

Formation Threshold of Rotating Primordial Black Holes

Speaker: Minxi He (RESCEU, the University of Tokyo) Collaborator: Teruaki Suyama (Tokyo Institute of Technology) Based on: Phys. Rev. D100 (2019) 063520 [arXiv:1906.10987]

Contents

- Motivation
- Non-rotating primordial black holes (PBH) formation revisit
- Role of angular momentum
- Formation criterion of PBHs with angular momentum

Motivation

$$\chi_{\text{eff}} = \frac{(m_1 \vec{\chi}_1 + m_2 \vec{\chi}_2) \cdot \hat{L}_N}{M}$$

B. P. Abbott et al, arXiv:1811.12907

The whole picture of spin of PBHs

Press-Schechter formalism (here we ignore the critical phenomena)

Spin distribution
$$W(J,t) = \int dJ' \ Q(J,J',t) \int_{\delta_{\rm th}(J')} \frac{P(\delta_M,J')d\delta_M}{(M-M)}$$

The probability distribution of δ_M and J' of the overdense region The evolution of the spin of PBHs at time t after formation The threshold beyond which the PBH forms with initial angular momentum J'

J. C. Niemeyer and K. Jedamzik, Phys. Rev. Lett., 80:5481-5484, 1998
J. Yokoyama, Phys. Rev., D58:107502, 1998
T. Chiba, and S. Yokoyama, PTEP, 2017(8):083E01, 2017
M. Mirbabayi, A. Gruzinov, and J. Norea, arXiv:1901.05963

V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, JCAP 1905, 018 (2019)

The whole picture of spin of PBHs

Press-Schechter formalism (here we ignore the critical phenomena)

Spin distribution
$$W(J,t) = \int dJ' \ Q(J,J',t) \int_{\delta_{\rm th}(J')} P(\delta_M,J') d\delta_M$$

The probability distribution of δ_M and J' of the overdense region The evolution of the spin of PBHs at time t after formation

The threshold beyond which the PBH forms with initial angular momentum J'

- J. C. Niemeyer and K. Jedamzik, Phys. Rev. Lett., 80:5481-5484, 1998
- J. Yokoyama, Phys. Rev., D58:107502, 1998
- T. Chiba, and S. Yokoyama, PTEP, 2017(8):083E01, 2017
- M. Mirbabayi, A. Gruzinov, and J. Norea, arXiv:1901.05963
- V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, JCAP 1905, 018 (2019)

Non-rotating PBH formation

- Radiation-dominated epoch, $c_s^2 = w = 1/3$, $ho \propto a^{-4}$
- Jeans instability = threshold δ_{th}

B. J. Carr, Astrophys. J. 201:1-19, 1975

The physical process

- 1. The large curvature perturbation is on super-horizon scale
- 2. After inflation ends, the large peak re-enters the horizon

- 3. The overdense region begins to evolve as a closed FLRW and reaches a maximum expansion
- 4. If the maximum size of the region is larger than Jeans radius, it experiences gravitational collapse to form a PBH
- B. J. Carr, Astrophys. J. 201:1-19, 1975

B. J. Carr, Astrophys. J. 201:1-19, 1975

Jeans instability

• Newtonian Jeans length:

sound speed × free-fall time

$$R_J = \frac{c_s}{\sqrt{G\bar{\rho}_{\max}(1+\delta_{\max})}} \simeq c_s a_{\max}$$

• Size at maximum expansion:

$$\frac{a_{\rm max}}{a_{\rm hc}} H_{\rm hc}^{-1}$$

B. J. Carr, Astrophys. J. 201:1-19, 1975

Jeans instability

• Newtonian Jeans length:

sound speed × free-fall time

$$R_J = \frac{c_s}{\sqrt{G\bar{\rho}_{\max}(1+\delta_{\max})}} \simeq c_s a_{\max}$$

• Size at maximum expansion:

