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The PBH merger rate and LIGO BHs
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* The tightest observational constraint
comes from the merger rate. Caveats:

1. Assumes a monochromatic mass
spectrum. Extended by
Chen & Huang ’18, Raidal et al ’18

2. Assumes PBHs are randomly placed
initially, true if Gaussian initial
conditions. Clustering does not help
Bringmann et al ’18

3. Assumes BH binaries are not disrupted.
Recently tested to z~1000 by
simulations (Raidal et al ’18) and even
disrupted PBHs can merge
Vaskonen & Veermée ‘19

4. Neglects halo formation around the
BHs. Not a big effect overall
Kavanagh, Gaggero & Bertone ‘18
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The LIGO events

e |t appears unlikely that more than 1% of the dark matter
can be made out of LIGO mass PBHs

e But all of the LIGO BHs could be primordial

e Black holes have no hair, so how can we know?
Mass
Mass ratio
(Spin, redshift distribution and location)



LIGO observables

The merger rate and mass distribution are well studied
LIGO also measure the mass ratio, which is close to 1

Astrophysical black holes can form “dynamically”, i.e. the
stellar binary forms first and exchanges gas such that the
two masses become equal

PBHs form before the binary does

Hence, the PBH mass function must be broad enough to
match the range of chirp/total masses seen by LIGO, but
narrow enough to keep the mass ratio close to unity
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Fresh from Monday

[24] arXiv:1911.12685 [pdf, other]

Primordial black hole merger rates: distributions for multiple LIGO observables
Andrew D. Gow, Christian T. Byrnes, Alex Hall, John A. Peacock

Comments: 23 pages + appendices, 17 figures

Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); General Relativity and Quantum Cosmology (gr-qc)

We have calculated the detectable merger rate of primordial black holes, as a function of the redshift, as well as the binary's
mass ratio, total mass and chirp mass (observables that have not previously been explored in great detail for PBHs). We
consider both the current and design sensitivity of LIGO and five different primordial black hole mass functions, as well as
showing a comparison to a predicted astrophysical black hole merger rate. We show that the empirical preference for nearly
equal-mass binaries in current LIGO/Virgo data can be consistent with a PBH hypothesis once observational selection effects
are taken into account. However, current data do exclude some PBH mass distributions, and future data may be able to rule
out the possibility that all observed BH mergers had a primordial origin.

https://arxiv.org/abs/1911.12685



https://arxiv.org/abs/1911.12685

Following Raidal et al 2079 we consider
a log-normal mass function with “central
mass” mc=20 M, and sigma=0.6

() = ———exp <_1n2<2w;/2mc>>

We match the expected astrophysical
merger rate when about 1% of DM is in
PBHSs - for the assumed mass function.

The intrinsic merger rate estimated by
LIGO assumes a mass function. To avoid
doing so, one should calculate the
observed merger rate

Despite knowing the number density of
binary stars, the “astro” prediction is
very uncertain

The astrophysical line in the plots is
always based on Gerosa et al 2019
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The detection probability
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FIG. 2. Detection probability pget(m1l,m2) at z = 0.2 (left) and z = 0.5 (right). Note that all three scales

are in log-space. The white area indicates pget < 0.1, and the grey triangle indicates the case mo < mq,

chosen by LIGO for their analysis. Gow, CB, Hall, Peacock 2019

For LIGO design (not current) sensitivity, and neglecting spin
Calculated using the gwdet code by Gerosa https://zenodo.org/record/889966#.XeQ_ni17HfY
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The total mass and mass ratio
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Notice how astrophysical black holes have an expected maximum (and minimum) mass
The mass ratio looks like a more promising discriminant between the two scenarios
However, q is also harder to measure
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Masses in the Stellar Graveyard

in Solar Masses
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The component masses and chirp mass vs z
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Varying the PBH mass function width
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The “astro” distribution covers a broader range of total masses than sigma=0.3, but it still
prefers the mass ratio g~1. A monochromatic mass function is completely ruled out.
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a = 3/2 if the power law is created by a scale-invariant power spectrum.
A lower mass cut off is required. We consider 5 and 10 M.
The power-law mass functions are heavily weighted towards lower masses
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Comparing to current data
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We use the LIGO 0102 sensitivity curves. 1/2 a year of data for 10 events.
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Goodness of fit to the total event rate

Test N
fpBH 102 103
Model Expected number Probability Expected number Probability|]
Lognormal (m, =20 Mg, 0 = 0.6) 31 1.2 x 107° 1.6 1.3 x107°
Lognormal (m, =20 Mg, 0 =0.3) 47 6.4 x 10~11 1.9 4.1 x 107°
Power-law (mmin =5 Mg, @ =3/2) 15 0.12 0.96 6.3 x 10~
Power-law (mmin =10 M, @ =3/2) 37 1.5 x 1077 2.0 9.3 x 1076

The observed merger rate depends significantly on the mass function. Unless you use
the same mass functions as LIGO did, you need to calculate the detected merger rate,
not the intrinsic merger rate.

