹⁶, Wei Phong¹⁰, Junieng Wang¹⁰, Jianfeng Wu⁹, Lijing Shao²⁶, Rongfeng Shen³⁴, Xisoleng Wang¹⁵, Joel Brogman²⁰, Rosanne Di Stefano²⁴, Qingzhong Liu²⁸, Zhanwen Han²⁴, Tianmeng Zhang¹, Huijuan Wang¹, Jaanjuan Ren¹, Juribo Zhang¹⁴, Agia Zhang²⁴, Xiaoli Wang¹⁶, Antonio Cabrera-Lavers¹²⁷, Romano Corradi¹²⁹, Rafeet Rabolo^{16,29}, Yongheng Zhao¹³, Geng Zhao¹³, Yaoquan Ghu¹⁰ & Xianggun Cui²⁹
Accepted: 20 August 2019 Published online: 27 November 2019	

Could it be a PBH?

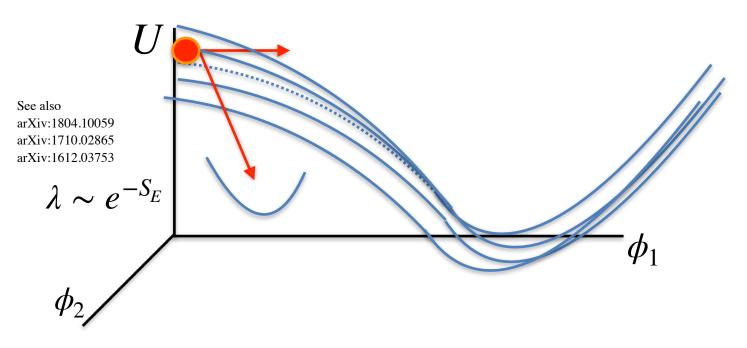
Messengers from PBHs

Gravitational waves and photons could hint to a wide Primordial Black Hole mass spectrum!* * So we have to think about how we can exclude this possibility


Bubbling bubbles and Primordial Black Holes

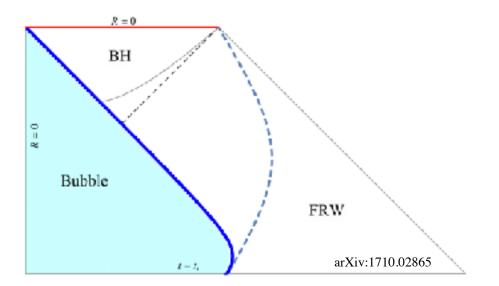
Primordial Black Holes from bubble nucleation

Domain walls can be formed in phase transitions. However, if we want to avoid the domain wall problem, we need a very low energy scale for the wall's tension


This can be avoided! Instead of having a phase transition, we can have bubble nucleation

Garriga, Vilenkin and Zhang (1512.01819) built on the Coleman-De Luccia scenario (Phys.Rev. D21, 3305) this idea. Basically, new inflation in one direction and old inflation in another direction

Primordial Black Holes from bubble nucleation



- The main idea: we start from a large energy density $\rho_{in} > \rho_b$ where the latter is the bubble energy density
- Later, $\rho_b < \rho_i$, where the latter is the energy density in the universe at the end of inflation
- The universe will form vacuum bubbles with different energy density. These bubbles initially expand, later they collapse

Subcritical bubbles

- There are two possibilities, depending if during expansion the radius is the bubble becomes larger of the Hubble radius fixed by ρ_b
- If $R < H_b^{-1}$ at all times, the bubble is subcritical

There is a conserved quantity, which is a mass parameter

$$G\mathcal{M}_b = \frac{1}{2} (H_b^2) R_w^3 + 2H_\sigma R_w^2 \sqrt{1 + \dot{R}_w - H_b^2 R_w^2} - 2H_\sigma^2 R_w^3$$

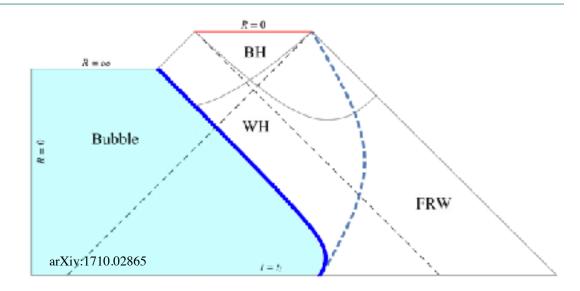
Energy of the vacuum + Kinetic energy of the wall - Wall tension

For subcritical bubbles

 $M \propto R^3$

How large can a subcritical bubble be?

