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The peak re-enters horizon during radiation era.
If the amplitude > O(0.1), PBH will form. 
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• We start with Starobinsky model: 

• Then add another field:

How to generate a peak in primordial curvature perturbation?

R +
R2

6M2 ⇒ V ∼ (1 − e−ϕ/MPl)2

−(∂χ)2/2 − V(χ)

ϕ

χ



simple 2-field model
• Starobinsky R2 gravity plus a scalar field χ, non-minimally 

coupled to gravity: 

• for V( χ ) we pick the small-field form: 

• ξ-term is the non-minimally coupled term to stabilize the 
initial condition problem.                                                  
A version of SSB in χ direction.
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(     scalaron φ)

Pi, Zhang, Huang & MS ‘17 

ϕ

χ

V(ϕ, χ)

to its e↵ective local minimum determined by �, say � = �(�), where � becomes su�ciently
heavy. Then inflation continues as � rolls down its e↵ective potential Ve↵(�) = V (�,�(�)). Such
kind of models has been studied by analytical or numerical methods in for instance [21–29],
and it has been showen that the scalar field with non-canonical kinetic term may generate
interesting feature signals.

In this paper we consider the case where the scalaron undergoes damped oscillations after
it has become heavy. The oscillations around the leading order trajectory are treated as a
classical perturbation, and the corrections to the power spectrum of the curvature operturbation
are derived analytically. Whether the transition from the �-domination to the �-domination
occurs early or late during inflation gives us di↵erent observational outcomes. If the transition
happens right before the current horizon scale leaves the horizon, the oscillations from the
transition would generate features on the large angular scale CMB anisotropy. On the other
hand, if the transition occurs late, i.e. if the scale that left the horizon at the time of transition
is far below the CMB and LSS scales, we do not have any stringent observational constraints
on the transition and the subsequent stage of inflation. In this case, an interesting possibility is
the generation of primordial black holes (PBHs), which may account for the cold dark matter
of the Universe.

This paper is organized as follows. In Section 2 we introduce our model based on the
considerations above. We then calculate the background evolution and clarify the possible
range of the model parameters. In Section 3 we calculate the power spectrum of the curvature
perturbation by the �N formalism. We then discuss the possible observational impacts on
the CMB anisotropy and PBH production in Section 3.1 and Section 3.2, respectively. In
Appendices A and B, we give useful relations between the Hubble parameter at a couple of
epochs during inflation and the Hubble constant today, H0, and a formula for the PBH mass,
respectively, in terms of relevant e-folding numbers.

2 Set up and the Background Evolution

We consider the action of Starobinsky’s R2 gravity with a non-minimally coupled scalar in the
Jordan frame,
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effective local minimum determined by χ, say φ = φ(χ), where φ becomes sufficiently heavy.
Then inflation continues as χ rolls down its effective potential Veff(χ) = V (χ,φ(χ)). Such kind of
models has been studied by analytical or numerical methods in for instance [?,?,?,?,?,?,?,?,?],
and it has been showen that the scalar field with non-canonical kinetic term may generate
interesting feature signals.

In this paper we consider the case where the scalaron undergoes damped oscillations after
it has become heavy. The oscillations around the leading order trajectory are treated as a
classical perturbation, and the corrections to the power spectrum of the curvature operturbation
are derived analytically. Whether the transition from the φ-domination to the χ-domination
occurs early or late during inflation gives us different observational outcomes. If the transition
happens right before the current horizon scale leaves the horizon, the oscillations from the
transition would generate features on the large angular scale CMB anisotropy. On the other
hand, if the transition occurs late, i.e. if the scale that left the horizon at the time of transition
is far below the CMB and LSS scales, we do not have any stringent observational constraints
on the transition and the subsequent stage of inflation. In this case, an interesting possibility is
the generation of primordial black holes (PBHs), which may account for the cold dark matter
of the Universe.

This paper is organized as follows. In Section 2 we introduce our model based on the
considerations above. We then calculate the background evolution and clarify the possible
range of the model parameters. In Section ?? we calculate the power spectrum of the curvature
perturbation by the δN formalism. We then discuss the possible observational impacts on the
CMB anisotropy and PBH production in Section ?? and Section ??, respectively. In Appendices
?? and ??, we give useful relations between the Hubble parameter at a couple of epochs during
inflation and the Hubble constant today, H0, and a formula for the PBH mass, respectively, in
terms of relevant e-folding numbers.
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fast-roll stage
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• Scalaron φ becomes massive at the end of the 1st stage. 

• Field χ  plays the role of inflaton at the 2nd stage. 

