

Part I PBHs from Inflation and GWs

Misao Sasaki

Kavli IPMU, University of Tokyo YITP, Kyoto University LeCosPA, National Taiwan University CAS Key Lab Theor. Phys., ITP-CAS

based on

S. Pi, Y.I. Zhang, Q.G. Huang & MS, arXiv:1712.09896, JCAP 1805 (2018) 042. R.G. Cai, S. Pi & MS, arXiv:1810.11000, PRL 122 (2019) 201101. R.G. Cai, S. Pi & MS, arXiv:1909.13728.

cosmic spacetime diagram

PBH constaints: recent updates

How to generate a peak in primordial curvature perturbation?

- We start with Starobinsky model: $R + \frac{R^2}{6M^2} \Rightarrow V \sim \left(1 e^{-\phi/M_{\rm Pl}}\right)^2$
- Then add another field: $-(\partial \chi)^2/2 V(\chi)$

simple 2-field model Pi, Zhang, Huang & MS '17

Starobinsky R² gravity plus a scalar field *x*, non-minimally coupled to gravity: (→scalaron φ)

A version of SSB in χ direction.

- Field χ plays the role of inflaton at the 2nd stage.

Curvature Perturbation Power Spectrum

Curvature perturbation to PBH

conventional (radiation-dominated) case

> gradient expansion/separate universe approach

 $6H^{2}(t,x) + R^{(3)}(t,x) = 16\pi G\rho(t,x) + \cdots$ Hamiltonian constraint (Friedmann eq.)

> If $R^{(3)} \sim H^2 \quad (\Leftrightarrow \delta \rho_c / \rho \sim 1)$, it collapses to form BH

Young, Byrnes & MS '14

Spins of PBHs are expected to be very small

fraction β that turns into PBHs

for Gaussian probability distribution

• When $\sigma_M << \delta_c$, β can be approximated by exponential:

$$\beta \approx \sqrt{\frac{2}{\pi}} \frac{\sigma_M}{\delta_c} \exp\left(-\frac{\delta_c^2}{2\sigma_M^2}\right) \qquad \delta_c \equiv \left(\frac{\delta\rho_c}{\rho}\right)_{\rm crit} \sim 0.4$$

effect of non-Gaussianity

for a peaked spectrum

Non-Gaussianity can increase ($f_{NL}>0$) or decrease ($f_{NL}<0$) the PBH adundances, substantially if $\sigma(M_H)<<1$.

Young & Byrnes, 1307.4995

PBH formation

Pi, Zhang, Huang & MS '17

In our 2-field model, we expect nearly monochromatic mass function

GWs can capture PBHs!

GWs test PBH=DM!

Induced GWs & Non-Gaussianity

• Tensor perturbation eq. with 2nd order curvature perturbation

$$h_{\mathbf{k}}^{\prime\prime} + 2\mathcal{H}h_{\mathbf{k}}^{\prime} + k^{2}h_{\mathbf{k}} = \mathcal{S}(\mathbf{k},\eta) \sim \int d^{3}l \ l_{i}l_{j}\Phi_{\mathbf{l}}(\eta)\Phi_{\mathbf{k}-\mathbf{l}}(\eta)$$

• The quantity to calculate is

 $-\Phi = \Psi$: Newton potential

• Φ may not be Gaussian: Consider a non-Gaussianity:

$$\mathscr{R}(\mathbf{x}) = \mathscr{R}_g(\mathbf{x}) + \mathbf{F}_{\mathrm{NL}} \left[\mathscr{R}_g^2(\mathbf{x}) - \langle \mathscr{R}_g^2(\mathbf{x}) \rangle \right].$$

 $\Phi = \frac{2}{3}\mathscr{R}$ at radiation-dom stage: $\mathscr{R} = \text{conserved curvature perturbation}$

Effects of non-Gaussianity

Cai, Pi & MS, '18

- Up: $F_{NL} > 0$, and we fix PBH abundance to be 1.
- Down: $F_{N\!L} < 0$, and we fix the peak amplitude to be $\,\,\mathscr{A}_{\mathscr{R}} = 10^{-2}$
- Gray curve: LISA
- Frequency: PBH window <—> LISA band
- No matter how large F_{NL} is, LISA will detect the induced GWs if PBH=CDM

Summary 1

• 2-field inflation models can provide PBH-as-CDM scenario.

 $N_1 \sim 35 - 40$ after CMB scale left the horizon

 $> M_{\rm PBH} \sim 10^{19} - 10^{22} {\rm g}$

• GWs are generated from large scalar perturbations:

 k^3 - slope, multiple peaks, cutoff

this turns out to be common for all peaked scalar spectra Cai, Pi & MS '19

- If PBHs = CDM, induced GWs will be detected by LISA, indep of non-Gaussianity f_{NL} .
- Conversely if LISA doesn't detect the induced GWs, it constrains the PBH abundances on mass range M_{PBH} ~ 10¹⁷ -10²²g where no other experiment can explore.

