

Clustering of primordial black holes with non-Gaussian initial fluctuations

Teruaki Suyama

(Tokyo Institute of Technology)

Ref. **PTEP 2019 no.10,103E02(arXiv**:1906.04958) TS and Shuichiro Yokoyama

Formation of the PBH binaries

Nakamura+ 1997

- Spatial distribution of PBHs in the early universe -

PBHs are initially at rest with respect to comoving coordinate.

Some PBHs form binaries in the radiation dominated era.

PBH binaries merge at the present time.

LIGO observations

Clustering also determines the merger rate.

No clustering clustering What determines the clustering of PBHs? I focus on initial clustering in RD.

Initial clustering in MD: Matsubara, Terada, Kohri, Yokoyama 2019

PBHs are rare initially (at formation time).

PBHs are initially separated by super-Hubble distance.

Initial clustering = clustering on super-Hubble scales

Setup

Super-Hubble scale perturbations θ generated by inflation

PBH is formed soon after the horizon reentry. (Radiation dominated epoch)

Environment and smaller scale not relevant to PBH formation

- PBH formation density contrast on the comoving slice $\psi_{Voung+2014}$ $\theta_{local}(\vec{x}) = \int W(R, \vec{x} - \vec{y})\theta(\vec{y})d^3y$ $\theta_{local} > \theta_{th}$

Clustering of PBHs

PBH abundance in A(B) is determined by $\langle \theta_{local}^2(\vec{x}) \rangle (\langle \theta_{local}^2(\vec{y}) \rangle)$.

Simple toy model

 $\mathcal{R}(\vec{x}) = \left(1 + \alpha \chi(\vec{x})\right) \phi(\vec{x})$

$$\frac{\langle \boldsymbol{\theta}_{local}^{2}(\vec{x})\boldsymbol{\theta}_{local}^{2}(\vec{y})\rangle_{c}}{\langle \boldsymbol{\theta}_{local}^{2}(\vec{x})\rangle^{2}} \approx 4\alpha^{2}\langle \chi(\vec{x})\chi(\vec{y})\rangle + O(\alpha^{4})$$

- Super-Hubble correlation of the local variance is generated by the super-Hubble correlation of χ .
- Clustering is characterized by the four-point function (trispectrum).

$$P_{\phi} = P_{\chi}$$

$$\mathcal{R}(\vec{x}) = (1 + \alpha \chi(\vec{x}))\phi(\vec{x}) \quad \implies \quad \alpha^2 = \tau_{NL}, \quad f_{NL} = 0$$
10

Comparison with the previous studies

Tada&Yokoyama 2015, Young&Byrnes 2015

$$\mathcal{R}(ec{x}) = \phi(ec{x}) + rac{3}{5} f_{NL} \phi^2(ec{x}) \qquad \phi$$
 : Gaussiar

Presence of f_{NL} yields super-Hubble clustering of PBHs. Tada&Yokoyama 2015, Young&Byrnes 2015

$$\phi = \phi_l + \phi_s$$
 long mode: ϕ_l , short mode: ϕ_s
 $\longrightarrow \mathcal{R} \approx \left(1 + \frac{6}{5}f_{NL}\phi_l\right)\phi_s$
 $\tau_{NL} = \frac{36}{25}f_{NL}^2$
 $(\tau_{NL} \text{ is non-zero})$

There is no inconsistency.

PBH correlation function

- <u>Functional integral approach</u> e.g. Franciolini+ 2018 $P[\theta]$: probability density of θ
 - Probability that point *x* becomes a PBH

$$P_1(\boldsymbol{x}) = \int [D\theta] P[\theta] \int_{\theta_{\rm th}}^{\infty} d\alpha \, \delta_D(\theta_{\rm local}(\boldsymbol{x}) - \alpha)$$

• Probability that points x_1 and x_2 becomes PBHs

$$P_2(\boldsymbol{x}_1, \, \boldsymbol{x}_2) = \int [D\theta] P[\theta] \int_{\theta_{\rm th}}^{\infty} d\alpha_1 \, \delta_D(\theta_{\rm local}(\boldsymbol{x}_1) - \alpha_1) \int_{\theta_{\rm th}}^{\infty} d\alpha_2 \, \delta_D(\theta_{\rm local}(\boldsymbol{x}_2) - \alpha_2)$$

PBH correlation function

$$\xi_{\text{PBH}}(\boldsymbol{x}_1, \boldsymbol{x}_2) := rac{P_2(\boldsymbol{x}_1, \boldsymbol{x}_2)}{P_1^2} - 1$$

I assume θ is weakly (local type) non-Gaussian and expand ξ_{PBH} up to trispectrum ($f_{NL}, \tau_{NL}, g_{NL}$).