End of Starobinsky 
(slow-roll) inflation

End of the 1st stage of 
inflation

ϕ

χ

ϕ

χ
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sharp peak for μ >>1

μ2 =
M2

scalaron

3H2

P ≈
(H/2π)2

2ϵ M2
Pl

(1 + )

Curvature Perturbation Power Spectrum

oscillatory correction

width of P(k) can be tuned by tuning the value of μ
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Curvature perturbation to PBH

 

➢If                                                , it collapses to form BH 

➢Spins of PBHs are expected to be very small

Hamiltonian constraint 
(Friedmann eq.)

( )3 2 1  ( ) ~~ cR H δρ ρ⇔ /

Young, Byrnes & MS ‘14

3 2( ) ~R H3 0( )R !

2 36 16( )( , ) ( , ) ( , )H t x R t x G t xπ ρ+ = + ⋅ ⋅ ⋅

➢ gradient expansion/separate universe approach

R(3) ≈ −
4
a2

∇2ℛc ≈
8πG

3
δρc

δρc

ρ
≈ ℛc

k2

a2
= H2at

formation of 
a closed universe

conventional (radiation-dominated) case



fraction β that turns into PBHs

• When σM <<δc, β can be approximated by exponential:

� ⇡
r

2
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exp

✓
� �2c
2�2

M

◆

for Gaussian probability distribution

δc ≡ ( δρc

ρ )
crit

∼ 0.4



Non-Gaussianity can increase (fNL>0) or decrease (fNL<0) the 
PBH adundances, substantially if σ(MH)<<1.

Young & Byrnes, 1307.4995

effect of non-Gaussianity
for a peaked spectrum
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a sharp peak in P(k)

f(M) ∝ exp [−
O(0.1)
𝒫(k) ]

a spike in f (M)

spike!
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In our 2-field model, we expect nearly monochromatic mass function

Pi, Zhang, Huang & MS ‘17 



GWs can capture PBHs!

curvature 
perturvation

large
 pea

ks fo
rm PBH

s

NL effect induces GWs spacetime oscillations

PBH

PBHs = CDM with MPBH ~1021g  
generates GWs with f~10-3 Hz

Background GWs 
at LISA band

LIGO-Virgo :10 - 1000 Hz
15
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Fig. 1. Top: The energy density of the induced GWs for the power spectrum for a peak width, ∆ =
0.0, 1.0 × 10−3, 1.0 × 10−1, 1.0. Bottom: Energy density of scalar-induced GWs associated with PBH
formation together with current pulsar constraint (thick solid line segment) and sensitivity of various
GW detectors (convex curves). Solid wedged lines indicate the energy density with the parameters
(ΩPBHh2, MPBH) = (10−5, 102M⊙) (left), (10−1, 1020g) (right) for sufficiently small ∆ (thick lines) and
∆ = 1.0 (thin lines).

Downloaded from https://academic.oup.com/ptp/article-abstract/126/2/351/1838316
by guest
on 14 July 2018

GWs test PBH=DM!  

Saito & Yokoyama '09

(ΩPBHh2, MPBH) = (10−5,100M⊙)
(ΩPBHh2, MPBH) = (10−1,1020g)
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MPBH ∼ 0.1M⊙ ( 1GeV
T )

2

∼ 10M⊙ ( 1pc−1

k )
2



h′�′�k + 2ℋh′�k + k2hk = 𝒮(k, η) ∼ ∫ d3l liljΦl(η)Φk−l(η)

⌦GW(k) ⌘ 1

12

✓
k

Ha

◆2
k
3

⇡2
hhk(⌘)hk(⌘)i.

ΩGW ∼ ⟨hh⟩ ∼ ⟨𝒮𝒮⟩ ∼ ⟨ΦΦΦΦ⟩ ∼ 𝒫2
Φ

ℛ(x) = ℛg(x)+

• Tensor perturbation eq. with 2nd order curvature perturbation

• The quantity to calculate is

• Φ may not be Gaussian: Consider a non-Gaussianity:

Φ =
2
3

ℛ at radiation-dom stage:

[ℛ2
g(x) − ⟨ℛ2

g(x)⟩] .FNL

: Newton potential−Φ = Ψ

ℛ =conserved curvature perturbation
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Induced GWs & Non-Gaussianity



• Up:             , and we fix PBH 
abundance to be 1. 


• Down:              , and we fix the 
peak amplitude to be                  


• Gray curve: LISA


• Frequency: PBH window <—> 
LISA band


• No matter how large          is, 
LISA will detect the induced 
GWs if PBH=CDM
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Cai, Pi & MS, ‘18

FNL
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Summary 1
• 2-field inflation models can provide PBH-as-CDM scenario.


• GWs are generated from large scalar perturbations:        


• If PBHs = CDM, induced GWs willl be detected by LISA, indep of 
non-Gaussianity         .        