Refined relativistic analysis

- Go beyond the Newtonian Jeans length
- Full relativistic calculation of the propagation of the sound wave on a closed FLRW

$$\delta_{Hc}^{\rm UH} = \sin^2 \frac{\pi}{2\sqrt{3}} \simeq 0.62$$

This result is larger than the original one and fits the numerical result better

T. Harada, C.-M. Yoo, and K. Kohri, Phys. Rev., D88(8):084051, 2013

Role of angular momentum

• Intuitively, the centrifugal force due to rotation will resist gravity

Role of angular momentum

- Intuitively, the centrifugal force due to rotation will resist gravity
- Mathematically speaking, $G^{(0)}_{\mu\nu} = 8\pi G T^{(0)}_{\mu\nu} + 8\pi G \left(-\frac{1}{8\pi G} \left\langle G^{(2)}_{\mu\nu} \right\rangle + \left\langle T^{(2)}_{\mu\nu} \right\rangle \right)$ Effective energy-momentum tensor
- Therefore, the evolution of the scale factor is modified
 - the propagating distance of the sound wave changes

$$\sqrt{3} \int_0^{\chi_s} d\chi = \int_0^{t_{\max}} \frac{dt}{\tilde{a}}$$

Main physical assumptions

• The existence of rotational perturbations, especially vector-type, (l,m) = (1,0)

Main physical assumptions

- The existence of rotational perturbations, especially vector-type, (l,m) = (1,0)
- Angular momentum switches on as soon as horizon crossing

Main physical assumptions

- The existence of rotational perturbations, especially vector-type, (l,m) = (1,0)
- Angular momentum switches on as soon as horizon crossing
- The mass and angular momentum are conserved during
 - Evaluate M and J at the maximum expansion time
- Collapse occurs only when all directions violate Jeans stability

The physical process revisit

- 1. The large curvature perturbation is on super-horizon scale
- 2. After inflation ends, the large peak re-enters the horizon

- 3. The overdense region begins to evolve as a closed FLRW and reaches a maximum expansion
- 4. If the maximum size of the region is larger than Jeans radius, it experiences gravitational collapse to form a PBH
- B. J. Carr, Astrophys. J. 201:1-19, 1975

The physical process revisit

- 1. The large curvature perturbation is on super-horizon scale
- 2. After inflation ends, the large peak re-enters the horizon and angular momentum switches on
- 3. The overdense region begins to evolve as a closed FLRW with vector perturbations and rotating fluid and reaches a maximum expansion
- 4. If the maximum size of the region is larger than the new Jeans radius, it experiences gravitational collapse to form a PBH

S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability, 1981

$$J = \frac{2(1+c_s^2)MR^2\Omega}{5}$$

$$a_K = \frac{J}{GM^2}$$

Non-rotating	(Slowly) rotating
$\omega^2 = c_s^2 k^2 - 4\pi G\rho$	$\omega^2 = c_s^2 k^2 + 4\Omega^2 - 4\pi G\rho$
$R_J \simeq \frac{c_s}{\sqrt{G\rho}}$	$R_J \simeq \frac{c_s}{\sqrt{G\rho - \frac{\Omega^2}{\pi}}} \simeq \frac{c_s}{\sqrt{G\rho}} \left(1 + \frac{\Omega^2}{2\pi G\rho}\right)$
$\delta_{\rm hc} > \delta_{\rm th} = c_s^2 = \frac{1}{3}$	$\delta_{\rm hc} > \delta_{\rm th} = c_s^2 \left(1 + \frac{25c_s^2 a_K^2}{6(1+c_s^2)^3} \right)$

$$\frac{2GM_{hc}}{H_{hc}^{-1}} = 1$$

$$(l,m) = (1,0) \qquad h_{t\phi} = \frac{a_{\max}}{a(t)} j(\chi) \sin^2 \theta, \qquad \delta u_{\phi} = \left(\frac{a(t)}{a_{\max}}\right)^{3w} V_{\max}(\chi) \sin^2 \theta,$$