The mass functions require fpgH = few * 10-3

Caveat: The formula from Raidal et al 2019 (the “best” formula to date we are aware of)
assumes that PBHs form binary pairs with their nearest neighbour. When the mass
function is sufficiently broad, light PBHs dominate the number density and artificially
suppress the merger rate of heavier PBHs. This probably explains the difference in the

2 power law results. We can'’t fit the QCD mass function.
15



Goodness of fit to the mass distribution

Test mMi-mso
fpBH 1072 10~*
Model Expe Probability Probability
Lognormal (m. = 20 Mg, 0 = 0.6) 0.15 0.37
Lognormal (m. =20 Mg, 0 =03) <1074 5% 104
Power-law (mmin =5 Mg, a =3/2) 9« 10—4 0.30
Power-law (mpyi, = 10 Mg, a = 3/2) 0.15 045

We crudely include the LIGO error bars by smoothing the detected masses
The lognormal with sigma=0.3 is too narrow and completely ruled out.

Edoardo Vitagliano talk: A flat spectrum in f would probably overproduce heavy BHs
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Lognormal (m. = 20 Mg, o = 0.6)
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The impact of non-Gaussianity

vV \ \/ V

Local non-Gaussianity boosts the PBH fraétion and creates an initial spatial clustering
Suyama & Yokoyama 2019
This (probably) increases the merger rate
It may also rule out the PBH scenario entirely, by generating a large DM-photon isocurvature

perturbation - Tada & Yokoyama 2015, Young & CB 2015
18



Current power spectrum constraints
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PTA constraints may rule out LIGO mass PBHSs, but order one uncertainties are crucial.
Chulmoon Yoo and Cris Germani’s talks. If zero PBHs exist (Ruth Gregory’s talk), the
PBH constraint only improves by a facto1r90f ~3Cole & CB ’17



Clustering and the merger rate
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With non-Gaussianity, the spatial clustering quickly leads to large local PBH densities
We don’t know the merger rate in such cases - binaries are likely to be disrupted
In principle, one millionth of DM in PBHSs could be large enough to explain the LIGO events
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Non-Gaussianity take-away
message

e Beware of invoking non-Gaussianity to “evade”
constraints, since it introduces new challenges

e The PBH abundance, initial clustering, merger rate and
iIsocurvature fraction are all very sensitive to non-
Gaussianity

e Even slow-roll suppressed values of fn. and taun. can rule
out PBHs being the dark matter

21



Smoking gun PBH signatures

* A very high redshift merger would have to be primordial
Koushiappas & Loeb 2017

e If LIGO detects PBHs then early-time mergers will create a
stochastic GW background also detectable by LIGO
Raidal et al 2018

* A sub Chandrasekhar mass compact object. This is motivated
by the QCD transition, which boosts the production of PBHs
by 1-2 orders of magnitude

Bernard Carr’s talk, CB, Hindmarsh, Young & Hawkins 2018

* The low spin may also be a hint - Minxi He and Kaz Kohri talks

22



What if one PBH was detected?
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standard, velocity independent Fy
cross section which gets the right
abundance, and Mpgn>10-6 Msun. _
And annihilation channel into L0t ﬁ%‘
gamma rays. © % o
If feeH<1, then another DM 10°- i,
component is inevitable ¥y
Steep and high density profiles form 107 g
around PBHs (density~ r-9/4). WIMPs +
would rapidly annihilate in them. 10 10 10t 103 107
In contrast to ultracompact oy [kpe/h]

minihalos without a PBH seed. Adamek, CB, Gosenca & Hotchkiss 2019;
Gosenca et al ’17, Delos et al ‘17

++++++++

Lacki & Beacom 2010; Eroshenko 2016;
A detection of WIMPs or PBHs may Boucenna, Kihnel, Ohlsson & Visinelli 2017
effectively rule out the existence of The 3 papers above all find different profiles.
the other We agree with Eroshenko and derive the profile

analytically and with the first 3D simulations
23



Future constraints
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If PBHs form from large amplitude perturbations, we will either detect PBHs,
or else (almost) rule out their existence at late times



Summary

It remains possible that all the LIGO black holes were primordial
There are many ways to test this.

The PBH mass function cannot be too broad or too narrow. We will
carry out a full likelihood fit to the LIGO data.