 $\langle \mathcal{R}_{c}(\boldsymbol{k}_{1})\mathcal{R}_{c}(\boldsymbol{k}_{2})\mathcal{R}_{c}(\boldsymbol{k}_{3})\rangle := (2\pi)^{3}\delta^{(3)}(\boldsymbol{k}_{1} + \boldsymbol{k}_{2} + \boldsymbol{k}_{3})\frac{6}{5}f_{\mathrm{NL}}[P_{\mathcal{R}_{c}}(\boldsymbol{k}_{1})P_{\mathcal{R}_{c}}(\boldsymbol{k}_{2}) + 2 \text{ perms.} \\ \langle \mathcal{R}_{c}(\boldsymbol{k}_{1})\mathcal{R}_{c}(\boldsymbol{k}_{2})\mathcal{R}_{c}(\boldsymbol{k}_{3})\mathcal{R}_{c}(\boldsymbol{k}_{4})\rangle := (2\pi)^{3}\delta^{(3)}(\boldsymbol{k}_{1} + \boldsymbol{k}_{2} + \boldsymbol{k}_{3} + \boldsymbol{k}_{4})$

$$\times \left\{ \frac{54}{25} g_{\rm NL} \left[P_{\mathcal{R}_c}(k_1) P_{\mathcal{R}_c}(k_2) P_{\mathcal{R}_c}(k_3) + 3 \text{ perms.} \right] \right. \\ \left. + \tau_{\rm NL} \left[P_{\mathcal{R}_c}(k_1) P_{\mathcal{R}_c}(k_2) P_{\mathcal{R}_c}(|\boldsymbol{k}_1 + \boldsymbol{k}_3|) + 11 \text{ perms.} \right] \right\}$$

$$P_{1}(\boldsymbol{x}) = \int [D\theta] P[\theta] \int_{\theta_{\text{th}}}^{\infty} d\alpha \int_{-\infty}^{\infty} \frac{d\phi}{2\pi} \exp\left[i\phi \int d^{3}y W_{\text{local}}(\boldsymbol{x} - \boldsymbol{y}) \theta(\boldsymbol{y}) - i\phi \alpha\right]$$

$$Z[J] := \int [D\theta] P[\theta] \exp\left[i \int d^3y J(\boldsymbol{y})\theta(\boldsymbol{y})\right]$$

$$\xi_{\theta(c)}(\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_n) := \frac{1}{i^n} \frac{\delta^n \log Z[J]}{\delta J(\boldsymbol{x}_1) \delta J(\boldsymbol{x}_2) \cdots \delta J(\boldsymbol{x}_n)} \bigg|_{J=0}$$

$$P_{1}(\boldsymbol{x}) = \int_{\theta_{\rm th}}^{\infty} d\alpha \int_{-\infty}^{\infty} \frac{d\phi}{2\pi} e^{-i\phi \alpha} Z \left[\phi W_{\rm local}(\boldsymbol{x} - \boldsymbol{y})\right]$$
$$= \int_{\theta_{\rm th}}^{\infty} d\alpha \int_{-\infty}^{\infty} \frac{d\phi}{2\pi} \exp\left[-i\phi \alpha\right] \exp\left[\sum_{n=2}^{\infty} \frac{i^{n}}{n!} \phi^{n} \frac{\xi_{\rm local(c)}^{(n)}}{n!}\right]$$
Expand

