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Overview

• Types of transient/variable sources


• Quasars


• Supernovae and GWs


• Others - GRBs & FRBs


• Types of searches


• (Machine Learning) Algorithms


• Visual inspection / Citizen Science
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Imaging/Continuum

• Radio:

• MIT-Greenbank Survey (Burke 1989)


• JVAS (Patnaik et al. 1992, Browne et al. 
1998)


• CLASS (Myers et al. 2002)


• Optical:

• HST Snapshot Survey (Bahcall, Maoz, et al. 

1992)


Quasars

Other optical (HST-based) searches e.g. CANDELS, GEMS, GOODS and COSMOS - but for lensed galaxies
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Imaging+Spectroscopy

• Hamburg - ESO Survey 


• e.g. Wisotzki et al. 1996, 2000, 2001


• SDSS/BOSS spectroscopy:

• Oguri et al. 2006:      SQLS        

morphology+colors+ modeling+ SDSS 
image visual inspection 


• AM et al. 2016:            BQLS                           
morphology+colors+BOSS image visual 
inspection


• Jackson et al. 2012:    MUSCLES                     
visual inspection of all quasars visible 
in UKIDSS   

Quasars

S. Burles, Baade Telescope

Inada et al. 2012
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Imaging/Continuum

• WISE +/ Gaia+/ DES (STRIDES)

• Agnello,…AM, et al. 2018: Color cuts + multiplets + visual inspection


• Agnello & Spiniello 2019: 5 methods ; cuts based on morphology, 
multiplets, spectra, color, multi-wavelength


• Lemon et al. 2017, 2018, 2019, 2020:  GAIA based; comp. fitting+ 
variability (see next talk)


• PanSTARRS 


• Rusu,..AM, et al. 2019: AGN catalog + cuts on parameters (color, 
magnitude, etc.)+ GAIA+ visual inspection


Catalog-based

Quasars
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Imaging/Continuum

• Chan, …, AM, et al. 2015, 2020 

• CHITAH algorithm + trained on 

mock lenses from CFHTLS data


• Applied to HSC-Wide for 
discovering quads, in particular 


Modelling-based

Quasars
2 Chan, Suyu, Chiueh et al.

constant, H0 (e.g., Refsdal 1964; Courbin et al. 2011;
Tewes et al. 2013; Suyu et al. 2010, 2013). This quan-
tity is one of the crucial cosmological parameters that
sets the age, size, and critical density of the universe.
By combining the time delays with the stellar velocity
dispersion of the lens, we can also measure the angu-
lar diameter distance to the lens for cosmological studies
(e.g., Paraficz & Hjorth 2009; Jee et al. 2014).
Since lensed quasars are very useful, there have been

several undertakings to look for them with various
suverys. The Cosmic Lens All-sky Survey (CLASS;
Myers et al. 2003) discovered the largest statistical sam-
ple of radio-loud gravitational lenses by obtaining high-
resolution images of flat-spectrum radio sources and
identifying the ones that showed multiple images. In
the optical, the SDSS Quasar Lens Search (SQLS; e.g.,
Oguri et al. 2006, 2008, 2012; Inada et al. 2008, 2010,
2012) has obtained the largest lensed quasar sample to
date based on both morphological and color selection
of spectroscopically confirmed quasars. Jackson et al.
(2012) further combined the quasar samples from the
SDSS and the UKIRT Infrared Deep Sky Survey
(UKIDSS) to find small-separation or high-flux-ratio
lenses. Another systematic approach has been pro-
posed by Kochanek et al. (2006) where all extended vari-
able sources are identified as potential lenses. Recently,
Agnello et al. (2015) proposed a novel way to select lens
candidates through machine-learning algorithms.
We focus on an independent and effective way to

detect lens systems automatically via modeling the
quasar image configurations, as first demonstrated by
Marshall et al. (2009) who detected lenses in the Hubble
Space Telescope (HST ) archival images via lens model-
ing as part of HAGGLeS. The philosophy of HAGGLeS
is that for a lens candidate to be considered as such,
its imaging data must be able to be explained by a lens
model. Therefore, they use a Singular Isothermal Sphere
(SIS) as lens mass profile plus external shear to fit the
observed images of candidate lens objects. However, the
HAGGLeS robot aims at detecting lensed galaxies rather
than lensed quasars. Inspired by HAGGLeS, we build a
robot, Chitah, to search for lensed quasars in imaging
surveys via modeling.
Chitah is an acronym for Chung-li He In-hsiang