The merger rate is highly sensitive to non-Gaussianity

Results cannot be trusted in the case of a (locally) large PBH mass
fraction and/or a very broad mass function

Be wary of invoking non-Gaussianity to evade constraints

Providing PBHs formed from large primordial overdensities, in ~ 20
years we should be able to rule in or out the present existence of PBHs

25
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Ultimate constraints from PBHs
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Early matter domination dramatically tightens constraints
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PBH formation comments

e The formation rate is exponentially sensitive to the amplitude of the power spectrum,
and the collapse threshold

* Inflationary models posit an inflection point (ultra-slow-roll inflation) or other feature

e The power spectrum can’t grow faster than about k4 (in canonical single-field
inflation), impacts the constraints. Byrnes, Cole & Patil ’18; Carrilho, Malik & Mulryne
'19

* PBHs are very rare - very sensitive to non-Gaussianity

* The formation criteria depends on the density profile. Many spherically symmetric
simulations exist, e.q. Niemeyer & Jedamjik, Musco & Miller, Harada ++, Nakama ++...

Extensive recent analytic work has been done to relate the power spectrum to PBH
formation rate at, but (at least) an order unity uncertainty remains (= tens of orders of
magnitude in terms of the formation rate). Germani & Musco '17, Yoo et al ‘17,
Kawasaki & Nakatsuka ‘19, de Luca et al ‘19, Young et al ‘19, Young ‘19, Kalaja et al
‘19

29



Sub-solar mass GW searches

GW searches have been made, with no detections so far
These are below the Chandrasekhar mass, hence potential proof of a primordial

origin
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GW spectrum
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CB, Cole & Patil 2018
‘ See also Kohri & Terada 18
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Red line - delta function scalar power spectrum
Black line - k4 scalar power spectrum with cut off
Surprisingly, the delta function scalar power spectrum has a broader GW spectrum
This is unphysical and a warning against using delta function power spectra
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“Realistic” model with a smooth potential
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The red line is a full result from a smooth potential (Germani & Prokopec 17),
while the red line is based on a piecewise analytic calculation.
Calculated using CPPTransport created by David Seery 2016
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The QCD transition

As the Universe cools below 1 GeV (t~10-6 s), strong interactions
confine quarks into hadrons and the equation-of-state parameter w
decreases. Crawford & Schramm 82, Jedamzik 98
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The resultant PBH mass function
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For the left plot, approx 10% of DM is made up of ~ solar mass PBHs and

0.1% lies in the LIGO mass range - enough to get the merger rate LIGO detects
Sasaki et al + Haimoud et al + Chen & Huang + Raidal et al + many more
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Varying the primordial perturbations

If the primordial power spectrum is not scale invariant on the relevant
scales then the mass function changes, but a peak remains
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Power spectrum constraints are weakened by a factor ~ 2
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In order to generate the same number of PBHs when taking the non-linear (NL) relation into
account, compared to the normal/wrong case that you use the linear relation, the power
spectrum amplitude needs to increase by the ratio
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For the typical value of delta_c~0.55, power spectrum constraints are weakened by a factor of 2
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Hints for PBHSs

PBHs might not exist, but there are some hints
Clesse & Garcia-Bellido 2017

The “unexpected” masses and low spins of those LIGO/Virgo detected
created an explosion of interest.
“Did LIGO detect dark matter” Bird et al;

see also Clesse & Garcia-Bellido; Sasaki et al: all 2016

The existence of supermassive black holes in almost all galaxies, with
unknown formation process. However, creating a heavy PBH seed
requires non-Gaussian initial conditions to evade CMB mu-distortion
constraints. Carr, Nakama & Silk 2017

Correlation between the cosmic infrared background and unresolved
cosmic X-ray background. Kashlinsky et al Astro2020 white paper
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Constraints on the LIGO mass range
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Figure 3. The constraints on the fraction of DM in PBHs, fppu, from non-observation of the
stochastic GW background for the monochromatic (left panel) and lognormal (right panel) PBH
mass functions. The black solid line (O1) shows the constraint from the first LIGO observing run and
the grey dashed lines (O2, O5) present the projected sensitivities of next phases of LIGO. The yellow
and purple regions are excluded by the microlensing results from EROS [71] and MACHO (M) [72],
respectively. The dark blue, orange, red and green regions on the right are excluded by Planck
data [73], survival of stars in Segue I (Seg I) [74] and Eridanus II (Eri II) [75], and the distribution of
wide binaries (WB) [56], respectively. On the right panel the thin dotted lines show, for comparison,
the constraints calculated for the lognormal mass function from the ones in the monochromatic case
by the method of Ref. [15] which has been used for all other constraints. The red lines show the values
of fppu for which the merger rate in the LIGO sensitivity range today is 12 Gpc™ ?yr~! (lower) and
213 Gpe ®yr~! (upper).

Raidal et al 2018
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Black hole spin
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Negligible spin is expected for PBHs formed during radiation domination.

Unlike astrophysical BHs, PBHs do not undergo much collapse before formation.
Chiba & Yokoyama 2017; Belczynski et al. 2017; Mirbabyi et al 2019; De Luca et
al 2019; Fernandez & Profumo 2019; He & Suyama 2019



