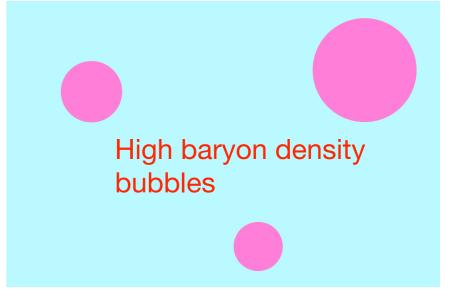
Focus Week on Primordial Black Holes @Kavli-IPMU Dec. 2-6 2019

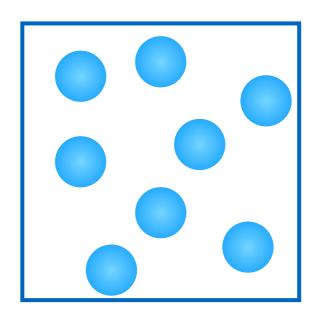
Particle Physics Models for Primordial Black Hole Formation

Masahiro Kawasaki (ICRR and Kavli-IPMU, University of Tokyo)

1. Introduction

- Primordial Black Holes (PBHs)
 Zeldovich-Novikov (1967)
 Hawking (1971)
- PBHs have attracted much attention because they could
 - ightharpoonup Give a significant contribution to dark matter $\sim 10^{17-22} {
 m g}$
 - ightharpoonup Account for GW events detected by LIGO-Virgo $\sim 30 M_{\odot}$
 - ightharpoonup Account for seeds of supermassive BHs $\sim 10^{4-5} M_{\odot}$
- PBHs can be formed by gravitational collapse of over-density regions with Hubble radius in the early universe

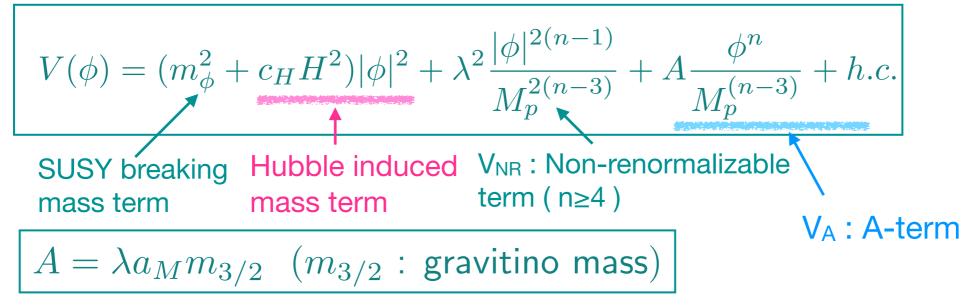

 Such over-density regions may be produced by inflation but large density fluctuations δ with O(0.01) are required


- It is not easy to build such inflation models
- Many sophisticated models are proposed
- We present two models
- PBH formation by Affleck-Dine mechanism
 - High-baryon bubbles are formed
 - LIGO PBHs or SMBHs
 - Evades constrains from pulsar timing and CMB mu-distortion
- PBH formation from non-topological solitons
 - Oscillons (or Q-balls) produce large density fluctuations

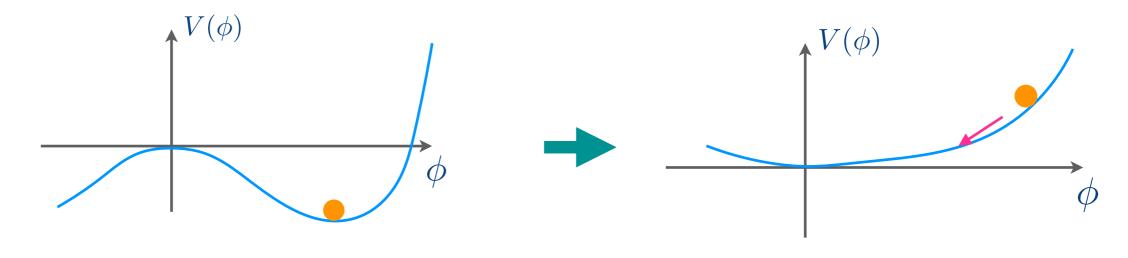
Cotner, Kusenko (2016) Cotner, Kusenko, Takhistov (2018) Cotner, MK, Kusenko, Sonomoto, Takhistov (2019) Garcia-Belliido Linde Wands (1996) MK, Sugiyama, Yanagida (1998) MK Kusenko Tada Yanagida (2016)

.

Dolgov, Silk (1993) Dogov MK Kevlishvili (2009) Hsegawa, MK (2018)

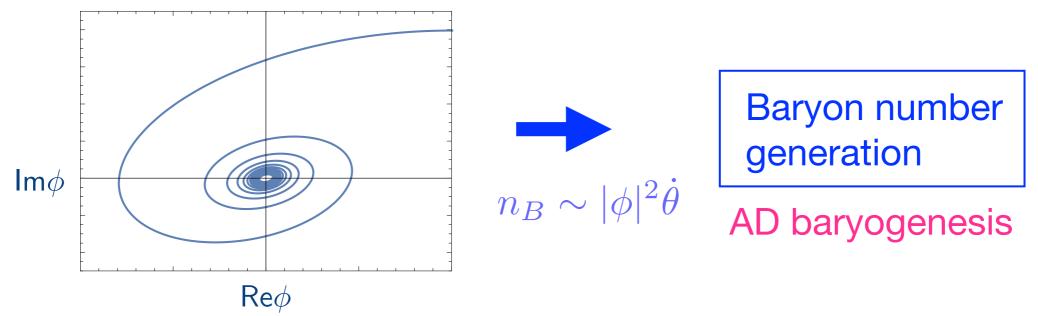


Contents


- 1. Introduction
- 2. PBH formation from Affleck-Dine mechanism
- 3. PBH formation from non-topological solitons
- 4. Conclusion