Tan Ao Hao, which is a direct transliteration from
that means a robot for explorations

of gravitational imaging. This robot is able to measure
the positions of the lens galaxy and the multiple quasar
images. We also employ a Singular Isothermal Ellipsoid
(SIE) and a SIS as lens mass profiles to identify lenses
with four-image and two-image configurations of quasar
images (also known as “quads” and “doubles”), respec-
tively.
We design Chitah with multi-filter, high-resolution

and signal-to-noise imaging data in mind, i.e., the HSC
Survey and the Large Synoptic Survey Telescope (LSST).
The separation of the lens galaxy and quasar components
for the modeling will depend on data quality, and other
approaches may be better suited to poorer quality imag-
ing data (e.g., LensTractor; P. J. Marshall et al. 2015,
in preparation).
This paper is organized as follows. In Section 2, we

detail the procedure of how Chitah classifies lens can-

Fig. 1.— An example of a simulated quad system. Panels (a)
and (b): g-band and z-band cutouts, respectively. Panels (c) and
(d): the lens galaxy and the quasar images, respectively, which are
separated based on color information and the procedure described
in Section 2.1. The red cross in (c) is the estimated centroid of the
lens light. We identify the locations of quasar images, which we
indicate with the four blue dots in (d).

didates. We describe the simulated lenses based on
CFHTLS data for educating Chitah in Section 3, and
present the results of the training in Section 4. We
demonstrate that Chitah can successfully identify a real
gravitational lens in Section 5. We conclude in Section 6.
Magnitudes quoted in this paper are in AB magnitudes.

2. Chitah: LENS FINDING ROBOT

The criterion for selecting a lensed system is based on
the configuration of the quasar images. Therefore, we
have to separate lens galaxy and quasar images, and then
identify the quasar image positions. To separate lens and
quasar images, we can make use of their color informa-
tion. For simplicity, we use two imaging bands for con-
structing the color. We illustrate the method with g and
z bands (which are frequently available from large-scale
imaging surveys), but the method can be applied to any
other two bands, provided they are sufficiently separated
in wavelength to distinguish the different colors of the
lens galaxies and quasars.
There are four different scenarios of lensed objects de-

pending on their colors and brightnesses, and we list the
four cases in Table 1. The most typical situation of a
lensed object is Case 1: quasar images are bluer and the
lens galaxy is brighter in the z-band. To build a versatile
robot, we try to cover all four situations of lensed objects.
In the following subsections, we describe our procedure
that works for all cases, and illustrate it with two typical
examples of Case 1, one quad and one double, shown in
Figures 1 and 2, respectively.

2.1. Separation of lens and quasars

Since the color is different between the lens galaxy
and quasar images, below we describe a procedure to
use cutouts of the lens system in g-band and z-band to
produce two images: one containing only the lens galaxy,
and another containing the lensed quasars only.
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Fig. 9.— ROC curves for the mock lenses with Moffat PSF. The panels are similar to those for the Gaussian PSF mocks (Figure 7).
Chitah is able to capture bright quads with large separations with TPR ∼ 88% and FPR ∼ 5% when χ2

th
∼ 4, and bright doubles with

large separations with TPR > 66% and FPR < 20% when χ2
th

∼ 1. In comparison with the ROC curves for Gaussian mocks, the Moffat
PSF leads to a lower ROC curve at the level of a few percent.

Fig. 10.— Dependence of mock-lens detection on the input rein for mocks with Moffat PSF. The three brightness groups are formed
based on mz of the dimmest quasar image: bright (left-hand panel) with mz < 22.5, faint (middle panel) with 22.5 < mz < 24, and
ultra-faint (right-hand panel) with 24 < mz < 25.5. The top panels show the detection sensitivity on rein, and the bottom panels are the
corresponding numbers of mock lenses for each rein bin. The TPR for each bin is estimated at χ2

th
= 4 for quads and χ2

th
= 1 for doubles.

The panels are similar to those for Gaussian PSF mocks, but TPRs decrease by ∼ 5% due to the more extended wings of the Moffat PSF.