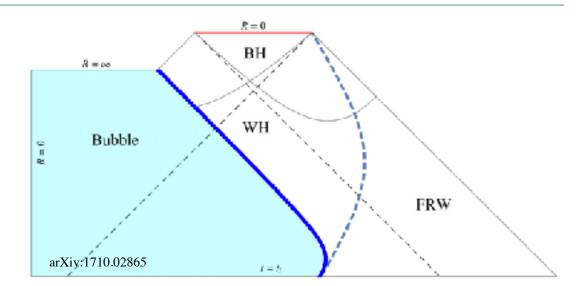
$$G\mathcal{M}_b = \frac{1}{2} (H_b^2) R_w^3 + 2H_\sigma R_w^2 \sqrt{1 + \dot{R}_w - H_b^2 R_w^2} - 2H_\sigma^2 R_w^3$$


- Set the velocity to zero and solve for the radius
- from dimensional arguments

 $GM_{cr} \simeq \min\{\mathrm{H}_{\mathrm{b}}^{-1}, \mathrm{H}_{\sigma}^{-1}\}$

Supercritical bubbles

- With larger masses, at some moment in time, inflation will start inside the bubble. A baby universe is born we live in a **multiverse**
- We do not have a conserved quantity as in the subcritical case... how do we find the mass dependence on the radius?


Supercritical bubbles

- With larger masses, at some moment in time, inflation will start inside the bubble. A baby universe is born we live in a multiverse
- We do not have a conserved quantity as in the subcritical case... how do we find the mass dependence on the radius?
- Suppose we form a bubble with radius much smaller than the Hubble radius $R_{in} \ll H_{in}^{-1}$
- At time $t_h = a(t_h)R_i$ the radius will be larger than the Hubble radius of the parent universe. This happens when

$$t_h = H_i R_i^2 \qquad t_h = H_i^2 R_i^3$$

Radiation dominated era Matter dominated era

$$M < \frac{4\pi}{3}\rho(t_h)H^{-3}(t_h) = H_i R_i^2 \text{ or } H_i^2 R_i^3$$

 $M \propto R^2 \operatorname{or} R^3$

One spectrum to rule them all

We are now ready to obtain the mass spectrum. During inflation the metric is described by

$$ds^2 = -dt^2 + a(t)^2 d\mathbf{x}^2$$

where

$$a(t) = \exp H_i t$$

After a bubble is nucleated with small radius, it grows as

$$R(t) = H_i^{-1}[e^{H_i(t-t_n)} - 1]$$

(just set ds = 0 because they expand at the speed of light, and multiply times a(t)). The number of bubbles per spacetime volume is

$$dN = \lambda H_i^4 e^{3H_i t_n} d^3 \mathbf{x} dt_n$$

where λ is the rate per Hubble space-time volume H_i^{-4}

The number density at the end of inflation is

$$dn(t_i) = \frac{dN}{dV} = \lambda \frac{dR_i}{(R_i + H_i^{-1})^4}$$

(where $dV = e^{3H_i t} d^3 \mathbf{x}$) which evolves as

$$dn(t) = dn(t_i) \left[\frac{a(t_i)}{a(t)}\right]^3$$
with

$$\begin{cases}
\text{radiation} & a(t) = \sqrt{t/t_i} \\
\text{matter} & a(t) = (t/t_i)^{2/3}
\end{cases}$$

We can now define as usual the mass function as

$$f(M) = \frac{M^2}{\rho_{cdm}(t)} \frac{dn(t)}{dM} \qquad \text{where} \qquad \rho_{cdm}(t) = \frac{1}{BGt^2} \sqrt{(t/t_{eq})} = \frac{M_{planck}^3}{Bt^{3/2}M_{eq}}$$