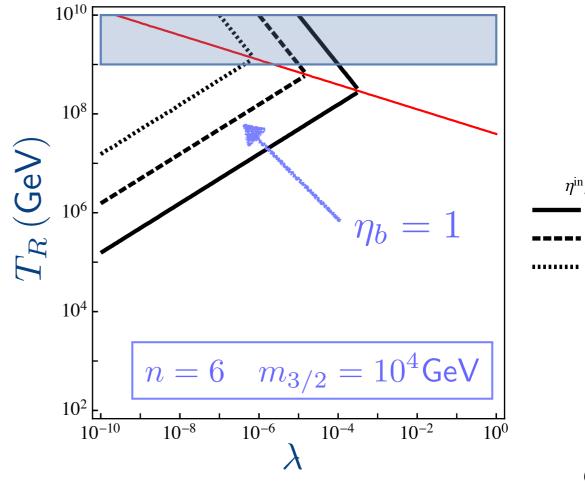
2.1 PBH formation in Affleck-Dine mechanism

- Affleck-Dine mechanism
 - Flat directions in scalar potential of MSSM $\ni (\tilde{q}, \ \tilde{\ell}, \ H)$
- One of flat directions = AD field φ



- During inflation φ has a large value if c_H <0
- After inflation, when $m_{\phi} \simeq H$ ϕ starts to oscillate

2.1 PBH formation in Affleck-Dine baryogenesis


AD field is kicked in phase direction due to A-term

AD mechanism can generate baryon number efficiently

$$\eta_b = rac{n_b}{s} \sim rac{T_R m_{3/2}}{H_{
m osc}^2} \left(rac{\phi_{
m osc}}{M_p}
ight)^2$$

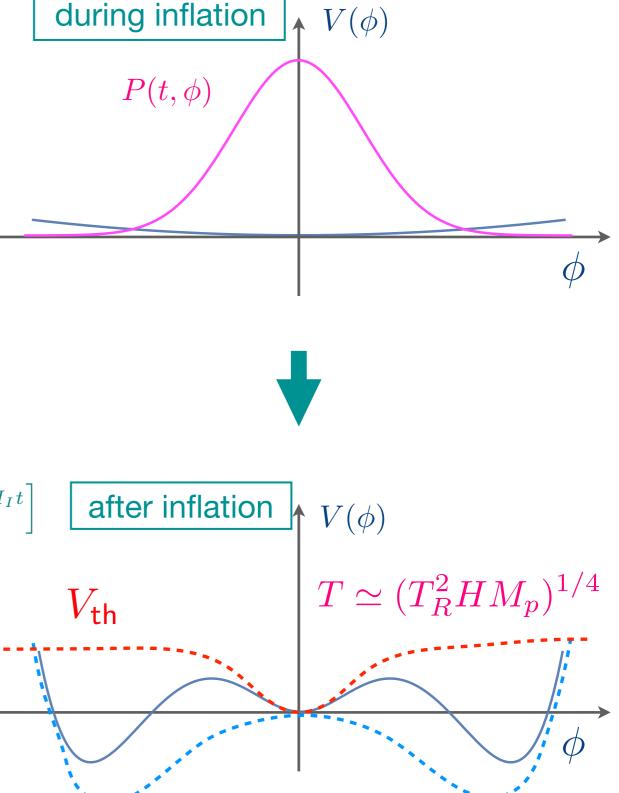
large baryon asymmetry
 η_b ~1 is realized

- Two unconventional assumptions:
 - Hubble mass is positive during inflation and becomes negative after inflation
 - Thermal mass overcomes Hubble mass after inflation
- Potential for AD field

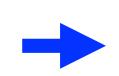
$$V = \left\{ egin{array}{ll} (m_\phi^2 + c_I H^2) |\phi|^2 + V_{
m NR} + V_{
m A} & ext{(during inflation)} \\ (m_\phi^2 - c_M H^2) |\phi|^2 + V_{
m NR} + V_{
m A} + V_{
m T} & ext{(after inflation)} \end{array}
ight.$$
 $V_T = \left\{ egin{array}{ll} c_1 T^2 |\phi|^2 & |\phi| \lesssim T \\ c_2 T^4 \ln(|\phi|^2/T^2) & |\phi| \gtrsim T \end{array}
ight.$

- During inflation
 - c_H > 0 (positive Hubble mass)
 - ▶ Flat potential c_H << 1</p>
- Quantum fluctuations of AD field
 - Gaussian distribution

$$P(t,\phi) = \frac{1}{2\pi\sigma(t)^2} \exp\left[-\frac{|\phi|^2}{2\sigma(t)^2}\right]$$
$$\sigma^2 = \left(\frac{H_I}{2\pi}\right)^2 \left(\frac{2}{3c_H}\right) \left[1 - e^{-(2c_H/3)H_I t}\right]$$


- During inflation
 - c_H > 0 (positive Hubble mass)
 - ▶ Flat potential c_H << 1</p>
- Quantum fluctuations of AD field
 - Gaussian distribution

$$P(t,\phi) = \frac{1}{2\pi\sigma(t)^2} \exp\left[-\frac{|\phi|^2}{2\sigma(t)^2}\right]$$


$$\sigma^2 = \left(\frac{H_I}{2\pi}\right)^2 \left(\frac{2}{3c_H}\right) \left[1 - e^{-(2c_H/3)H_I t}\right]$$