Fig. 11.— The HSTACS F814W exposure cutout image of COS-
MOS5921+0638, discovered by Faure et al. (2008). The elliptical
galaxy at the center is the lens galaxy, and four lensed quasar im-
ages are located around the lens. The pixel scale is 0.′′05 and the
field of view is 3′′×3′′. The cutout image is obtained from the data
release of Faure et al. (2008).

of Chitah. The classification strategy is divided into
four steps. First of all, we disentangle lens galaxy light
and multiple quasar images using color information. Sec-
ondly, we measure the lens center and the quasar image
positions. Thirdly, through the quasar image configura-
tion, we separate the targets into two groups: potential
quads and potential doubles. Lastly, we model the po-

tential quad/double image configuration via an SIE/SIS
lens distribution, and use the resulting χ2 from the model
to classify the lens. We can choose an appropriate value
for the χ2

th to separate lens and non-lens classifications
(objects with χ2 < χ2

th are classified as lenses whereas
objects with χ2 > χ2

th are classified as non-lenses).
After testingChitah on simulated CFHTLS-Wide-like

data we draw the following conclusions:

1. The optimal threashold of χ2
th can be set to χ2

th ∼
4 for quad classification, and χ2

th ∼ 1 for double
selection for imaging surveys with image qualities
similar to that of CFHTLS.

2. Chitah can hunt down much purer lens candidates
for quads than doubles.

3. For bright quads with large image separations
(rein > 1.′′1) simulated with Gaussian PSFs, we
achieve a high TPR (∼ 90%) and a low FPR
(∼ 3%). For the faint large-separation quads, Chi-
tah is also able to detect them very well with
TPR>80% and FPR<5%.
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of Chitah. The classification strategy is divided into
four steps. First of all, we disentangle lens galaxy light
and multiple quasar images using color information. Sec-
ondly, we measure the lens center and the quasar image
positions. Thirdly, through the quasar image configura-
tion, we separate the targets into two groups: potential
quads and potential doubles. Lastly, we model the po-

tential quad/double image configuration via an SIE/SIS
lens distribution, and use the resulting χ2 from the model
to classify the lens. We can choose an appropriate value
for the χ2

th to separate lens and non-lens classifications
(objects with χ2 < χ2

th are classified as lenses whereas
objects with χ2 > χ2

th are classified as non-lenses).
After testingChitah on simulated CFHTLS-Wide-like

data we draw the following conclusions:

1. The optimal threashold of χ2
th can be set to χ2

th ∼
4 for quad classification, and χ2

th ∼ 1 for double
selection for imaging surveys with image qualities
similar to that of CFHTLS.

2. Chitah can hunt down much purer lens candidates
for quads than doubles.

3. For bright quads with large image separations
(rein > 1.′′1) simulated with Gaussian PSFs, we
achieve a high TPR (∼ 90%) and a low FPR
(∼ 3%). For the faint large-separation quads, Chi-
tah is also able to detect them very well with
TPR>80% and FPR<5%.

Training sample from SIMCT pipeline 
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Variability

• Method only:

• Kochanek et al. 2006: Difference imaging


• Method+Application:

• Lacki et al. 2009: SDSS Supernova Survey + SQLS


• images+light curves; look for extended variable 
sources; success limited by the survey design


• Chao,.., AM et al. 2020a and 2020b:  HSC-
Transient Survey

• Apply difference imaging to variables and 

mock lensed quasars

• Images with large effective area and 

sufficiently large number of blobs are 
candidates

Quasars

Chao et al.
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Light curves

•   Method primarily:

• GRAL: Krone-Martins et al. 2019: 


• Quasar light curves + images from CRTS


• Apply entropy and wavelet transforms 
method to select doubles


• Shu et al. 2020


• Autocorrelation of light curves


• Tested on COSMOGRAIL curves of 22 
CLASS lenses


• improvements possible by including 
additional information such as multi-filter, 
morphological and astrometric data

Quasars
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Machine learning

• Method primarily:

• Agnello et al. (2015): Preselect targets 

from catalogs with ANNs + Identify 
candidates with pattern recognition 
algorithm


• Williams et al. (2017): Gaussian Mixture 
Models + color cuts + visual inspection


• Khramtsov et al. (2019): Catboost 
(decision tree based algorithm) + KiDS


Quasars

A&A 632, A56 (2019)

Fig. 6. Upper panel: confusion matrices for the final version of Cat-
Boost performed on the OOF sample using di↵erent thresholds of prob-
ability in the object classification (see text for more details). Bottom

panel: completeness rate of the OOF sample as a function of the adopted
probability threshold for each class.