Uniform rotation $V_{\max}(\chi) = V_f \sin^2 \chi$ where $V_f = \text{const}_f$

$$\delta_{Hc}^{\rm UH} = \sin^2 \left(\frac{\sqrt{3}\pi}{6}\right) + \frac{5\sqrt{3}}{64} \sin\left(\frac{\sqrt{3}\pi}{3}\right) \left(\frac{2GM_{\rm hc}}{a_{\rm hc}\chi_a}\right)^2 \frac{\sin\chi_a}{(2+\cot^2\chi_a)^2} a_K^2$$

For small rotation, we take $\chi_a = \frac{\sqrt{3}\pi}{6}$, and assume $2GM_{\rm hc}/(a_{\rm hc}\chi_a) = 1$

$$\delta_{Hc}^{\rm UH}\simeq 0.62 + 0.015 a_K^2$$

Correction from the angular momentum to the formation threshold

$$W(J,t) = \int dJ' \ Q(J,J',t) \int_{\delta_{\rm th}(J')} P(\delta_M,J') d\delta_M$$

At formation

V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, JCAP 1905, 018 (2019)

Discussion

- We derive the threshold in the presence of small angular momentum by the Jeans criterion.
- The leading-order correction is proportional to square of a_K .
- Ambiguities:
 - 1. Simple rotation, vector perturbations
 - 2. Angular momentum switches on at horizon crossing
 - 3. Backreaction of vector perturbations on a closed FLRW
 - 4. Ignoring the effects of scalar perturbations to the rotation
 - 5. Conservation of mass and angular momentum during collapse
- The result could be used to contrast the experiment when we accumulate enough black hole merger events.

SCHOOL OF SCIENCE THE UNIVERSITY OF TOKYO

Thank you for your attention!

Formation Threshold of Rotating Primordial Black Holes Speaker: Minxi He Collaborator: Teruaki Suyama Based on: Phys. Rev. D100 (2019) 063520 [arXiv:1906.10987] 20191205@IPMU Vector-type perturbations on the closed FLRW (below w=1/3)

$$ds^{2} = \left(g_{\mu\nu}^{(0)} + h_{\mu\nu}\right) dx^{\mu} dx^{\nu} \qquad u_{\mu} = \bar{u}_{\mu} + \delta u_{\mu}$$

$$h_{t\phi} = \frac{a_{\max}}{a(t)} j(\chi) \sin^{2}\theta, \qquad \delta u_{\phi} = \frac{a(t)}{a_{\max}} V_{\max}(\chi) \sin^{2}\theta + j(\chi) \equiv 8 \sin^{2}\chi \int_{0}^{\chi} \frac{d\chi'}{\sin^{4}\chi'} \int_{0}^{\chi'} d\chi'' \sin^{2}\chi'' V_{\max}(\chi'')$$
Here we choose the gauge where $h_{\chi\phi} = 0$

• Comment:

The 3-geometry of a closed FLRW is a 3-sphere. A uniform vector field, for example, on a sphere will lead to singularity. However, the overdense region only covers only part of the sphere which is charaterised by χ_a so it is okay.

D. Lynden-Bell, J. Katz, and J. Bicak, Mon. Not. Roy. Astron. Soc., 272:150-160, 1995 T. Regge and J. A. Wheeler, Phys. Rev., 108:1063-1069, 1957

$$G_{\mu\nu}^{(0)} = 8\pi G T_{\mu\nu}^{(0)} + 8\pi G \left(-\frac{1}{8\pi G} \left\langle G_{\mu\nu}^{(2)} \right\rangle + \left\langle T_{\mu\nu}^{(2)} \right\rangle \right)$$

Time-time component
$$\Delta \rho(t) = -\frac{1}{8\pi G} \left\langle G_{00}^{(2)} \right\rangle + \left\langle T_{00}^{(2)} \right\rangle$$

$$\begin{split} \left\langle T_{00}^{(2)} \right\rangle = & \frac{16\bar{\rho}}{9a^4(\chi_a - \sin\chi_a\cos\chi_a)} \int_0^{\chi_a} d\chi \left(a_{\max}j - \frac{a^2}{a_{\max}} V_{\max} \right)^2 ,\\ \left\langle G_{00}^{(2)} \right\rangle = & -\frac{a_{\max}^2}{3a^6(\chi_a - \sin\chi_a\cos\chi_a)} \int_0^{\chi_a} d\chi \left[(j' - 2j\cot\chi)^2 + 32jV_{\max} - 4(4 + \dot{a}^2)j^2 \right] \end{split}$$