- After inflation

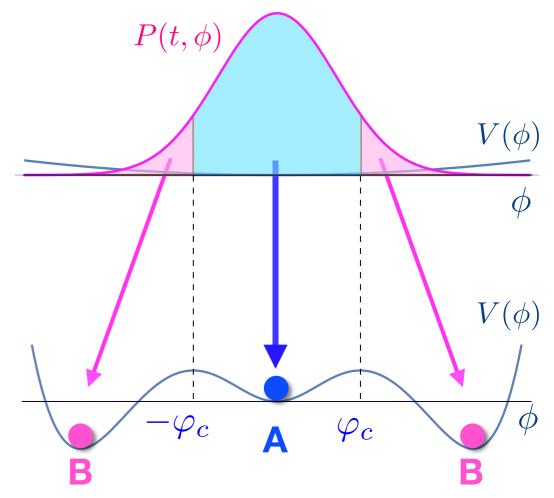
 - Thermal effect due to inflaton decay

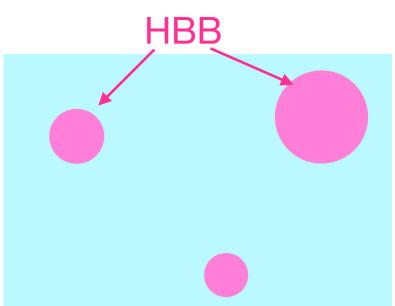
V(T=0)

multi-vacua

$$\Delta \equiv \frac{T_R^2 M_p}{H_I^3} \gtrsim 1$$

• Regions with $|\phi| < \varphi_c$ go to A-vacuum


$$\varphi_c = \Delta^{1/2} H_I \qquad \Delta = \frac{T_R^2 M_p}{H^3}$$


- no baryon generation
- Regions with $|\phi| > \varphi_c$ go to B-vacuum
 - baryon generation takes place (same way as the standard AD)
 - Efficient AD baryogenesis
 - Formation of high-baryon bubble
- Fraction of volume which will go to B-vacuum

$$f_B(N) = \int_{\varphi > \varphi_c} d\phi \, P(N, \phi) \qquad N \propto \ln a$$

Formation rate of HBB with scale k(N)=k* exp(N-N*)

$$\beta_B(N) = \frac{d}{dN} f_B(N)$$

- After QCD phase transition quarks non-relativistic nucleons
- Density contrast between inside and outside of HBBs

$$\delta = \frac{\rho^{\rm in} - \rho^{\rm out}}{\rho^{\rm out}} \simeq 0.3 \eta_b^{\rm in} \left(\frac{T}{200 {\rm MeV}}\right)^{-1}$$

$$\Rightarrow$$
 $\delta \gtrsim \delta_c$ for $T \lesssim T_c \simeq 200 \eta_b^{\rm in} {\rm MeV}$

When HBBs enter the horizon after T_c

PBH mass has a lower cutoff

$$M_c \simeq 18 M_{\odot}$$
 for $\eta_b^{\rm in} \simeq 1$ $M_c \simeq 14 M_{\odot} (\eta_b^{\rm in})^{-2}$ for $\eta_b^{\rm in} \lesssim 1$

$$M_c \simeq 14 M_{\odot} (\eta_b^{\rm in})^{-2}$$
 for $\eta_b^{\rm in} \lesssim 1$

HBB

horizon

collapse

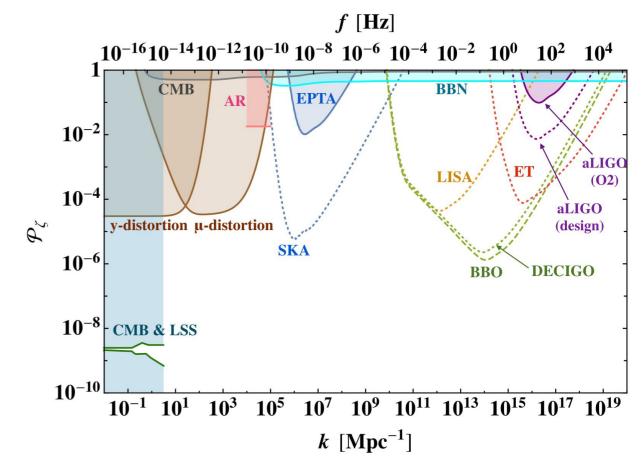
PBH mass fraction at formation

$$\beta_{\text{PBH}}(M_{\text{PBH}}) = \beta_B(M_{\text{PBH}})\theta(M_{\text{PBH}} - M_c)$$

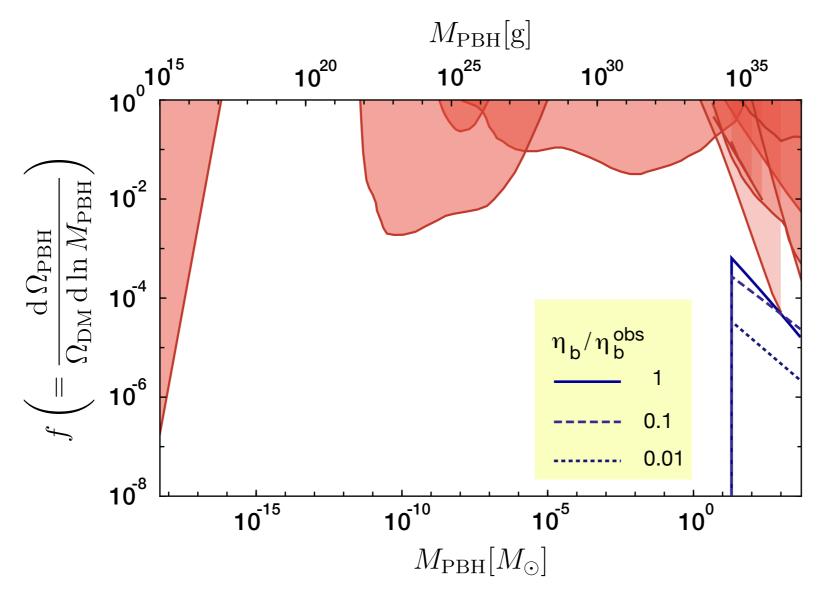
This explains LIGO events $\Omega_{PBH}/\Omega_c \sim 10^{-3} - 10^{-2}$

$$\Omega_{\rm PBH}/\Omega_{c} \sim 10^{-3} - 10^{-2}$$

Constraints on Gaussian fluctuations


- Gaussian density fluctuations produced by inflation suffer from stringent constraints
 - from CMB spectral distortion which excludes