Part II

some random thoughts

sorry, nothing new, though . . .

PBHs from Isocurvature Perterbation

eg, E. Cotner, A. Kusenko, MS & V. Takhistov, 1907.10613

linear theory

H. Kodama & MS, '86,'87

matter isocurvature perturbation

 $S\equiv \delta_m-\frac{3}{{}_{\!\!\!\!A}}\delta_r\to\delta_m$ at $a\to 0\,$ (on, say, comoving slice)

evolution:
$$\omega \ll 1$$
 $\omega \equiv \left(\frac{k}{Ha}\right)_{eq}, \quad R \equiv \frac{a}{a_{eq}}$

horizon crossing: $\omega^2 R$

 Φ : curv pert on Newton slice

formation criterion:
$$\delta(k = aH) = \frac{2}{15}S > \delta_{cr}$$
?
or HYKN criterion?

linear theory continued

evolution: $\omega \gg 1$

Either $S = O(\omega^2) \gg 1$ or HYKN formation criterion?

need more studies!

Non-Gaussianity

primoridal non-Gaussianity

- generically small for a single-field model.
- need multiple fields for PBH formation, anyway.
- any non-gaussianity is possible for isocurvature case

eg, K. Yamamoto et al., PRD46, 4206 (1992): $n_B \propto \sin\left(\frac{\sigma}{2\pi f}\right)$

toy model

assume that a field with non-canonical kinetic

term *\phi* determines PBH formation:

$$\begin{split} L &= -\frac{1}{2} K^2(\phi) g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \cdots \\ &= -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \sigma \partial_{\nu} \sigma + \cdots \end{split}$$

 $K(\phi)d\phi = d\sigma$

playing with a toy model

consider $K(\phi)$ given by

$$K(\phi) = \frac{x^{2n-1}}{1+x^{2n}}; \quad x \equiv \frac{\phi}{M}$$

$$\longrightarrow \quad \sigma = \int K(\phi) d\phi = \frac{M}{2n} \ln(1+x^{2n})$$

or

$$y = \frac{1}{2n} \ln(1+x^{2n}) \quad \Leftrightarrow \quad x^{2n} = e^{2ny} - 1; \quad y \equiv \frac{\sigma}{M}$$

assume σ is Gaussian:

$$P(y) = \frac{1}{\sqrt{2\pi\sigma_y}} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] ; \qquad \langle y^2 \rangle \equiv \sigma_y^2$$

$$P(y)dy = \mathcal{P}(x)dx$$

$$\Rightarrow \mathcal{P}(x) = P(y(x))\frac{dy}{dx} = \frac{1}{\sqrt{2\pi}\sigma_y} \frac{x^{2n-1}}{1+x^{2n}} \exp\left[-\frac{\ln^2(1+x^{2n})}{2\sigma_y^2(2n)^2}\right]$$

$$\xrightarrow{x^{2n}\gg 1} \frac{1}{\sqrt{2\pi}\sigma_y|x|} \exp\left[-\frac{\ln^2|x|}{2\sigma_y^2}\right] \qquad \begin{array}{c} \text{-log-normal}\\ (\ln(\phi/M) \sim \sigma/M) \end{array}$$

$$\frac{\sigma_x^2}{\sigma_x^2} = \int x^2 \mathcal{P}(x)dx = \int \frac{1}{\sqrt{2\pi}\sigma_y} \frac{x^{2n+1}}{1+x^{2n}} \exp\left[-\frac{\ln^2(1+x^{2n})}{2\sigma_y^2(2n)^2}\right]$$

$$= \int \frac{1}{\sqrt{2\pi}\sigma_y} \left(e^{2ny}-1\right)^{1/n} e^{-y^2/2\sigma_y^2}dy$$

$$\approx \exp[\sigma_y^2] \quad \text{for} \quad \sigma_y^2 \gg 1$$

$$\sigma_x^2 \quad \text{can be significantly enhanced}$$

$$\beta_{\text{PBH}} \text{ may be further a non-trivial function of } x$$

$$\text{any realistic model?}$$

Conclusion

It seems there are so many interesting remaining issues.

- inflation: multi-field or multi-verse
- spectrum: peaked or extended
- statistics: gaussian or non-gaussian
- formation criterion: spherical or non-spherical
- formation epoch: radiation- or matter-dominated
- spatial distribution: poisson or clustered
- spins: non-rotating or rotating
- •••

so, no conclusion . . .