UCLA

We can now construct our mass function. For subcritical bubbles

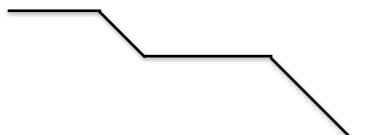
$$M < M_{cr} = M^*$$

the mass spectrum will be

$$f(M) = B\lambda (M_{eq}/M^*)^{1/2}$$

For supercritical bubbles in a radiation dominated universe

$$f(M) = B\lambda (M_{eq}/M)^{1/2}$$


while for supercritical bubbles in a matter dominated universe the spectrum is flat like for subcritical bubbles

$$f(M) = B\lambda (M_{eq}/M_k^*)^{1/2} (M_k^*/M_{k-1}^*)^{1/2}$$

where k is the index for various radiation-matter transitions

The mass function is then a trapezoid with $M^{-1/2}$ or M = const

As many breaks in the mass function as the number of radiationmatter transition (+1, the transition from subcritical to supercritical bubbles). Plan: let us try to explain

- Dark matter: the only dark matter candidate that is not necessarily made of new particles
- OGLE and quasar microlensing events
- Can seed supermassive black holes
- LIGO signal
- Perhaps Subaru detected one

Mass function: fixing the parameters

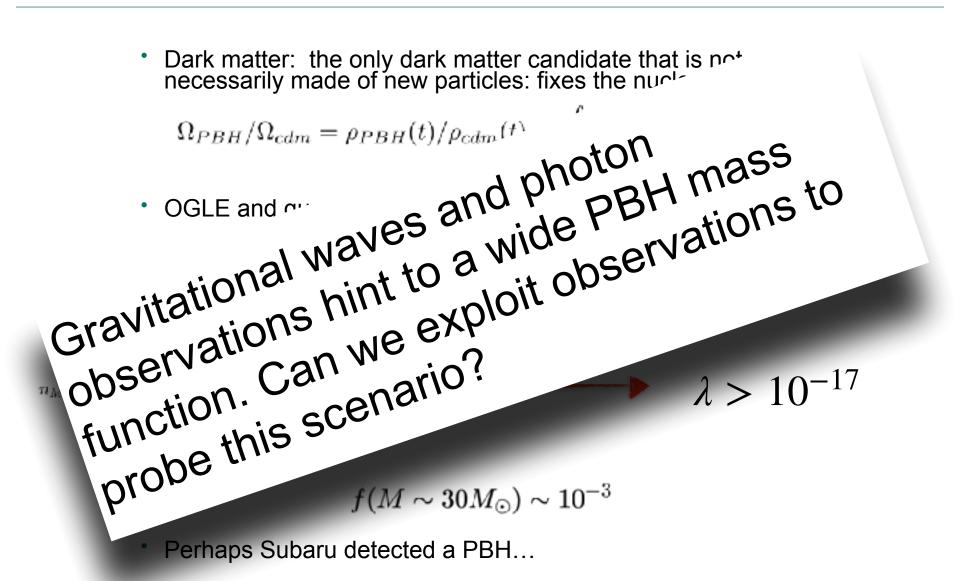
• Dark matter: the only dark matter candidate that is not necessarily made of new particles: fixes the nucleation rate

$$\Omega_{PBH}/\Omega_{cdm} = \rho_{PBH}(t)/\rho_{cdm}(t) = \int \frac{dM}{M} f(M) = 1$$

• OGLE and quasar microlensing events

$$\int_{0.5M_{\oplus}}^{20M_{\oplus}} f(M) \frac{dM}{M} \simeq 0.005$$

Can seed supermassive black holes


$$a_M \sim B\lambda \left(\frac{M_{eq}}{M}\right)^{1/2} \frac{\rho_{\text{CDM}}}{M} \sim 10^{20} \lambda \left(\frac{M}{M_{\odot}}\right)^{-3/2} \text{Mpc}^{-3} \qquad \lambda > 10^{-17}$$