$$\begin{split} P_{\text{PBH}}(k) \simeq & \left(\frac{4\nu}{9\sigma_{R}}\right)^{2} W_{\text{local}}(k)^{2} P_{\mathcal{R}_{c}}(k) \\ & + \frac{1}{2} \frac{1}{[\text{NII}} \left(\frac{4\nu}{9\sigma_{R}}\right)^{3} W_{\text{local}}(k) \\ & \times \int \frac{d^{3}p}{(2\pi)^{3}} W_{\text{local}}(p) W_{\text{local}}(|\mathbf{k} - \mathbf{p}|) \\ & \times [2P_{\mathcal{R}_{c}}(p) P_{\mathcal{R}_{c}}(k) + P_{\mathcal{R}_{c}}(p) P_{\mathcal{R}_{c}}(|\mathbf{k} - \mathbf{p}|)] \\ & + \frac{1}{23} \frac{1}{[\text{PLI}} \left(\frac{4\nu}{9\sigma_{R}}\right)^{4} W_{\text{local}}(k) \\ & \times \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}} W_{\text{local}}(p_{1}) W_{\text{local}}(p_{2}) W_{\text{local}}(|\mathbf{k} - \mathbf{p}_{1} - \mathbf{p}_{2}|) \\ & \times [3P_{\mathcal{R}_{c}}(k) P_{\mathcal{R}_{c}}(p_{1}) P_{\mathcal{R}_{c}}(p_{2}) + P_{\mathcal{R}_{c}}(p_{1}) P_{\mathcal{R}_{c}}(p_{2}) P_{\mathcal{R}_{c}}(|\mathbf{k} - \mathbf{p}_{1} - \mathbf{p}_{2}|)] \\ & \int \frac{1}{3} \frac{1}{3} \left(\frac{4\nu}{9\sigma_{R}}\right)^{4} W_{\text{local}}(k) \\ & \times \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}} W_{\text{local}}(p_{1}) W_{\text{local}}(p_{2}) W_{\text{local}}(|\mathbf{k} - \mathbf{p}_{1} - \mathbf{p}_{2}|) \\ & \times [6P_{\mathcal{R}_{c}}(k) P_{\mathcal{R}_{c}}(p_{1}) P_{\mathcal{R}_{c}}(|\mathbf{p}_{1} + \mathbf{p}_{2}|) + 6P_{\mathcal{R}_{c}}(p_{1}) P_{\mathcal{R}_{c}}(|\mathbf{k} - \mathbf{p}_{1} - \mathbf{p}_{2}|) \\ & \times [6P_{\mathcal{R}_{c}}(k) P_{\mathcal{R}_{c}}(p_{1}) P_{\mathcal{R}_{c}}(|\mathbf{p}_{1} + \mathbf{p}_{2}|) + 6P_{\mathcal{R}_{c}}(p_{1}) P_{\mathcal{R}_{c}}(|\mathbf{k} - \mathbf{p}_{1}|)] \\ & + \frac{5}{22} \frac{1}{2} \frac{1}{2} \frac{1}{(2\pi)^{6}} W_{\text{local}}(p_{1}) W_{\text{local}}(p_{2}) W_{\text{local}}(|\mathbf{k} + \mathbf{p}_{1}|) W_{\text{local}}(|\mathbf{p}_{2} - \mathbf{k}|) \\ & \times \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}} W_{\text{local}}(p_{1}) W_{\text{local}}(|\mathbf{p}_{2}) P_{\mathcal{R}_{c}}(|\mathbf{k} + \mathbf{p}_{1}|) W_{\text{local}}(|\mathbf{p}_{2} - \mathbf{k}|) \\ & \times \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}} W_{\text{local}}(p_{1}) W_{\text{local}}(|\mathbf{k} + \mathbf{p}_{1}|) W_{\text{local}}(|\mathbf{p}_{2} - \mathbf{k}|) \\ & \times [4P_{\mathcal{R}_{c}}(p_{1})P_{\mathcal{R}_{c}}(p_{2})P_{\mathcal{R}_{c}}(k) \end{cases}$$