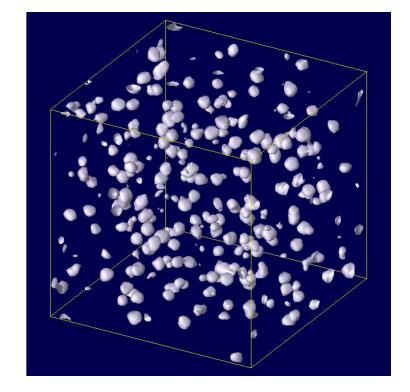
$$400M_{\odot} \lesssim M_{\rm PBH} \lesssim 10^{13} M_{\odot}$$


from pulsar timing array exp. which excludes

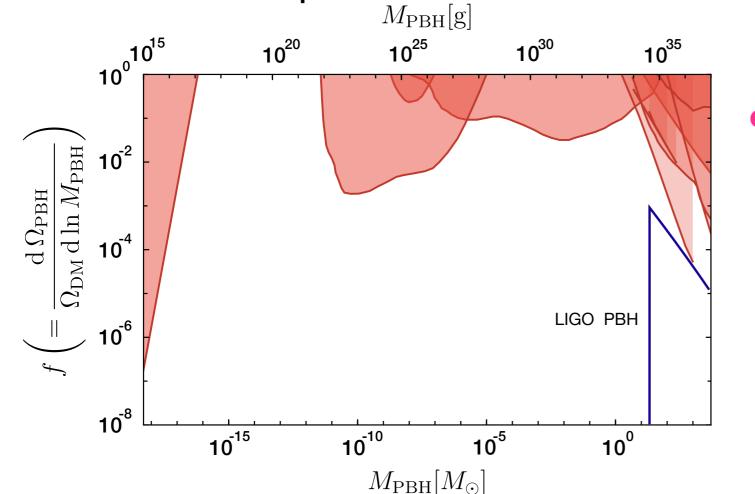
$$0.1 M_{\odot} \lesssim M_{\mathrm{PBH}} \lesssim 10 M_{\odot}$$

- Difficulty to explain LIGO events
- SMB seeds cannot be produced
- HBBs produced Affleck-Dine mechanism evades those constraints

Inomata, Nakama (2019)



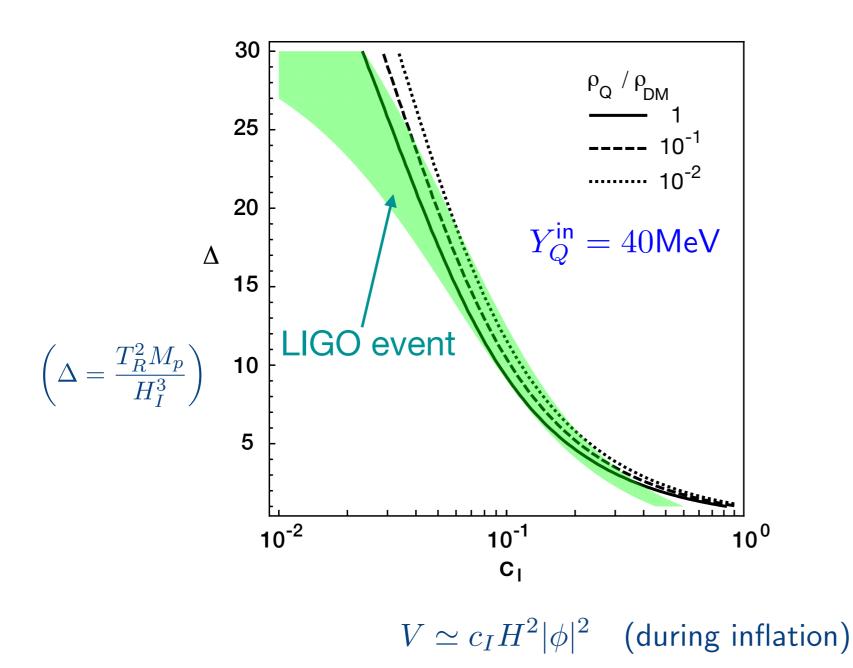
- HBBs with M < Mc contribute to baryon asym of the universe
- inhomogeneous baryons spoil success of standard BBN


$$\longrightarrow \eta_b^{\rm HBB} \ll \eta_b^{\rm obs}$$

This can be satisfied by considering Q-ball formation

- AD mechanism also produces Q-balls
- If Q-balls are stable they carry produced baryon number
- High -baryon bubbles
 Q-ball bubbles
 - Q-balls are non-relativistic
- PBHs are produced from Q-ball bubbles

Hiramatsu MK Takahashi (2010)