• LIGO signal

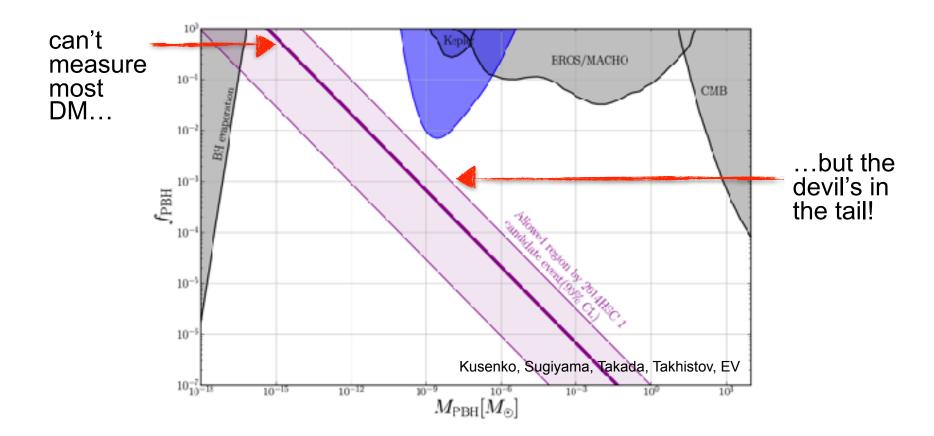
$$f(M \sim 30 M_{\odot}) \sim 10^{-3}$$

Perhaps Subaru detected a PBH...

Mass function: fixing the parameters

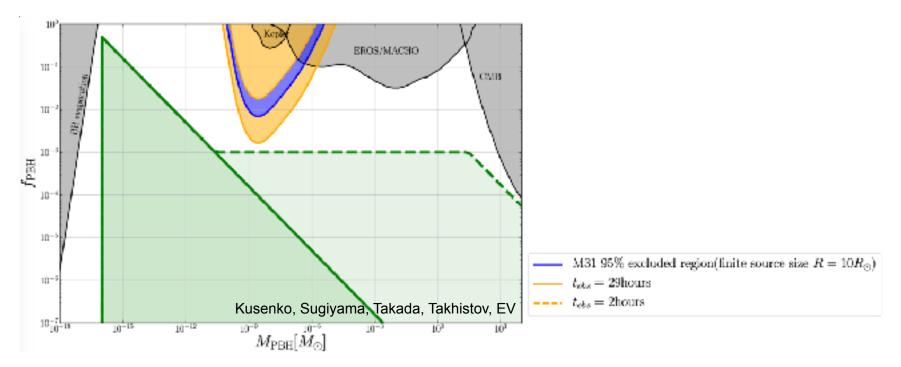
UCLA

Probing the multiverse scenario



We can use microlensing measurement of M31 (Andromeda) stars (see also Takada's and Kusenko's talk)

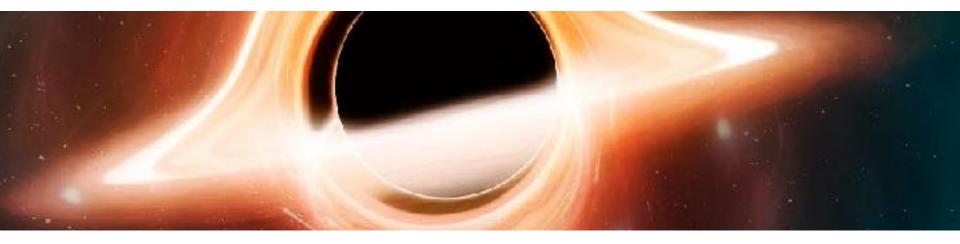
Subaru, at last!


Probing the multiverse scenario

Fit consistent with 1 event observation at Subaru/HSC from M31. NB: the exclusion is smaller than the fit because you have to integrate over the mass range (see e.g. arXiv:1705.05567)