We choose a simple case, uniform rotation $V_{\max}(\chi) = V_f \sin^2 \chi$ where $V_f = \text{const}_f$

$$\left\langle T_{00}^{(2)} \right\rangle = \frac{8V_f^2 \bar{\rho}}{15a_{\max}^2} \chi_a^2 - \frac{8V_f^2 \bar{\rho}a^{-2}}{1575a_{\max}} \left[120a_{\max} + 29\frac{a^2}{a_{\max}} \right] \chi_a^4$$

$$\left\langle G_{00}^{(2)} \right\rangle = -\frac{352a_{\max}^2 V_f^2}{175a^6} \chi_a^4$$
To leading order, $\Delta \rho = \epsilon_0 \bar{\rho}$ with $\epsilon_0 \equiv \frac{8}{15a_{\max}^2} V_f^2 \chi_a^2$

Friedmann equation with new scale factor

Т

$$\frac{1+\dot{\tilde{a}}^2}{\tilde{a}^2} = \frac{8\pi G}{3}\bar{\rho}(\tilde{a})(1+\epsilon(\tilde{a}))$$

with
$$\epsilon(a) = \epsilon_0 \Theta(a - a_{hc})$$

Switch on after horizon crossing

$$\begin{split} \sqrt{3} \int_{0}^{\chi_s} d\chi &= \int_{0}^{t_{\max}} \frac{dt}{\tilde{a}} = \int_{0}^{1} \frac{du}{u\sqrt{\frac{1+\epsilon(\tilde{a}_{\max}u)}{1+\epsilon}\frac{1}{u^2}-1}} \\ \text{New Jeans length} & u \equiv \tilde{a}/\tilde{a}_{\max} \end{split}$$

 $\chi_a > \chi_s$

The final result becomes

$$\delta_{Hc}^{\rm UH} = \sin^2 \left(\frac{\sqrt{3}\pi}{6}\right) + \frac{5\sqrt{3}}{64} \sin\left(\frac{\sqrt{3}\pi}{3}\right) \left(\frac{2GM_{\rm hc}}{a_{\rm hc}\chi_a}\right)^2 \frac{\sin\chi_a}{(2+\cot^2\chi_a)^2} a_K^2$$

Quantites defined at maximum expansion

$$a_K = J/(GM_{\rm BH}^2)$$
 $M_{\rm BH} \equiv 4\pi a_{\rm max}^3 \bar{\rho}_{\rm max} \chi_a^3/3$ $J = \frac{32\pi}{45} \frac{a^4 \bar{\rho}}{a_{\rm max}} V_f \chi_a^5$

Relation with curvature perturbation

M. Kopp, S. Hofmann, and J. Weller, Phys. Rev. D83:124025, 2011

- Expansion in χ_a
 - From non-rotating and radiation: $\chi_a = \sqrt{3}\pi/6 pprox 0.91$ is not so small

$$\Delta \rho = \frac{8V_f^2 \bar{\rho}}{15a_{\max}^2} \chi_a^2 + \frac{4V_f^2}{4725\pi Ga^6} \left[297a_{\max}^2 - 8\pi Ga^4 \left(90 + \frac{87}{4} \frac{a^2}{a_{\max}^2} \right) \bar{\rho} \right] \chi_a^4$$
$$\Delta \rho^{(2)} \qquad \Delta \rho^{(4)}$$

However, for $a_{\rm hc} \leq a \leq a_{\rm max}$

$$\frac{\Delta \rho^{(4)}}{\Delta \rho^{(2)}} = \frac{1}{105} \left(-29 + 12 \frac{a_{\text{max}}^2}{a^2} \right) \chi_a^2 < 20\%$$

We neglect higher order terms