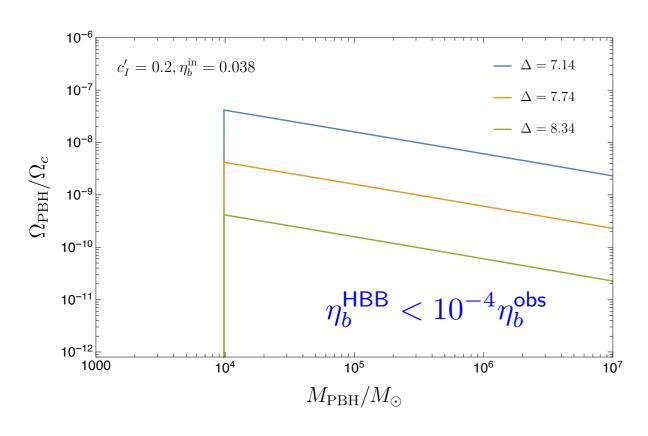


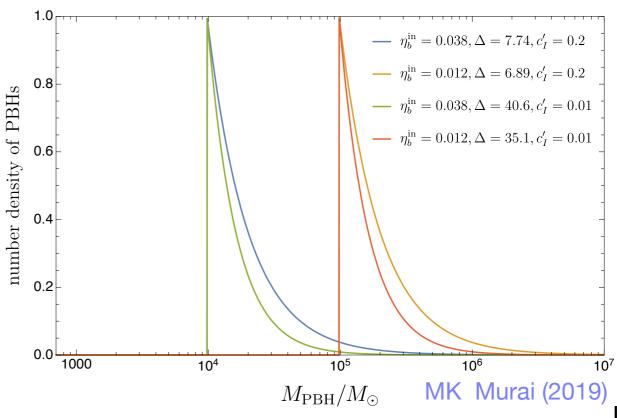
PBH mass has a lower cutoff

$$M_c \simeq 18 M_{\odot} \left(rac{Y_Q^{
m in}}{40 {
m MeV}}
ight)^{-2}$$

$$Y_Q^{\rm in} = \rho_Q/s \simeq m_{3/2} \eta_b^{\rm in}$$

- Q-balls in HBBs with M < Mc contribute to DM
- This scenario can explain both LIGO events and DM simultaneously

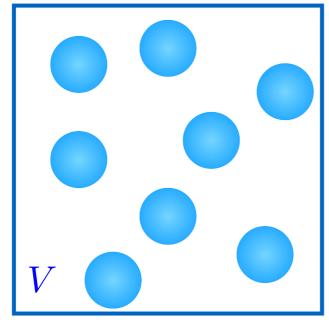

15

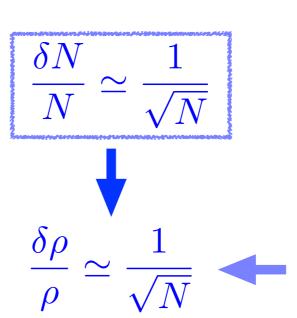

2.4 Formation of supermassive black holes (SMBHs)

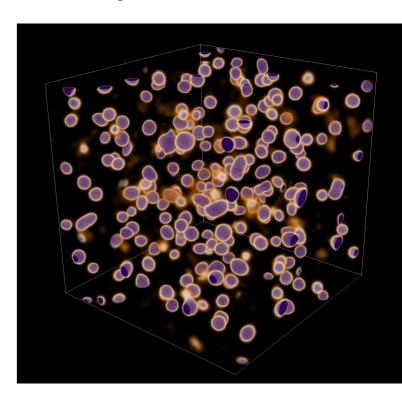
SMBHs are observed in the center of galaxies

$$M_{\rm SMBH} \simeq 10^6 - 10^{9.5} \, M_{\odot}$$

- Seed BHs with mass $10^{4-5}M_{\odot}$ already existed at z > 10
- Seed BHs are PBHs?
 - But stringent constraint from CMB spectral distortion
- AD mechanism can produce such seed BHs






3. PBHs from non-topological solitons

Cotner, Kusenko (2016) Cotner, Kusenko, Takhistov (2018) Cotner, Kusenko, Sasaki, Takhistov (2019)

- Oscillon and Q-ball: non-topological solitons in scalar field theory
- Formed during oscillation of a scalar field in the early universe
- Suppose N solitons in a volume V
 - If N follows Poisson statistics

 $\frac{s_{\rho}}{\rho} \simeq \frac{1}{\sqrt{N}}$ large for small N

• After solitons dominated the universe $\delta
ho/
ho$ increases as a

3.1 PBH abundance

- Suppose solitons dominate Universe (e.g. scalar field = inflation)
 - PBH fraction (PBH formation matter dominated era)

$$eta(M) = 0.56\,\sigma(M)^5 \left(rac{M}{M_H}
ight)^{10/3}$$
 Harada

Harada, Yoo, K. Kohri, Nakao, Jhingan (2016)

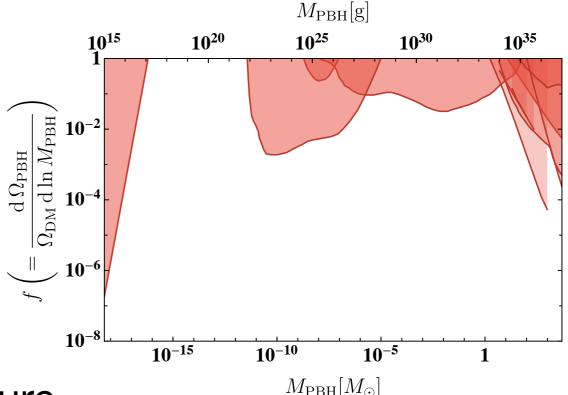
 $\sigma(M)^2$: variance of density fluctuation at scale $R \ \Leftarrow \ M = \frac{4\pi}{3} \rho R^3$

 Let us consider fraction of PBHs with the horizon scale at oscillon (Q-ball) formation

$$\beta(M_H) = 0.56 \,\sigma_f(M_H)^5$$

The present PBH abundance

$$f_{\mathsf{PBH}}(M_H) = rac{\Omega_{\mathsf{PBH}}}{\Omega_{\mathsf{DM}}} = rac{a_{\mathsf{eq}}}{a_R} \, eta(M) \sim rac{T_R}{T_{\mathsf{eq}}} \, eta(M)$$
 $\sim \left(rac{\sigma(M_H)}{10^{-2}}
ight)^5 \left(rac{T_R}{10^3 \mathsf{GeV}}
ight)$


 T_R : reheating temp.