We cross-matched the KiDS DR4 sample of 9.5 million
classified sources with the Gaia DR2 catalogue using a 000.5
radius, and retrieved a sample of sources with defined astromet-
ric parameters, of which 52 636 were classified as QSO, 2 369 414
were classified as STAR, and 25 346 – as GALAXY. We then
checked the proper motions and parallaxes of all the objects clas-
sified as quasars and with a match in Gaia to test the assumption
that quasars are indeed zero-proper-motion and zero-parallax
sources within the systematic errors. The results of this test are
shown in Fig. 8. The behaviour of the proper-motion components
is consistent with the estimated contamination of stars within the
quasar subsample of the KiDS DR4 catalogue (Fig. 5). In fact, at
the faintest magnitudes (G > 20.5m), the proper-motion compo-
nents deviate strongly due to larger contamination from stars. At
very bright magnitudes (G > 17.5m), the standard deviation of
the mean of the proper motions and parallaxes is also large, but
this is due to a relatively small amount of sources in this mag-
nitude bin rather than to star contamination. It is also important

Fig. 7. Density plot of the final distribution of sources among the classes
in the output catalogue. The triangle corners show the maximum proba-
bility of belonging to a given family (right QSO, left GALAXY, up STAR),
and colours indicate number of objects. Dashed lines correspond to the
p = 0.8 threshold.

to note that the parallax (right plot of Fig. 8) is biased for the
sample of extragalactic sources towards the value of �0.029 mas
reported in Lindegren et al. (2018).

Given the mean, median, and standard deviation of the
proper motion components and of the parallax of the astrometric
parameters reported in Table 2, we can conclude that the sample
of KiDS DR4 quasars mainly consists of motionless sources. A
more detailed astrometric analysis, providing a more quantitative
estimation of the rate of contaminating stars, cannot be produced
without accurate modelling and the involvement of other exter-
nal datasets, which goes beyond the purposes of this paper.

To assess the purity of the galaxy sample, we use the very
simple argument that, by construction, Gaia should contain no
galaxies at all (Robin et al. 2012). Thus none of the objects
with high pGALAXY should have a match in Gaia DR2. This is,
of course, only a rough approximation since there might be a
number of galaxies that Gaia still measures, such as for example
objects with bright cores. From the cross-match with Gaia, we
find ⇡25 000 objects classified as GALAXY. We note that among
these only 1784 objects have CLASS_STAR> 0.5, and thus can
be point-like sources in KiDS, misclassified by our algorithm, or
very compact galaxies below the KiDS resolution.

In Fig. 9 we show the distribution of the CLASS_STAR param-
eter for each class of objects in the full KiDS DR4 catalogue.
Assuming that galaxies are all extended objects, we would
expect to find in KiDS no objects classified as GALAXY with
CLASS_STAR> 0.5. However, there are objects that are point-like
according to their CLASS_STAR value but that have been classi-
fied as GALAXY by our algorithm on the basis of their colours.
The number of point-like galaxies from Fig. 9 is larger than a
couple of thousand, as predicted by the cross-match with Gaia.
This slight disagreement might be explained by the better resolu-
tion of Gaia (Krone-Martins et al. 2018): these sources might be
seen as point-like in KiDS, but are extended and thus not identi-
fied in Gaia. Despite this, the majority of GALAXY sources with
a Gaia match are indeed extended objects in KiDS, or sources
near to a bright star. This was directly verified on a random sam-
ple of ⇡5000 objects via the SDSS DR14 Navigate Tool9, and

9
http://skyserver.sdss.org/dr14/en/tools/chart/navi.

aspx
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galaxies at all (Robin et al. 2012). Thus none of the objects
with high pGALAXY should have a match in Gaia DR2. This is,
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find ⇡25 000 objects classified as GALAXY. We note that among
these only 1784 objects have CLASS_STAR> 0.5, and thus can
be point-like sources in KiDS, misclassified by our algorithm, or
very compact galaxies below the KiDS resolution.