In the super-Hubble ($k \rightarrow 0$) limit,

 $P_{\text{PBH}}(k) \simeq \left(\frac{4\nu}{9\sigma_R}\right)^2 W_{\text{local}}(k)^2 P_{\mathcal{R}_c}(k) \\ + \frac{6}{5} f_{\text{NL}} \left(\frac{4\nu}{9\sigma_R}\right)^3 W_{\text{local}}(k) \\ \times \int \frac{d^3 p}{(2\pi)^3} W_{\text{local}}(p) W_{\text{local}}(|\boldsymbol{k} - \boldsymbol{p}|) \\ \times [2P_{\mathcal{R}_c}(p) P_{\mathcal{R}_c}(k) + P_{\mathcal{R}_c}(p) P_{\mathcal{R}_c}(|\boldsymbol{k} - \boldsymbol{p}|)] \\ + 18 \qquad (4\pi)^4$ $+\frac{18}{25}g_{\rm NL}\left(\frac{4\nu}{9\sigma_P}\right)^4 W_{\rm local}(k)$ $\times \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} W_{\text{local}}(p_1) W_{\text{local}}(p_2) W_{\text{local}}(|\boldsymbol{k} - \boldsymbol{p}_1 - \boldsymbol{p}_2|)$ $\times [3 P_{\mathcal{R}_c}(k) P_{\mathcal{R}_c}(p_1) P_{\mathcal{R}_c}(p_2) + P_{\mathcal{R}_c}(p_1) P_{\mathcal{R}_c}(p_2) P_{\mathcal{R}_c}(|\boldsymbol{k} - \boldsymbol{p}_1 - \boldsymbol{p}_2|)]$ $+\frac{\tau_{\rm NL}}{3}\left(\frac{4\nu}{9\sigma_R}\right)^4 W_{\rm local}(k)$ $\times \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} W_{\text{local}}(p_1) W_{\text{local}}(p_2) W_{\text{local}}(|\boldsymbol{k} - \boldsymbol{p}_1 - \boldsymbol{p}_2|)$ $\times [6P_{\mathcal{R}_c}(k) P_{\mathcal{R}_c}(p_1) P_{\mathcal{R}_c}(|\boldsymbol{p}_1 + \boldsymbol{p}_2|) + 6P_{\mathcal{R}_c}(p_1) P_{\mathcal{R}_c}(p_2) P_{\mathcal{R}_c}(|\boldsymbol{k} - \boldsymbol{p}_1|)]$ $+\frac{54}{25}g_{\rm NL}\left(\frac{4\nu}{9\sigma_R}\right)^4$ $\times \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} W_{\text{local}}(p_1) W_{\text{local}}(p_2) W_{\text{local}}(|\boldsymbol{k} + \boldsymbol{p}_1|) W_{\text{local}}(|\boldsymbol{p}_2 - \boldsymbol{k}|)$ $\times P_{\mathcal{R}_c}(p_1)P_{\mathcal{R}_c}(p_2)P_{\mathcal{R}_c}(|\boldsymbol{k}+\boldsymbol{p}_1|)$ $+\frac{\tau_{\rm NL}}{4}\left(\frac{4\nu}{9\sigma_R}\right)^4$ $\times \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} W_{\text{local}}(p_1) W_{\text{local}}(p_2) W_{\text{local}}(|\boldsymbol{k} + \boldsymbol{p}_1|) W_{\text{local}}(|\boldsymbol{p}_2 - \boldsymbol{k}|)$ $\times [4P_{\mathcal{R}_c}(p_1)P_{\mathcal{R}_c}(p_2)P_{\mathcal{R}_c}(k)$ $+4P_{\mathcal{R}_c}(p_1)(P_{\mathcal{R}_c}(p_2)P_{\mathcal{R}_c}(|\boldsymbol{k}+\boldsymbol{p}_1-\boldsymbol{p}_2|)+P_{\mathcal{R}_c}(|\boldsymbol{k}+\boldsymbol{p}_1|)P_{\mathcal{R}_c}(|\boldsymbol{p}_1+\boldsymbol{p}_2|))]$ In the super-Hubble $(k \rightarrow 0)$ limit,

- Main result

$$\xi_{\text{PBH}}^{(2)}(\boldsymbol{r}) = \tau_{\text{NL}} \left(\frac{4\nu}{9}\right)^4 \xi_{\mathcal{R}_c}^{(2)}(\boldsymbol{r}) \qquad \nu = \frac{\theta_{th}}{\sigma}$$

PBH clusters produce dark matter isocurvature perturbations.

Tada&Yokoyama 2015, Young&Byrnes 2015

Isocurvature constraint

$$f_{PBH}^2 \tau_{NL} \nu^4 \le O(10^{-2})$$

<u>Summary</u>

PBHs cluster on super-Hubble scale if the seed perturbation has local-type trispectrum parametrized by τ_{NL} .