• Conversely if LISA doesn’t detect the induced GWs, it constrains 
the PBH abundances on mass range MPBH ~ 1017 -1022g where no 
other experiment can explore.

k3

fNL

- slope, multiple peaks, cutoff

N1 ∼ 35 − 40 after CMB scale left the horizon
MPBH ∼ 1019 − 1022g

this turns out to be common

for all peaked scalar spectra

Cai, Pi & MS ‘19
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Part II

some random thoughts 

sorry, nothing new, though . . .



PBHs from Isocurvature Perterbation
eg, E. Cotner, A. Kusenko, MS & V. Takhistov,1907.10613 

ρa3

a

ρr ∝ a −4

matter-dom.

ρ

x

matter-dom stage

ρ

x
initial rad-dom stage

ρm ∝ a−3

H−1

H−1

isocurvature

adiabatic
BH
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H. Kodama & MS, ’86,’87
matter isocurvature perturbation

S ≡ δm −
3
4

δr → δm at a → 0 (on, say, comoving slice)

evolution:

ℛc =
1
3

S (Φ =
1
5

S)
R ≫ 1

{ℛc =
R
4

S (Φ =
R
8

S)
R ≪ 1

{
δ =

1
6

ω2R3 S

ω ≡ ( k
Ha )

eq
, R ≡

a
aeq

δ =
4
15

ω2R S

ω2R =
1
2

horizon crossing:ℛc :
Φ :

curv pert on comoving slice

curv pert on Newton slice
formation criterion: δ(k = aH) =

2
15

S > δcr ? 
or  HYKN criterion?

ω ≪ 1
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linear theory



evolution: 

linear theory
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continued

ω ≫ 1

ℛc =
5

4ω2
S

1 ≪ R

{
δ =

3R
2

S

ℛc =
R
4

S

R ≪ ω−1

{
δ =

1
6

ω2R3 S

ℛc =
3

4ω2R
S

ω−1 ≪ R ≪ 1

{
δ = R S

(Φ =
3

4ω2
S)ωR =

1
2

horizon crossing:

δ(k = aH) =
1

2ω
S ≪ S conventional growth rate 

at matter-dom stage

Either                           or HYKN formation criterion?S = O(ω2) ≫ 1

need more studies!
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Non-Gaussianity
primoridal non-Gaussianity

• generically small for a single-field model. 

• need multiple fields for PBH formation, anyway. 

• any non-gaussianity is possible for isocurvature case

toy model
• assume that a field with non-canonical kinetic 

termφ determines PBH formation:

L = −
1
2

K2(ϕ)gμν∂μϕ∂νϕ + ⋯
K(ϕ)dϕ = dσ

= −
1
2

gμν∂μσ∂νσ + ⋯

 eg, K. Yamamoto et al., PRD46, 4206 (1992): nB ∝ sin ( σ
2πf )
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playing with a toy model
consider K(φ) given by

K(ϕ) =
x2n−1

1 + x2n
;

σ = ∫ K(ϕ)dϕ =
M
2n

ln(1 + x2n)

y =
1
2n

ln(1 + x2n) ⇔ x2n = e2ny − 1 ;
or

y ≡
σ
M

x ≡
ϕ
M

assume σ is Gaussian:

P(y) =
1

2πσy

exp [−
y2

2σ2
y ] ; ⟨y2⟩ ≡ σ2

y
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P(y)dy = 𝒫(x)dx

𝒫(x) = P(y(x))
dy
dx

=
1

2πσy

x2n−1

1 + x2n
exp [−

ln2(1 + x2n)
2σ2

y (2n)2 ]
⟶
x2n≫1

1

2πσy |x |
exp [−

ln2 |x |
2σ2

y ] ~ log-normal 

σ2
x = ∫ x2𝒫(x)dx = ∫

1

2πσy

x2n+1

1 + x2n
exp [−

ln2(1 + x2n)
2σ2

y (2n)2 ]
= ∫

1

2πσy
(e2ny − 1)1/n e−y2/2σ2

ydy

≈ exp[σ2
y ] for σ2

y ≫ 1

 can be significantly enhanced

σ2
x

σ2
x

(ln(ϕ/M) ∼ σ/M)

 may be further a non-trivial function of xβPBH

any realistic model?
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Conclusion

so, no conclusion . . .

• inflation: multi-field or multi-verse 

• spectrum: peaked or extended 

• statistics: gaussian or non-gaussian 

• formation criterion: spherical or non-spherical 

• formation epoch: radiation- or matter-dominated 

• spatial distribution: poisson or clustered 

• spins: non-rotating or rotating 

• …

It seems there are so many interesting remaining issues.