In Fig. 9 we show the distribution of the CLASS_STAR param-
eter for each class of objects in the full KiDS DR4 catalogue.
Assuming that galaxies are all extended objects, we would
expect to find in KiDS no objects classified as GALAXY with
CLASS_STAR> 0.5. However, there are objects that are point-like
according to their CLASS_STAR value but that have been classi-
fied as GALAXY by our algorithm on the basis of their colours.
The number of point-like galaxies from Fig. 9 is larger than a
couple of thousand, as predicted by the cross-match with Gaia.
This slight disagreement might be explained by the better resolu-
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seen as point-like in KiDS, but are extended and thus not identi-
fied in Gaia. Despite this, the majority of GALAXY sources with
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9
http://skyserver.sdss.org/dr14/en/tools/chart/navi.

aspx
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Khramtsov et al. 2019

Training Sample

Real output 
catalog
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Machine learning

• Method+Application (for Quads):

• GRAL - Krone-Martins et al. 2018, 

Delchambre et al. 2019


• Extremely randomized Trees on GAIA DR2


• Ablai, AM et al. (in prep)


• Simulated lensed quasars with 
microlensing injected on real DES galaxies 
included in the Training sample


• Novel techniques e.g. Polar convolution 
and architecture e.g. Argus 

Ablai, AM et al. (in prep)

Quasars
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Citizen Science : Space Warps

• Classification: Semi-automated or pure visual 
inspection


• Multiple classifications are combined in a 
Bayesian framework to assign probabilities to 
each image to contain a lens


• Candidate lensed quasars discovered in Hyper 
Suprime Cam survey while looking for lensed 
galaxies

spacewarps.org Classification Interface

Sonnenfeld, Verma, AM et al. 2020

PIs: Marshall, 
Verma, AM


Marshall et al. 2016,

AM et al. 2016
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Lensed SNe

• Color-magnitude (Quimby, Oguri, AM et al. 
2014) 


• Lens photometry (Goldstein & Nugent 2016)


• Follow-up of cluster lenses (e.g. SN Refsdal 
from the GLASS program follow-up of clusters from 
MACS or CLASH program )


• Cross-matching of ZTF transients with 
existing samples of lenses                            

• https://www.iucaa.in/~navin/ztf_alerts.html          

by Navin Chaurasia (IUCAA)

Proposed Techniques

Quimby, Oguri, AM et al. 2020
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Figure 4: Color-magnitude diagram showing how lensed SNIa can be distinguished from
un-lensed events. The blue shaded area shows the expected color-magnitude distribution for
un-lensed SNIa on a log scale, and the red shaded area corresponds to core-collapse super-
novae. The r − i colors for low redshift supernovae are relatively blue. However, at higher
redshifts (fainter observed magnitudes), the color becomes red as the peak of the rest-frame
spectral energy distribution passes through the observer-frame bands. The red limit for un-
lensed supernovae at a given i-band magnitude is denoted by the thick black line. Blue circles
and red triangles show the distribution of lensed SNIa and core-collapse supernovae, respec-
tively, predicted by Monte Carlo simulations (16). Filled symbols indicate objects that could be
resolved from ground based observations, such as those planned by the Large Synoptic Survey
Telescope (LSST). Open symbols depict objects that require high angular resolution follow-up
observations to resolve spatially. The open star marks the values corresponding to the peak i-
band brightness of PS1-10afx, and the dash-dotted curve shows that the color evolution within
one magnitude of this peak is minimal. The vertical dashed line marks the single epoch limit
predicted for LSST. The arrow shows the reddening vector, assuming AV = 1.0mag.

14

SN Refsdal, HST/WFC3
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Lensed GWs

• Method primarily:

• Posterior overlap of image pairs e.g. 

Haris et al. 2018


• Sub-threshold searches e.g. Li et al. 
2019


• Searches in real GW data:

• First two observing runs LIGO/VIRGO


• Work ongoing in more recent data

3
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FIG. 1: 95% credible regions of the marginalized posteriors of the redshifted masses mz
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2 (left) and sky location cos↵, � (right) of lensed

images of a sample binary black hole merger event. Black stars show the actual injected parameters.

• Hl: The data set {d1, d2} contain lensed signals from a
single binary black hole merger event with parameters
✓1 = ✓2 = ✓.

• Hu: The data set {d1, d2} contain signals from two inde-
pendent binary black hole merger events with parameters
✓1 and ✓2.