 $T_{\rm eq}$: temp. at matter-radiation equality

3.1 PBH abundance

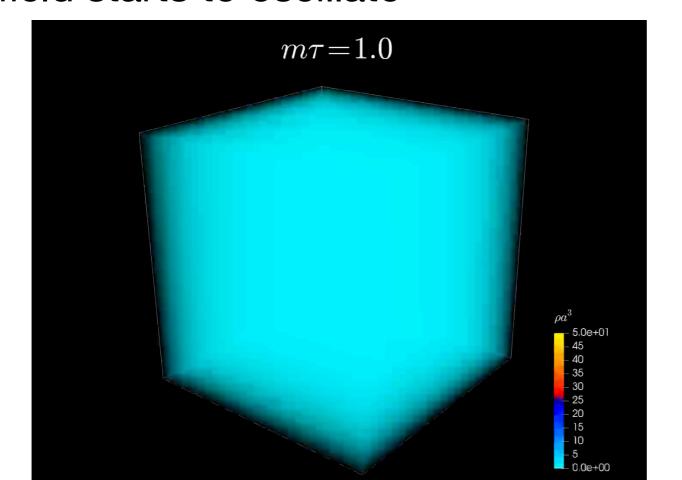
PBH mass

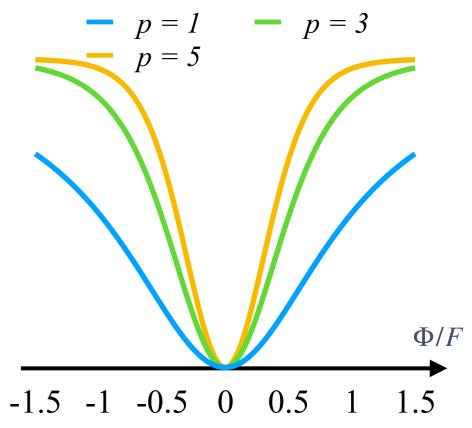
PBH mass
$$M_{\text{PBH}} = \frac{4\pi}{3} \rho H_f^3 \simeq 10^{17} \mathrm{g} \left(\frac{H_f}{10^{-3} \text{GeV}} \right)^{-1}$$

- Upper bound of reheating temperature
 - collapse over-density region $\sigma(t_{\text{coll}}) = \sigma(t_f)(a_{\text{coll}}/a_f) \sim 1$
 - Reheating must take place after collapse

$$a(t_R) \gtrsim a(t_{\text{coll}}) \longrightarrow H_R = H(t_R) \lesssim H(t_{\text{coll}}) = H_f(a_{\text{coll}}/a_f)^{-3/2} = H_f \sigma_f^{3/2}$$

$$T_R \lesssim \sqrt{3H_f \sigma_f^{3/2} M_p} \sim 10^6 \text{GeV} \left(\frac{\sigma_f}{10^{-2}} \right)^{3/4} \left(\frac{H_f}{10^{-3} \text{GeV}} \right)^{1/2}$$


Dark matter PBHs with smaller mass


3.2 PBHs from Oscillons

- Oscillons are non-topological solitons in a real scalar field theory
- Oscilon solution exists if the potential is shallower than quadratic
 - e.g. potential for pure natural inflation Nomura Watari Yamazaki (2017)

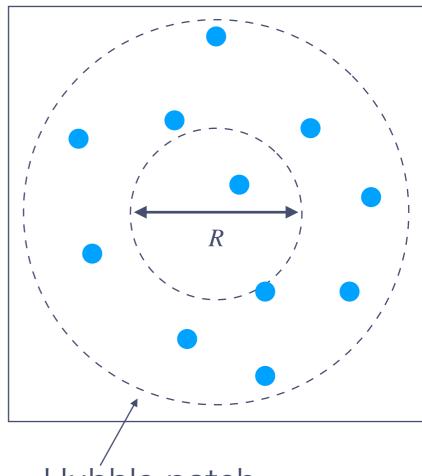
$$V(\phi) = \frac{m^2 F^2}{2p} \left[1 - \left(1 + \frac{\phi^2}{F^2} \right)^{-p} \right]$$

 Oscilons are formed when the scalar field starts to oscillate

Sonomoto (2019)

3.3 Lattice simulation of oscillon

- We estimate the variance $\sigma(R)$ by performing lattice simulations
- Simulation setup
 - ≥ 2-dimensional simulation (grid 1023²)
 - calculate the energy in sub-horizon scale R
 - 500 realizations
 - potential

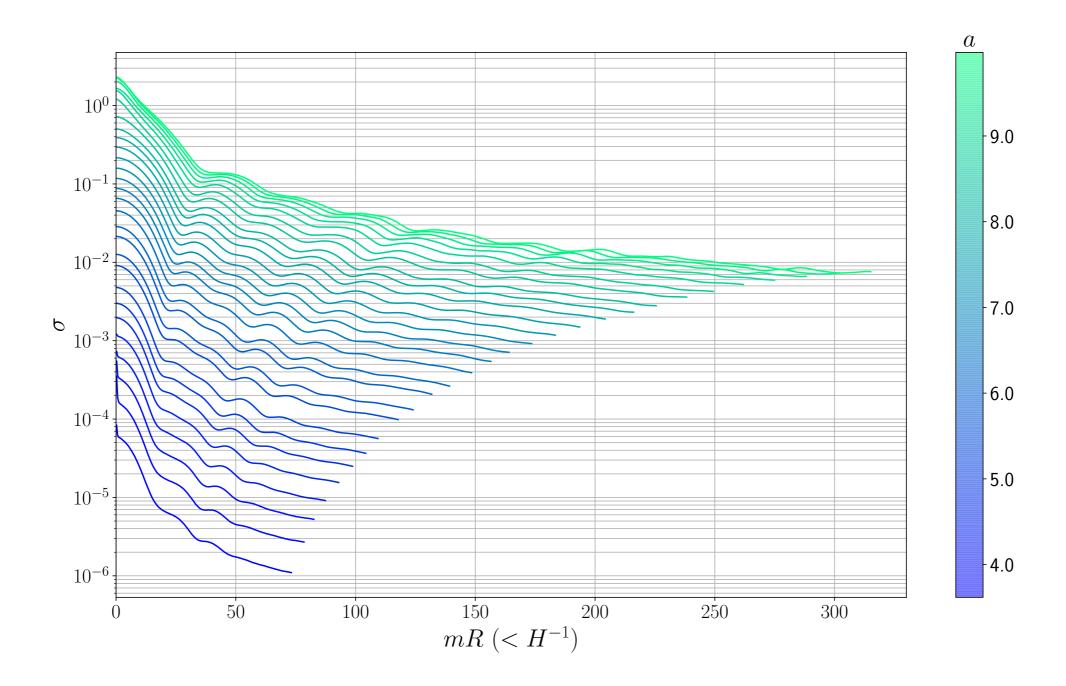

$$V(\phi) = \frac{m^2 F^2}{2p} \left[1 - \left(1 + \frac{\phi^2}{F^2} \right)^{-p} \right]$$