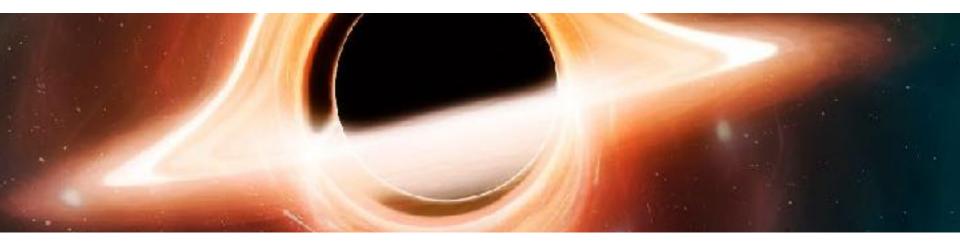
UCLA

Probing the multiverse scenario

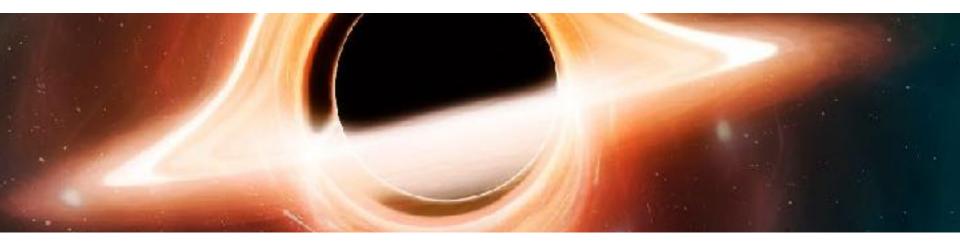


- 2 hours observation: we already probe the CDM+LIGO+seeds+OGLE parameters. However, with Poisson statistics with 7 hours data we should have seen 3 events. This is still compatible with the dashed line. 14 hours observation would completely exclude this possibility
- 29 hours observation: we can entirely exclude PBH from vacuum bubbles as CDM!

UCLA



• There is (again!) an available window for PBHs to be CDM



- There is (again!) an available window for PBHs to be CDM
- PBHs could be produced via collapse of vacuum bubbles nucleated during inflation



- There is (again!) an available window for PBHs to be CDM
- PBHs could be produced via collapse of vacuum bubbles nucleated during inflation
- This scenario could explain many observations (CDM abundance, 1 Subaru event, LIGO, OGLE)

- There is (again!) an available window for PBHs to be CDM
- PBHs could be produced via collapse of vacuum bubbles nucleated during inflation
- This scenario could explain many observations (CDM abundance, 1 Subaru event, LIGO, OGLE)
- Subaru can probe large part of the parameter space and possibly exclude it, given enough observation time

This project has received funding/support from the DOE through UCLA.

Thank you

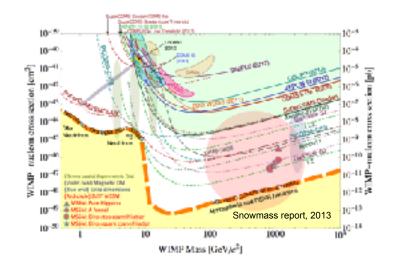
This project has received funding/support from the DOE through UCLA.

We have to take small R in

$$G\mathcal{M}_{b} = \frac{1}{2}H_{b}^{2}R_{w}^{3} + 2H_{\sigma}R_{w}^{2} - 2H_{\sigma}^{2}R_{w}^{3}$$
$$dn(t_{i}) = \frac{dN}{dV} = \lambda \frac{dR_{i}}{(R_{i} + H_{i}^{-1})^{4}} \qquad R_{i} << H_{i}^{-1}$$
$$R_{i} << H_{i}^{-1}$$

However, there could be a sharp cutoff due to quantum fluctuations spoiling the bubbles:

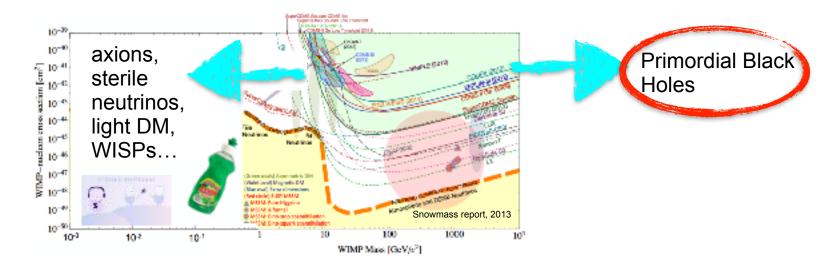
$$M > \rho_b^2 (\frac{\rho_i M_{planck}}{\rho_b \sigma})^{3/2}$$



What about the high mass cutoff? This is non-existent. A high mass cutoff to these calculations exist for radii larger than $R_i > H_i^{-1} e^N$ with N number of e-folds. This is a huge number, so we can really forget about this large mass cutoff.

An aside: new dark matter paradigms

WIMPs searches are a success (*WIMP-Moore's Law*: factor of 10 every 6.5 years!)


During the last few years lot of discussions about several dark matter candidates (from axions to MACHOs...)

An aside: new dark matter paradigms

WIMPs searches are a success (*WIMP-Moore's Law*: factor of 10 every 6.5 years!)

During the last few years lot of discussions about several dark matter candidates (from axions to MACHOs...)