The odds ratio betweenHl andHu is the ratio of the posterior
probabilities of the two hypotheses. That is,

Olu =
P(Hl|{d1, d2})
P(Hu|{d1, d2})

, (3.6)

Using Bayes theorem we can rewrite the odds ratio as

Olu =
P(Hl)
P(Hu)

P({d1, d2}|Hl)
P({d1, d2}|Hu)

= Plu Blu (3.7)

Here Plu := P(Hl)
P(Hu) is the ratio of prior odds of the two hypothe-

ses while the Bayes factor Blu := Zl/Zu is the ratio of the
marginalized likelihoods, where the marginal likelihood of the
hypothesis A is ZA := P({d1, d2}|HA) with A 2 {l, u}. Under
the assumption of d1 and d2 being independent, the marginal
likelihood of the “null” hypothesis equals the product of the
marginal likelihoods from individual events, i.e.,

Zu = P(d1) P(d2), (3.8)

where P(di) is the marginal likelihood from event i, defined
in Eq. (3.3). Now, we rewrite the marginal likelihood of the
lensing hypothesis in terms of the likelihoods of d1 and d2 as

Zl =
Z

d✓ P(✓) P(d1|✓) P(d2|✓) . (3.9)

Using Eq. (3.2), we can rewrite this as

Zl = P(d1) P(d2)
Z

d✓
P(✓|d1) P(✓|d2)

P(✓)
(3.10)

Combining Eqs. (3.8) and (3.10), we obtain the following
expression for the Bayes factor:

Blu :=
Zl
Zu
=

Z
d✓

P(✓|d1) P(✓|d2)
P(✓)

. (3.11)

Thus, the Bayes factor is the inner product of the two posteriors
that is inversely weighted by the prior. This has an intuitive
explanation: if d1 and d2 correspond to lensed signals from a
single binary black hole merger, the estimated posteriors on ✓
would have a larger overlap, favoring the lensing hypothesis
(see, e.g., Fig. 1). The inverse weighting by the prior helps to
down-weight the contribution to the inner product from regions
in the parameter space that are strongly supported by the prior.
The large overlap of the posteriors here is less likely to be due
to the lensing but more likely due to the larger prior support to
the individual posteriors.

While the odds ratio developed above checks for the consis-
tency between the estimated parameters of two GW signals,
the time delay between them can also be used to develop a po-
tential discriminator between lensed and unlensed events. This
however, would require certain assumptions on the distribution
of lenses (i.e., galaxies) and the rate of binary mergers. If we
assume that binary merger events follow a Poisson process
with a rate of n events per month, one can compute the prior
distribution P(�t|Hu) of time delay between pairs of unlensed
events (see Fig. 2). The prior distribution of the time delay
between strongly lensed signals, P(�t|Hl), would have a qual-
itatively di↵erent distribution, which can be computed using
a reasonable distribution of the galaxies and a model of the
compact binary mergers (see Sec. IV for details). Following
Eq.(3.3), the marginal likelihood for the lensed/unlensed hy-
pothesis can be computed from the time delay between two
events d1 and d2 as

P�t({d1, d2}|HA) =
Z

d�t P(�t|HA) P({d1, d2}|�t,HA),

(3.12)
where A 2 {l, u}. Typical statistical errors in estimating the
time of arrival of a GW signal at a detector are of the order
of milliseconds — much smaller than the typical time delay
between any pair of events. Thus, the likelihood function
P�t({d1, d2}|�t,HA) of the time delay can be well approximated
by a Dirac delta function at the true value �t0. Thus, the Bayes
factor between the lensed and unlensed hypotheses can be
written as

Rlu =
P(�t0|Hl)
P(�t0|Hu)

, (3.13)
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FIG. 1: 95% credible regions of the marginalized posteriors of the redshifted masses mz
1,m

z
2 (left) and sky location cos↵, � (right) of lensed

images of a sample binary black hole merger event. Black stars show the actual injected parameters.

• Hl: The data set {d1, d2} contain lensed signals from a
single binary black hole merger event with parameters
✓1 = ✓2 = ✓.

• Hu: The data set {d1, d2} contain signals from two inde-
pendent binary black hole merger events with parameters
✓1 and ✓2.