$$p = 4 \qquad F/M_p = 0.09$$

Pure natural inflation model

Nomura Watari Yamazaki (2017)

Simulation box



Hubble patch at simulation end (formation time)

3.4 Result of lattice simulation

The energy variance of the horizon scale at the oscillon formation time

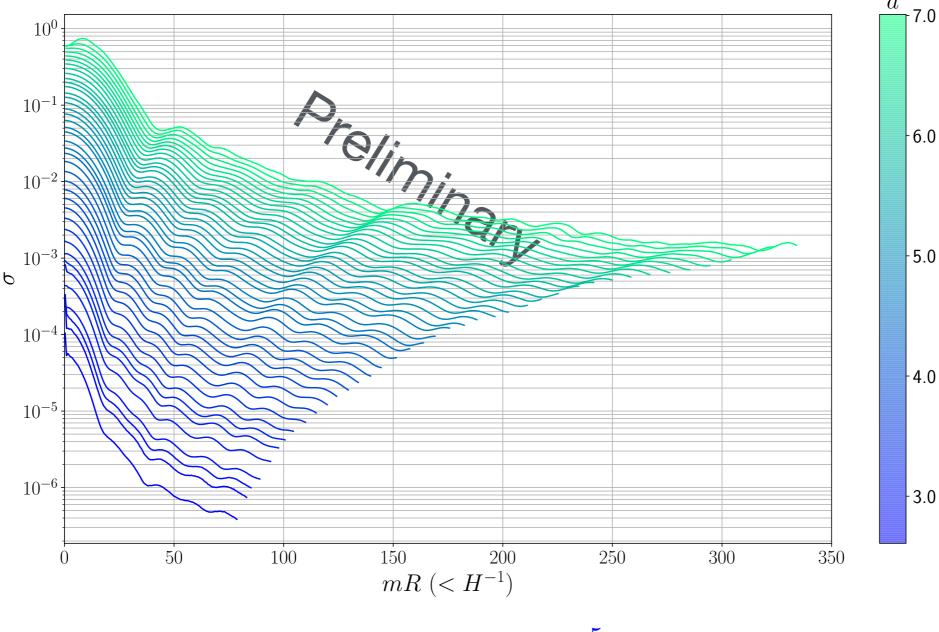
$$\sigma_f^{2D} = \sigma(H_f^{-1}) \simeq 10^{-2}$$

3.5 PBH formation from oscillons

We have estimated energy variance in 2D simulations

$$\sigma_f^{2D} = \sigma(H_f^{-1}) \simeq 10^{-2}$$

- If $\sigma_f^{3D} \sim \sigma_f^{2D}$ PBHs can be all dark matter of the universe
- If the number of oscillons follows Poisson statistics, 3D variance would be smaller
 - Naive estimation $N \propto V \Rightarrow N^{3D} = (N^{2D})^{3/2}$


PBH abundance

$$f_{\rm PBH}(M_H) = rac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} \sim 0.01 \left(rac{\sigma_f^{2D}}{10^{-2}}
ight)^{15/2} \left(rac{T_R}{10^6 {
m GeV}}
ight)$$

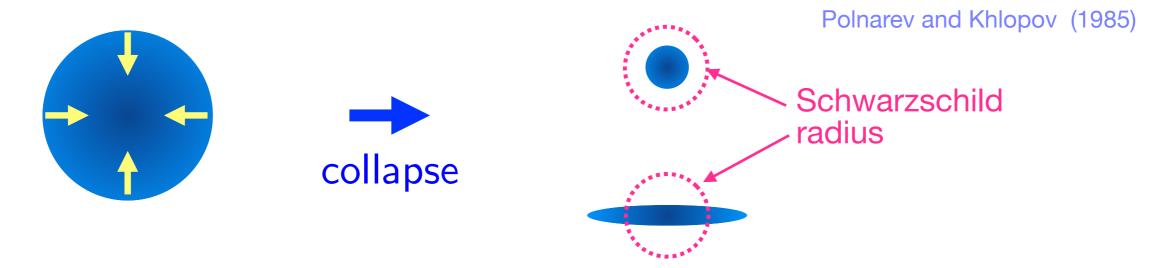
There may be uncertainty in estimation of 3D variance

3.5 PBH formation from oscillons

• 3D simulation $\sigma_f^{3D} = \sigma(H_f^{-1}) \simeq 2 \times 10^{-3}$

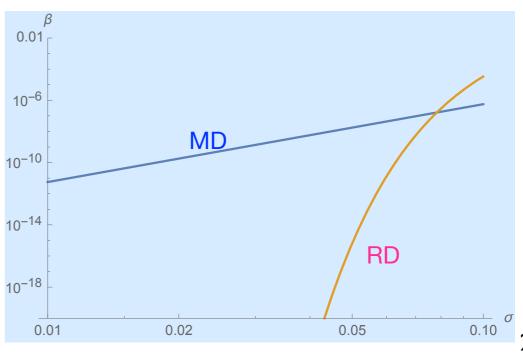
$$f_{\rm PBH}(M_H) \sim 0.6 \left(rac{\sigma^{3D}(M_H)}{2 imes 10^{-3}}
ight)^5 \left(rac{T_R}{10^6 {
m GeV}}
ight)$$