The odds ratio betweenHl andHu is the ratio of the posterior
probabilities of the two hypotheses. That is,

Olu =
P(Hl|{d1, d2})
P(Hu|{d1, d2})

, (3.6)

Using Bayes theorem we can rewrite the odds ratio as

Olu =
P(Hl)
P(Hu)

P({d1, d2}|Hl)
P({d1, d2}|Hu)

= Plu Blu (3.7)

Here Plu := P(Hl)
P(Hu) is the ratio of prior odds of the two hypothe-

ses while the Bayes factor Blu := Zl/Zu is the ratio of the
marginalized likelihoods, where the marginal likelihood of the
hypothesis A is ZA := P({d1, d2}|HA) with A 2 {l, u}. Under
the assumption of d1 and d2 being independent, the marginal
likelihood of the “null” hypothesis equals the product of the
marginal likelihoods from individual events, i.e.,

Zu = P(d1) P(d2), (3.8)

where P(di) is the marginal likelihood from event i, defined
in Eq. (3.3). Now, we rewrite the marginal likelihood of the
lensing hypothesis in terms of the likelihoods of d1 and d2 as

Zl =
Z

d✓ P(✓) P(d1|✓) P(d2|✓) . (3.9)

Using Eq. (3.2), we can rewrite this as

Zl = P(d1) P(d2)
Z

d✓
P(✓|d1) P(✓|d2)

P(✓)
(3.10)

Combining Eqs. (3.8) and (3.10), we obtain the following
expression for the Bayes factor:

Blu :=
Zl
Zu
=

Z
d✓

P(✓|d1) P(✓|d2)
P(✓)

. (3.11)

Thus, the Bayes factor is the inner product of the two posteriors
that is inversely weighted by the prior. This has an intuitive
explanation: if d1 and d2 correspond to lensed signals from a
single binary black hole merger, the estimated posteriors on ✓
would have a larger overlap, favoring the lensing hypothesis
(see, e.g., Fig. 1). The inverse weighting by the prior helps to
down-weight the contribution to the inner product from regions
in the parameter space that are strongly supported by the prior.
The large overlap of the posteriors here is less likely to be due
to the lensing but more likely due to the larger prior support to
the individual posteriors.

While the odds ratio developed above checks for the consis-
tency between the estimated parameters of two GW signals,
the time delay between them can also be used to develop a po-
tential discriminator between lensed and unlensed events. This
however, would require certain assumptions on the distribution
of lenses (i.e., galaxies) and the rate of binary mergers. If we
assume that binary merger events follow a Poisson process
with a rate of n events per month, one can compute the prior
distribution P(�t|Hu) of time delay between pairs of unlensed
events (see Fig. 2). The prior distribution of the time delay
between strongly lensed signals, P(�t|Hl), would have a qual-
itatively di↵erent distribution, which can be computed using
a reasonable distribution of the galaxies and a model of the
compact binary mergers (see Sec. IV for details). Following
Eq.(3.3), the marginal likelihood for the lensed/unlensed hy-
pothesis can be computed from the time delay between two
events d1 and d2 as

P�t({d1, d2}|HA) =
Z

d�t P(�t|HA) P({d1, d2}|�t,HA),

(3.12)
where A 2 {l, u}. Typical statistical errors in estimating the
time of arrival of a GW signal at a detector are of the order
of milliseconds — much smaller than the typical time delay
between any pair of events. Thus, the likelihood function
P�t({d1, d2}|�t,HA) of the time delay can be well approximated
by a Dirac delta function at the true value �t0. Thus, the Bayes
factor between the lensed and unlensed hypotheses can be
written as

Rlu =
P(�t0|Hl)
P(�t0|Hu)

, (3.13)

Haris et al. 2018
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Lensed GRBs/FRBs

• GRBs:

• Hurley et al. 2019: Data from Konus-Wind 


• sky localization, light curve similarities


• comparison of energy spectra; blind and 
targeted search


• Ahlgren et al. 2020: Data from Fermi-GBM


• Cuts on position, time-averaged spectral 
properties, relative duration


• cross-correlation of light curves


• FRBs:

• See Adi Zitrin’s talk

8 Ahlgren et al.
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Figure 4. Same as Figure 3, but for GRB 140430B and GRB 161220B. Note that GRB 161220B has an additional peak in the
light curve at ⇠ 30 s (top right panel), which casts doubt on these bursts as a lensed pair.

Ahlgren et al. 2020
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Summary 

• Imaging (multi-wavelength), Spectroscopy, Variability, Light curves, 
Modeling, Citizen Science and Machine learning


• New challenges in stage 4 surveys:


• e.g. X-rays (eROSITA), Optical imaging (LSST, Euclid), Optical spectra 
(DESI,PFS), Radio (SKA,LOFAR), GW experiments 
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