PBHs can account for a significant fraction of dark matter


7. Conclusion

- Affleck-Dine mechanism produces HBBs which form PBHs with > O(10) solar mass
- The model can account for LIGO events or Supermassive BHs evading the constraints from CMB spectral distortion and pulsar timing
- Lattice simulations suggest that non-topological solitons could produce density fluctuations which collapse into PBHs

Backup slides

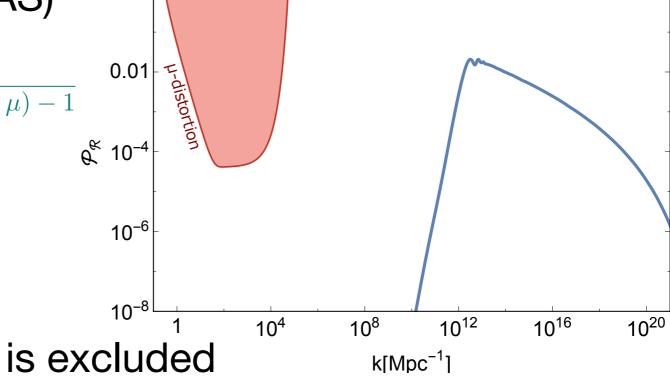

2.2 PBH formation in matter dominated era

- Density perturbations grow and gravitationally collapse in MD
 - PBHs are more easily produced?
 - Collapse should be spherical to form a PBH

Recent analysis
 Harada, Yoo, K. Kohri, Nakao, Jhingan (2016)

$$\beta(M) = 0.056\sigma(M)^5 \left(\frac{M}{M_H}\right)^{-2}$$

27


3.2 Constraint from CMB spectral distortion

- Photon diffusion erases small-scale curvature perturbations
 - Silk damping $k_d \sim 4 \times 10^{-6} {\rm Mpc}^{-1} (1+z)^{3/2}$
- Diffusion injects energy of perturbations into background
 - Planck distribution is re-established at $z \gtrsim 2 \times 10^6$ by double Compton scattering ($e^- + \gamma \rightarrow e^- + \gamma + \gamma$)
 - lacktriangle CMB spectral distortion (mu distortion) at $z\lesssim 2\times 10^6$
- CMB observation (COBE/FIRAS)

$$|\mu| < 9 imes 10^{-5}$$
 $f(p) = \frac{1}{\exp(p/T + \mu) - 1}$ 0.01 Stringent constraint on

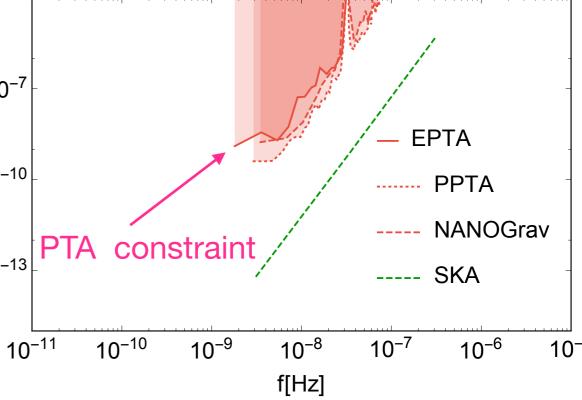
- Stringent constraint on curvature perturbations
- PBH with mass

$$400 M_{\odot} \lesssim M_{\mathrm{PBH}} \lesssim 10^{13} M_{\odot}$$

3.3 Constraint from pulsar timing

 Large curvature perturbations required for PBH induce tensor perturbations (gravitational waves) through 2nd order effect

Saito Yokoyama (2009) Bugaev Kulimai (2010) $h_{\vec{k}}'' + 2\mathcal{H}h_{\vec{k}}' + k^2h_{\vec{k}} = \mathcal{S}(\vec{k},t) \qquad h_k: \text{tensor perturbation}$


$$\longrightarrow \Omega_{\text{GW}} h^2 \sim 10^{-8} (\mathcal{P}_{\zeta}/10^{-2})^2$$

$$f_{
m GW} \sim 2 imes 10^{-9} {
m Hz} \left(rac{\gamma}{0.2}
ight)^{1/2} \left(rac{M_{
m PBH}}{M_{\odot}}
ight)^{-1/2} {
m Tr}_{
m G} = 10^{-10} {
m Hz}$$

- Pulsar timing array experiments 10-13
 already give a stringent constraint
- PBH with mass

$$0.1 M_{\odot} \lesssim M_{\mathrm{PBH}} \lesssim 10 M_{\odot}$$

is excluded

5.1 Hawking radiation

Hawing radiation

$$T_{\rm H} = \frac{1}{8\pi G M_{\rm PBH}} \sim 10^{-7} {\rm K} \left(\frac{M_{\rm PBH}}{M_{\odot}}\right)^{-1} \sim 1 {\rm TeV} \left(\frac{M_{\rm PBH}}{10^{10} {\rm g}}\right)^{-1}$$

$$\frac{dM_{\rm PBH}}{dt} \simeq -5 \times 10^{5} {\rm g \ s^{-1}} f(M_{\rm PBH}) \left(\frac{M_{\rm PBH}}{10^{10} {\rm g}}\right)^{-2} \\ \tau \simeq 6 \times 10^{3} {\rm s} f^{-1} (M_{\rm PBH}) \left(\frac{M_{\rm PBH}}{10^{10} {\rm g}}\right)^{3} \\ f(M_{\rm PBH}) \simeq 1 - 15$$

- PBHs with mass > 10¹⁵ g survive today
- ▶ PBHs with mass ~ 10¹⁵ g are evaporating today
 - extra-galactic gamma rays
- ▶ PBHs with mass < 10¹⁵ g have evaporated by now</p>
 - effects on processes in the early universe (BBN, CMB,....)